Singular value decomposition

Victor Kitov

Singular value decomposition - Victor Kitov Definition of SVD

Table of Contents

Definition of SVD

2 Reduced SVD

3 Applications of SVD

4 Recommendation system with SVD

SVD decomosition¹²

Every matrix $X \in \mathbb{R}^{N \times D}$, rank X = R, can be decomposed into the product of three matrices:

$$X = U \Sigma V^T$$

where

•
$$U \in \mathbb{R}^{N \times R}$$
, $\Sigma \in \mathbb{R}^{R \times R}$, $V^T \in \mathbb{R}^{R \times D}$
• $\Sigma = diag\{\sigma_1, \sigma_2, ... \sigma_R\}$, $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_R \ge 0$,
• $U^T U = I$, $V^T V = I$, where $I \in \mathbb{R}^{R \times R}$ is identity matrix.

¹Prove it

²Is it unique?

Interpretation of SVD

For X_{ij} let *i* denote objects and *j* denote properties.

- Columns of U orthonormal basis of columns of X
- Rows of V^{T} orthonormal basis of rows of X
- Σ scaling.
- Efficient representations of low-rank matrix!

Interpretation of SVD

For X_{ij} let *i* denote objects and *j* denote properties.

- Rows of U are normalized coordinates of rows in V^T
- $\Sigma = diag\{\sigma_1, ... \sigma_R\}$ shows the magnitudes of presence of each row from V^T .

Singular value decomposition - Victor Kitov Definition of SVD

Finding U and V

• Finding V

³what is the connection between SVD and PCA?

Finding U and V

• Finding V

 $X^T X = (U \Sigma V^T)^T U \Sigma V^T = (V \Sigma U^T) U \Sigma V^T = V \Sigma^2 V^T$. It follows that

$$X^{T}XV = V\Sigma^{2}V^{T}V = V\Sigma^{2}$$

So V consists of eigenvectors of $X^T X$ with corresponding eigenvalues $\sigma_1^2, \sigma_2^2, ... \sigma_R^{2^3}$.

• Finding U: $XX^{T} = U\Sigma V^{T} (U\Sigma V^{T})^{T} = U\Sigma V^{T} V\Sigma U^{T} = U\Sigma^{2} U^{T}$. So $XX^{T} U = U\Sigma^{2} U^{T} U = U\Sigma^{2}$.

So U consists of eigenvectors of XX^T with corresponding eigenvalues $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$.

³what is the connection between SVD and PCA?

Singular value decomposition - Victor Kitov Reduced SVD

Table of Contents

1 Definition of SVD

2 Reduced SVD

- 3 Applications of SVD
- 4 Recommendation system with SVD

Reduced SVD

Reduced SVD decomposition

$$\Sigma = diag\{\sigma_1, \sigma_2, ... \sigma_K, \sigma_{K+1}, ... \sigma_R\} \longrightarrow diag\{\sigma_1, \sigma_2, ... \sigma_K, 0, 0, ... 0\} = \Sigma_K$$

Reduced SVD

Reduced SVD decomposition

Simplification to rank $K \leq R$:

$$X_K = U_K \Sigma_K V_K$$

$$\Sigma = diag\{\sigma_1, \sigma_2, ... \sigma_K, \sigma_{K+1}, ... \sigma_R\} \longrightarrow diag\{\sigma_1, \sigma_2, ... \sigma_K\} = \Sigma_K$$

$$U = [u_1, u_2, ... u_K, u_{K+1}, ... u_R] \longrightarrow [u_1, u_2, ... u_K] = U_K$$

$$V = [v_1, v_2, ... v_K, v_{K+1}, ... v_R] \longrightarrow [v_1, v_2, ... v_K] = V_K$$

• Now rows of U give reduced representation of rows of X.

Frobenius norm

• Define Frobenius matrix norm

$$\|X\|_F^2 = \sum_{n=1}^N \sum_{d=1}^D x_{nd}^2$$

Property: for any matrix A and its singular value decomposition A = UΣV^T, Σ = diag{σ₁,...σ_R}:

$$\|A\|_F^2 = \sum_{i=1}^R \sigma_i^2$$

Frobenius norm using SVD

Using properties $||X||_F^2 = \operatorname{tr} XX^{T4}$ and $\operatorname{tr} AB = \operatorname{tr} BA^5$, we obtain:

$$|X||_{F}^{2} = \operatorname{tr}[U\Sigma V^{T} V\Sigma U^{T}] = \operatorname{tr}[U(\Sigma^{2} U^{T})] =$$
$$= \operatorname{tr}[(\Sigma^{2} U^{T})U] = \operatorname{tr}[\Sigma^{2}] = \sum_{r=1}^{R} \sigma_{r}^{2} \qquad (1)$$

⁴why? ⁵prove it

Properties of reduced SVD decomposition

• For matrix X and its approximation \widehat{X} we can measure

approximation error =
$$\|\widehat{X} - X\|_{F}^{2}$$

• Suppose $X \in \mathbb{R}^{N \times D}$, is approximated with $\widehat{X}_{K} = U_{K} \Sigma_{K} V_{K}$. Then:

• rank
$$X_K = K$$

• $X_{K} = \arg\min_{B:\operatorname{rank} B \leq K} \|X - B\|_{F}^{2}$

Singular value decomposition - Victor Kitov Reduced SVD

Which K to choose?

