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De�nition of SVD

SVD decomosition12

Every matrix X ∈ RNxD , rankX = R , can be decomposed into the
product of three matrices:

X = UΣV T

where

U ∈ RNxR , Σ ∈ RRxR , V T ∈ RRxD

Σ = diag{σ1, σ2, ...σR}, σ1 ≥ σ2 ≥ ... ≥ σR ≥ 0,

UTU = I , V TV = I , where I ∈ RRxR is identity matrix.

1Prove it
2Is it unique?
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De�nition of SVD

Interpretation of SVD

For Xij let i denote objects and j denote properties.

Columns of U - orthonormal basis of columns of X

Rows of V T - orthonormal basis of rows of X

Σ - scaling.

E�cient representations of low-rank matrix!
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De�nition of SVD

Interpretation of SVD

For Xij let i denote objects and j denote properties.

Rows of U are normalized coordinates of rows in V T

Σ = diag{σ1, ...σR} shows the magnitudes of presence of each
row from V T .
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De�nition of SVD

Finding U and V

Finding V

XTX =
(
UΣV T

)T
UΣV T = (VΣUT )UΣV T = VΣ2V T . It

follows that
XTXV = VΣ2V TV = VΣ2

So V consists of eigenvectors of XTX with corresponding
eigenvalues σ2

1
, σ2

2
, ...σ2R

3.

Finding U:

XXT = UΣV T
(
UΣV T

)T
= UΣV TVΣUT = UΣ2UT . So

XXTU = UΣ2UTU = UΣ2.

So U consists of eigenvectors of XXTwith corresponding
eigenvalues σ2

1
, σ2

2
, ...σ2R .

3what is the connection between SVD and PCA?
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Reduced SVD

Reduced SVD decomposition

Σ = diag{σ1, σ2, ...σK , σK+1, ...σR} −→
diag{σ1, σ2, ...σK , 0, 0, ..0} = ΣK
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Reduced SVD

Reduced SVD decomposition

Simpli�cation to rank K ≤ R :

XK = UKΣKVK

Σ = diag{σ1, σ2, ...σK , σK+1, ...σR} −→ diag{σ1, σ2, ...σK} = ΣK

U = [u1, u2, ...uK , uK+1, ...uR ] −→ [u1, u2, ...uK ] = UK

V = [v1, v2, ...vK , vK+1, ...vR ] −→ [v1, v2, ...vK ] = VK

Now rows of U give reduced representation of rows of X .
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Reduced SVD

Frobenius norm

De�ne Frobenius matrix norm

‖X‖2F =
N∑

n=1

D∑
d=1

x2nd

Property: for any matrix A and its singular value
decomposition A = UΣV T , Σ = diag{σ1, ...σR}:

‖A‖2F =
R∑
i=1

σ2i
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Reduced SVD

Frobenius norm using SVD

Using properties ||X ||2F = trXXT 4 and trAB = trBA5, we obtain:

‖X‖2F = tr[UΣV TVΣUT ] = tr[U(Σ2UT )] =

= tr[(Σ2UT )U] = tr[Σ2] =
R∑

r=1

σ2r (1)

4why?
5prove it
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Reduced SVD

Properties of reduced SVD decomposition

For matrix X and its approximation X̂ we can measure

approximation error =
∥∥∥X̂ − X

∥∥∥2
F

Suppose X ∈ RNxD , is approximated with X̂K = UKΣKVK .
Then:

rankXK = K .

XK = argminB:rankB≤K ‖X − B‖2F
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Reduced SVD

Which K to choose?

Suppose X = UΣV T , Σ = diag{σ1, ...σR}
Approximation X̂K = UΣKV

T , Σ = diag{σ1, ...σK , 0, 0, ...0}.
Then error of approximation EK = X − X̂K = UΣ̃V T , where
Σ̃ = diag{0, 0, ...0, σK+1, ...σR}
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Reduced SVD

Which K to choose?

Select K giving relative error below some threshold t:

K = argmin
K

{
‖EK‖2F
‖X‖2F

=

∑R
i=K+1

σ2i∑R
i=1

σ2i
< t

}
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Applications of SVD
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Applications of SVD

Dimensionality reduction

rows of U give reduced representation of rows of X .

xn ∈ RD −→ un ∈ RK
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Applications of SVD

Memory e�ciency

Storage costs of X ∈ RNxD , assuming N ≥ D and each element
taking 1 byte:

Memory storage costs

representation of X memory requirements

original X ?

fully SVD decomposed ?

reduced SVD to rank K ?
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Applications of SVD

Performance e�ciency

Multiplication Xq

X - normalized documents representation

q - normalized search query

representation of X Xq complexity

original X ?

reduced SVD to rank K ?
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Recommendation system with SVD
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Recommendation system with SVD

Example
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Andrew 4 5 5 0 0 0

John 4 4 5 0 0 0

Matthew 5 5 4 0 0 0

Anna 0 0 0 5 5 5

Maria 0 0 0 5 5 4

Jessika 0 0 0 4 5 4
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Recommendation system with SVD

Example

U =



0. 0.6 −0.3 0. 0. −0.8
0. 0.5 −0.5 0. 0. 0.6
0. 0.6 0.8 0. 0. 0.2
0.6 0. 0. −0.8 −0.2 0.
0.6 0. 0. 0.2 0.8 0.
0.5 0. 0. 0.6 −0.6 0.


Σ = diag{

(
14. 13.7 1.2 0.6 0.6 0.5

)
}

V T =



0. 0. 0. 0.6 0.6 0.5
0.5 0.6 0.6 0. 0. 0.
0.5 0.3 −0.8 0. 0. 0.
0. 0. 0. −0.2 0.8 −0.6
−0. −0. −0. 0.8 −0.2 −0.6
0.6 −0.8 0.2 0. 0. 0.
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Recommendation system with SVD

Example (excluded insigni�cant concepts)

U2 =



0. 0.6
0. 0.5
0. 0.6
0.6 0.
0.6 0.
0.5 0.


Σ2 = diag{

(
14. 13.7

)
}

V T
2 =

(
0. 0. 0. 0.6 0.6 0.5
0.5 0.6 0.6 0. 0. 0.

)
Concepts may be

patterns among movies (along j) - action movie / romantic movie
patterns among people (along i) - boys / girls

Dimensionality reduction case: patterns along j axis.
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Recommendation system with SVD

Applications

Example: new movie rating by new person

x =
(
5 0 0 0 0 0

)
Dimensionality reduction: map x into concept space:

y = V T
2 x =

(
0 2.7

)
Recommendation system: map y back to original movies
space:

x̂ = yV T
2 =

(
1.5 1.6 1.6 0 0 0

)
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