Singular value decomposition

Victor Kitov

Table of Contents

(1) Definition of SVD

(2) Reduced SVD
(3) Applications of SVD

4 Recommendation system with SVD

SVD decomosition ${ }^{12}$

Every matrix $X \in \mathbb{R}^{N \times D}$, rank $X=R$, can be decomposed into the product of three matrices:

$$
X=U \Sigma V^{T}
$$

where

- $U \in \mathbb{R}^{N \times R}, \Sigma \in \mathbb{R}^{R \times R}, V^{T} \in \mathbb{R}^{R \times D}$
- $\Sigma=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots \sigma_{R}\right\}, \sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{R} \geq 0$,
- $U^{T} U=I, V^{T} V=I$, where $I \in \mathbb{R}^{R \times R}$ is identity matrix.
${ }^{1}$ Prove it
${ }^{2}$ Is it unique?

Interpretation of SVD

For $X_{i j}$ let i denote objects and j denote properties.

- Columns of U - orthonormal basis of columns of X
- Rows of V^{T} - orthonormal basis of rows of X
- Σ - scaling.
- Efficient representations of low-rank matrix!

Interpretation of SVD

For $X_{i j}$ let i denote objects and j denote properties.

- Rows of U are normalized coordinates of rows in V^{T}
- $\Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots \sigma_{R}\right\}$ shows the magnitudes of presence of each row from V^{T}.

Finding U and V

- Finding U :

$$
\begin{gathered}
X X^{T}=U \Sigma V^{T}\left(U \Sigma V^{T}\right)^{T}=U \Sigma V^{T} V \Sigma U^{T}=U \Sigma^{2} U^{T} \text {. So } \\
X X^{T} U=U \Sigma^{2} U^{T} U=U \Sigma^{2} .
\end{gathered}
$$

So U consists of eigenvectors of $X X^{\top}$ with corresponding eigenvalues $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots \sigma_{R}^{2}$.

Finding U and V

- Finding U :

$$
\begin{gathered}
X X^{T}=U \Sigma V^{T}\left(U \Sigma V^{T}\right)^{T}=U \Sigma V^{T} V \Sigma U^{T}=U \Sigma^{2} U^{T} \text {. So } \\
X X^{T} U=U \Sigma^{2} U^{T} U=U \Sigma^{2} .
\end{gathered}
$$

So U consists of eigenvectors of $X X^{T}$ with corresponding eigenvalues $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots \sigma_{R}^{2}$.

- Finding V
$X^{T} X=\left(U \Sigma V^{T}\right)^{T} U \Sigma V^{T}=\left(V \Sigma U^{T}\right) U \Sigma V^{T}=V \Sigma^{2} V^{T}$. It follows that

$$
X^{T} X V=V \Sigma^{2} V^{T} V=V \Sigma^{2}
$$

So V consists of eigenvectors of $X^{\top} X$ with corresponding eigenvalues $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots \sigma_{R}^{2}$ - these are top R principal components!

SVD: existence

Theorem 1

For any matrix $X \in \mathbb{R}^{N \times D}$ SVD decomposition exists.
Proof. Consider arbitrary $X=\left[x_{1}^{T}, \ldots x_{N}^{T}\right]^{T} \in \mathbb{R}^{N \times D}$ with $\operatorname{rg} X=R$.
For rows $x_{1}^{T}, \ldots x_{N}^{T}$ find principal components $v_{1}, \ldots v_{R}$.
Define $V^{T}=\left[v_{1}^{T}, \ldots v_{R}^{T}\right] \in \mathbb{R}^{R \times D}$. By definition of principal coomponents $V^{T} V=I$. Consider B with rows=coordinates of $x_{1}, \ldots x_{N}$ in principal components, then $X=B V^{T}$.
Let $b_{1}, . . b_{D}$ be columns of B, satisfying $b_{i}=X v_{i}$. Then $b_{i}^{T} b_{j}=v_{i}^{T} X^{T} X v_{j}=\lambda_{j} v_{i}^{T} v_{j}=\lambda_{j} \mathbb{I}[i=j]$, because v_{j} is an eigenvector of $X^{\top} X$ with eigenvalue λ_{j}. Also $\lambda_{j} \geq 0$ because $X^{T} X \succeq 0$. So $b_{1}, \ldots b_{D}$ are orthogonal.
If we consider $\Sigma=\operatorname{diag}\left\{\sqrt{\lambda_{1}}, \ldots \sqrt{\lambda_{D}}\right\} B=U \Sigma$ we will obtain that $U^{T} U=I$. So SVD decomposion $X=U \Sigma V^{T}$ exists.