- Suppose $X = U\Sigma V^T$, $\Sigma = diag\{\sigma_1, ... \sigma_R\}$
- Approximation $\widehat{X}_{\mathcal{K}} = U \Sigma_{\mathcal{K}} V^{\mathcal{T}}$, $\Sigma = diag\{\sigma_1, ... \sigma_{\mathcal{K}}, 0, 0, ... 0\}$.
- Then error of approximation $E_K = X \hat{X}_K = U\tilde{\Sigma}V^T$, where $\tilde{\Sigma} = diag\{0, 0, ...0, \sigma_{K+1}, ...\sigma_R\}$

Singular value decomposition - Victor Kitov Reduced SVD

Which K to choose?

Select K giving relative error below some threshold t:

$$K = \arg\min_{\mathcal{K}} \left\{ \frac{\|E_{\mathcal{K}}\|_F^2}{\|X\|_F^2} = \frac{\sum_{i=K+1}^R \sigma_i^2}{\sum_{i=1}^R \sigma_i^2} < t \right\}$$

Singular value decomposition - Victor Kitov Applications of SVD

Table of Contents

Definition of SVD

2 Reduced SVD

- 3 Applications of SVD
 - 4 Recommendation system with SVD

Dimensionality reduction

- rows of U give reduced representation of rows of X.
- $x_n \in \mathbb{R}^D \longrightarrow u_n \in \mathbb{R}^K$

Singular value decomposition - Victor Kitov Applications of SVD

Memory efficiency

Storage costs of $X \in \mathbb{R}^{N \times D}$, assuming $N \geq D$ and each element taking 1 byte:

Memory storage costs

representation of X	memory requirements				
original X	?				
fully SVD decomposed	?				
reduced SVD to rank K	?				

Singular value decomposition - Victor Kitov Applications of SVD

Performance efficiency

- Multiplication Xq
 - X normalized documents representation
 - q normalized search query

representation of X	Xq complexity			
original X	?			
reduced SVD to rank K	?			

Recommendation system with SVD

Table of Contents

1 Definition of SVD

2 Reduced SVD

3 Applications of SVD

4 Recommendation system with SVD

Recommendation system with SVD

Example

	Terminator	Gladiator	Rambo	Titanic	Love story	A walk to remember
Andrew	4	5	5	0	0	0
John	4	4	5	0	0	0
Matthew	5	5	4	0	0	0
Anna	0	0	0	5	5	5
Maria	0	0	0	5	5	4
Jessika	0	0	0	4	5	4

Recommendation system with SVD

Example

$$U = \begin{pmatrix} 0. & 0.6 & -0.3 & 0. & 0. & -0.8 \\ 0. & 0.5 & -0.5 & 0. & 0. & 0.6 \\ 0. & 0.6 & 0.8 & 0. & 0. & 0.2 \\ 0.6 & 0. & 0. & -0.8 & -0.2 & 0. \\ 0.6 & 0. & 0. & 0.2 & 0.8 & 0. \\ 0.5 & 0. & 0. & 0.6 & -0.6 & 0. \end{pmatrix}$$
$$\Sigma = \text{diag}\{(14. \ 13.7 \ 1.2 \ 0.6 \ 0.6 \ 0.5)\}$$
$$V^{T} = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \\ 0.5 & 0.3 & -0.8 & 0. & 0. & 0. \\ 0. & 0. & 0. & -0.2 & 0.8 & -0.6 \\ -0. & -0. & -0. & 0.8 & -0.2 & -0.6 \\ 0.6 & -0.8 & 0.2 & 0. & 0. & 0. \end{pmatrix}$$

Recommendation system with SVD

Example (excluded insignificant concepts)

$$U_{2} = \begin{pmatrix} 0. & 0.6\\ 0. & 0.5\\ 0. & 0.6\\ 0.6 & 0.\\ 0.5 & 0. \end{pmatrix}$$

$$\Sigma_{2} = \text{diag}\{(14. \quad 13.7)\}$$

$$V_2^{T} = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. \end{pmatrix}$$

Concepts may be

- patterns among movies (along j) action movie / romantic movie
- patterns among people (along *i*) boys / girls

Dimensionality reduction case: patterns along *j* axis.

Recommendation system with SVD

Applications

• Example: new movie rating by new person

$$x = \begin{pmatrix} 5 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• Dimensionality reduction: map x into concept space:

$$y = V_2^T x = \begin{pmatrix} 0 & 2.7 \end{pmatrix}$$

• **Recommendation system:** map y back to original movies space:

$$\widehat{x} = yV_2^T = (1.5 \quad 1.6 \quad 1.6 \quad 0 \quad 0 \quad 0)$$