SVD: uniqueness

Theorem

SVD decomposition is unique if and only if all eigenvalues of $X^{\top} X$ are unique.

- Unique set of eigenvalues mean that eigenvectors are uniquely defined (up to multiplicative constant).
- If two eigenvalues are equal we may change the order of respective eigenvectors.
- Sometimes condition $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{R} \geq 0$ is not required.
- Then we can freely change ordering of $u_{1}, \ldots u_{R} ; \sigma_{1}, \ldots \sigma_{R}$; $v_{1}, \ldots v_{R}$.

Table of Contents

(1) Definition of SVD

(2) Reduced SVD
(3) Applications of SVD

4 Recommendation system with SVD

Reduced SVD decomposition

$\Sigma=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots \sigma_{K}, \sigma_{K+1}, \ldots \sigma_{R}\right\} \longrightarrow$
$\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots \sigma_{K}, 0,0, . .0\right\}=\Sigma_{K}$

Reduced SVD decomposition

Simplification to rank $K \leq R$:

$$
X_{K}=U_{K} \Sigma_{K} V_{K}
$$

$\Sigma=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots \sigma_{K}, \sigma_{K+1}, \ldots \sigma_{R}\right\} \longrightarrow \operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots \sigma_{K}\right\}=\Sigma_{K}$
$U=\left[u_{1}, u_{2}, \ldots u_{K}, u_{K+1}, \ldots u_{R}\right] \longrightarrow\left[u_{1}, u_{2}, \ldots u_{K}\right]=U_{K}$
$V=\left[v_{1}, v_{2}, \ldots v_{K}, v_{K+1}, \ldots v_{R}\right] \longrightarrow\left[v_{1}, v_{2}, \ldots v_{K}\right]=V_{K}$

- Now rows of U give reduced representation of rows of X.

Properties of reduced SVD decomposition

Frobenius norm of matrix

$$
\|X\|_{F}^{2}=\sum_{n=1}^{N} \sum_{d=1}^{D} x_{n d}^{2}
$$

- For matrix X and its approximation \widehat{X} we can measure

$$
\text { approximation error }=\|\widehat{X}-X\|_{F}^{2}
$$

Theorem 2

Suppose $X \in \mathbb{R}^{N \times D}$, is approximated with $\widehat{X}_{K}=U_{K} \Sigma_{K} V_{K}$. Then:
(1) $\operatorname{rank} X_{K}=K$.
(2) $X_{K}=\arg \min _{B: \operatorname{rank} B \leq K}\|X-B\|_{F}^{2}$

Proof of theorem 2

(1) $\operatorname{rg} U_{K}=\operatorname{rg} U_{K} \Sigma_{K}=K, \operatorname{rg} V_{K}=K$, so
$\operatorname{rg} \widehat{X}_{K}=\operatorname{rg}\left[U_{K} \Sigma_{K} V_{K}\right]=K$
(2) Let $X=\left[x_{1}, \ldots x_{N}\right]^{T}, B=\left[b_{1}, \ldots b_{N}\right]^{T}, D=U \Sigma$,
$D_{K}=U_{K} \Sigma_{K}$, so $X=D V, X_{K}=D_{K} V_{K}$
(1) consider subspace L spanned by $b_{1}, \ldots b_{N}$. Since $\mathrm{rg} B \leq K, \operatorname{dim}(L) \leq K$.
(2) $\|X-B\|_{F}^{2}=\sum_{n=1}^{N}\left\|x_{n}-b_{n}\right\|^{2} \leq \sum_{n=1}^{N}\left\|x_{n}-\tilde{b}_{n}\right\|^{2}$, where \tilde{b}_{n} is projection of x_{n} on L.
© Since rows of V_{K} are top K principal components, rows of D_{K} are coordinates in first K principal components, and $\widehat{X}_{K}=\left[p_{1}, \ldots p_{N}\right]^{T}$ consists of projections onto K best fit subspace.
(- $\left\|X-\widehat{X}_{K}\right\|_{F}^{2}=\left\|\left[x_{1}-p_{1}, \ldots x_{N}-p_{N}\right]^{T}\right\|_{F}^{2}=$
$\sum_{n=1}^{N}\left\|x_{n}-p_{n}\right\|^{2} \leq \sum_{n=1}^{N}\left\|x_{n}-\tilde{b}_{n}\right\|^{2} \leq \sum_{n=1}^{N}\left\|x_{n}-b_{n}\right\|^{2}=$ $\|X-B\|_{F}^{2}$

Which K to choose for approximation?

- Suppose $X=U \Sigma V^{T}, \Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots \sigma_{R}\right\}$
- Approximation $\widehat{X}_{K}=U \Sigma_{K} V^{T}, \Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots \sigma_{K}, 0,0, \ldots 0\right\}$.
- Then error of approximation $E_{K}=X-\widehat{X}_{K}=U \tilde{\Sigma} V^{T}$, where $\tilde{\Sigma}=\operatorname{diag}\left\{0,0, \ldots 0, \sigma_{K+1}, \ldots \sigma_{R}\right\}$

Which K to choose for approximation?

Select K giving relative error below some threshold t :

$$
K=\arg \min _{K}\left\{\frac{\left\|E_{K}\right\|_{F}^{2}}{\|X\|_{F}^{2}}=\frac{\sum_{i=K+1}^{R} \sigma_{i}^{2}}{\sum_{i=1}^{R} \sigma_{i}^{2}}<t\right\}
$$

We used theorem 3 for calculation of Frobenius matrix norm.

Frobenius norm

Theorem 3

for any matrix X and its singular value decomposition $A=U \Sigma V^{\top}$, $\Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots \sigma_{R}\right\}:$

$$
\|X\|_{F}^{2}=\sum_{i=1}^{R} \sigma_{i}^{2}
$$

Proof. Using lemmas 1 and 2, we obtain:

$$
\begin{aligned}
\|X\|_{F}^{2} & =\operatorname{tr}\left[U \Sigma V^{T} V \Sigma U^{T}\right]=\operatorname{tr}\left[U\left(\Sigma^{2} U^{T}\right)\right]= \\
& =\operatorname{tr}\left[\left(\Sigma^{2} U^{T}\right) U\right]=\operatorname{tr}\left[\Sigma^{2}\right]=\sum_{r=1}^{R} \sigma_{r}^{2}
\end{aligned}
$$

Lemmas

Lemma 1

For any $X \in \mathbb{R}^{N \times D}\|X\|_{F}^{2}=\operatorname{tr} X X^{T}$
Proof. $\left\{X X^{T}\right\}_{i, j}=\sum_{k=1}^{D} x_{i k} x_{k j}^{t}=\sum_{k=1}^{D} x_{i k} x_{j k}$. So

$$
\operatorname{tr} X X^{T}=\sum_{i=1}^{N}\left\{X X^{T}\right\}_{i, i}=\sum_{i=1}^{N} \sum_{k=1}^{D} x_{i k} x_{i k}=\|X\|_{F}^{2}
$$

Lemmas

Lemma 2

For any $A \in \mathbb{R}^{N \times D}$ and $B \in \mathbb{R}^{D \times N}$

$$
\operatorname{tr} A B=\operatorname{tr} B A
$$

Proof. $\{A B\}_{n, n}=\sum_{d=1}^{D} a_{n, d} b_{d, n}$, so

$$
\begin{gathered}
\operatorname{tr} A B=\sum_{n=1}^{N}\{A B\}_{n, n}=\sum_{n=1}^{N} \sum_{d=1}^{D} a_{n, d} b_{d, n} \\
\{B A\}_{d, d}=\sum_{n=1}^{N} b_{d, n} a_{n, d}, \text { so } \\
\operatorname{tr} B A=\sum_{d=1}^{D}\{B A\}_{d, d}=\sum_{d=1}^{D} \sum_{n=1}^{N} b_{d, n} a_{n, d}= \\
=\sum_{n=1}^{N} \sum_{d=1}^{D} a_{n, d} b_{d, n}=\operatorname{tr} A B
\end{gathered}
$$

Table of Contents

(2) Reduced SVD
(3) Applications of SVD

4 Recommendation system with SVD

Dimensionality reduction

- rows of U give reduced representation of rows of X.
- $x_{n} \in \mathbb{R}^{D} \longrightarrow u_{n} \in \mathbb{R}^{K}$

Memory efficiency

Storage costs of $X \in \mathbb{R}^{N \times D}$, assuming $N \geq D$ and each element taking 1 byte:

Memory storage costs

representation of X	memory requirements
original X	$?$
fully SVD decomposed	$?$
reduced SVD to rank K	$?$

Performance efficiency

- Multiplication $X q$
- X - normalized documents representation
- q - normalized search query

representation of X	$X q$ complexity
original X	$?$
reduced SVD to rank K	$?$

Table of Contents

(1) Definition of SVD

(2) Reduced SVD
(3) Applications of SVD

4 Recommendation system with SVD

Example

		$\begin{aligned} & \frac{\vdots}{0} \\ & \frac{. \pi}{0} \\ & \frac{\pi}{0} \end{aligned}$		-	$\begin{aligned} & \text { त } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
Andrew	4	5	5	0	0	0
John	4	4	5	0	0	0
Matthew	5	5	4	0	0	0
Anna	0	0	0	5	5	5
Maria	0	0	0	5	5	4
Jessika	0	0	0	4	5	4

Example

$$
\begin{aligned}
& U=\left(\begin{array}{cccccc}
0 . & 0.6 & -0.3 & 0 . & 0 . & -0.8 \\
0 . & 0.5 & -0.5 & 0 . & 0 . & 0.6 \\
0 . & 0.6 & 0.8 & 0 . & 0 . & 0.2 \\
0.6 & 0 . & 0 . & -0.8 & -0.2 & 0 . \\
0.6 & 0 . & 0 . & 0.2 & 0.8 & 0 . \\
0.5 & 0 . & 0 . & 0.6 & -0.6 & 0 .
\end{array}\right) \\
& \Sigma=\operatorname{diag}\left\{\left(\begin{array}{llllll}
14 . & 13.7 & 1.2 & 0.6 & 0.6 & 0.5
\end{array}\right)\right\} \\
& V^{T}=\left(\begin{array}{cccccc}
0 . & 0 . & 0 . & 0.6 & 0.6 & 0.5 \\
0.5 & 0.6 & 0.6 & 0 . & 0 . & 0 . \\
0.5 & 0.3 & -0.8 & 0 . & 0 . & 0 . \\
0 . & 0 . & 0 . & -0.2 & 0.8 & -0.6 \\
-0 . & -0 . & -0 . & 0.8 & -0.2 & -0.6 \\
0.6 & -0.8 & 0.2 & 0 . & 0 . & 0 .
\end{array}\right)
\end{aligned}
$$

Example (excluded insignificant concepts)

$$
\begin{gathered}
U_{2}=\left(\begin{array}{cc}
0 . & 0.6 \\
0 . & 0.5 \\
0 . & 0.6 \\
0.6 & 0 . \\
0.6 & 0 . \\
0.5 & 0 .
\end{array}\right) \\
\Sigma_{2}=\operatorname{diag}\{(14 . \\
13.7)\} \\
V_{2}^{T}=\left(\begin{array}{cccccc}
0 . & 0 . & 0 . & 0.6 & 0.6 & 0.5 \\
0.5 & 0.6 & 0.6 & 0 . & 0 . & 0 .
\end{array}\right)
\end{gathered}
$$

Concepts may be

- patterns among movies (along j) - action movie / romantic movie
- patterns among people (along i) - boys / girls

Dimensionality reduction case: patterns along j axis.

Applications

- Example: new movie rating by new person

$$
x=\left(\begin{array}{llllll}
5 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- Dimensionality reduction: map x into concept space:

$$
y=V_{2}^{\top} x=\left(\begin{array}{ll}
0 & 2.7
\end{array}\right)
$$

- Recommendation system: map y back to original movies space:

$$
\widehat{x}=y V_{2}^{\top}=\left(\begin{array}{llllll}
1.5 & 1.6 & 1.6 & 0 & 0 & 0
\end{array}\right)
$$

