Singular value decomposition - Victor Kitov

Singular value decomposition

Victor Kitov

Table of Contents

- Definition of SVD
- 2 Reduced (truncated) SVD
- 3 Applications of SVD
- Recommendation system with SVD

SVD decomosition¹²

Every matrix $X \in \mathbb{R}^{N \times D}$, rank X = R, can be decomposed into the product of three matrices:

$$X = U\Sigma V^T$$

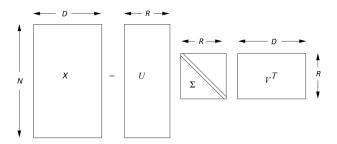
where

- $U \in \mathbb{R}^{N \times R}$, $\Sigma \in \mathbb{R}^{R \times R}$, $V^T \in \mathbb{R}^{R \times D}$
- $\Sigma = diag\{\sigma_1, \sigma_2, ... \sigma_R\}, \sigma_1 \geq \sigma_2 \geq ... \geq \sigma_R \geq 0$,
- $U^TU = I$, $V^TV = I$, where $I \in \mathbb{R}^{R \times R}$ is identity matrix.

¹Prove it

²Is it unique?

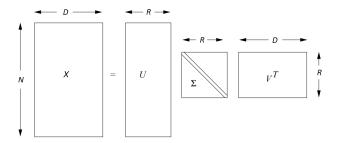
Interpretation of SVD



For X_{ii} let i denote objects and j denote properties.

- Columns of U orthonormal basis of columns of X
- Rows of V^T orthonormal basis of rows of X
- Σ scaling.
- Efficient representations of low-rank matrix!

Interpretation of SVD



For X_{ii} let i denote objects and j denote properties.

- Rows of U are normalized coordinates of rows in V^T
- $\Sigma = diag\{\sigma_1, ... \sigma_R\}$ shows the magnitudes of presence of each row from V^T .

Finding U and V

• Finding *U*:

$$XX^T = U\Sigma V^T (U\Sigma V^T)^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$$
. So $XX^T U = U\Sigma^2 U^T U = U\Sigma^2$.

So U consists of eigenvectors of XX^T with corresponding eigenvalues $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$.

Finding U and V

• Finding *U*:

$$XX^T = U\Sigma V^T (U\Sigma V^T)^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$$
. So $XX^T U = U\Sigma^2 U^T U = U\Sigma^2$.

So U consists of eigenvectors of XX^T with corresponding eigenvalues $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$.

• Finding V

$$X^TX = (U\Sigma V^T)^T U\Sigma V^T = (V\Sigma U^T)U\Sigma V^T = V\Sigma^2 V^T$$
. It follows that

$$X^TXV = V\Sigma^2V^TV = V\Sigma^2$$

So V consists of eigenvectors of X^TX with corresponding eigenvalues $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$ - these are top R principal components!

SVD: existence

Theorem 1

For any matrix $X \in \mathbb{R}^{N \times D}$ SVD decomposition exists.

Proof. Consider arbitrary $X = [x_1^T, ... x_N^T]^T \in \mathbb{R}^{N \times D}$ with rg X = R. For rows $x_1^T, ... x_N^T$ find principal components $v_1, ... v_R$. Define $V^T = [v_1^T, ... v_R^T] \in \mathbb{R}^{R \times D}$. By definition of principal coomponents $V^TV = I$. Consider B with rows=coordinates of $x_1,...x_N$ in principal components, then $X = BV^T$. Let $b_1, ..., b_D$ be columns of B, satisfying $b_i = Xv_i$. Then $b_i^T b_i = v_i^T X^T X v_i = \lambda_i v_i^T v_i = \lambda_i \mathbb{I}[i = j]$, because v_i is an eigenvector of X^TX with eigenvalue λ_i . Also $\lambda_i \geq 0$ because $X^TX \succ 0$. So $b_1, ...b_D$ are orthogonal. If we consider $\Sigma = \text{diag}\{\sqrt{\lambda_1},...\sqrt{\lambda_D}\}\ B = U\Sigma$ we will obtain that $U^T U = I$. So SVD decomposion $X = U \Sigma V^T$ exists.

SVD: uniqueness

Theorem

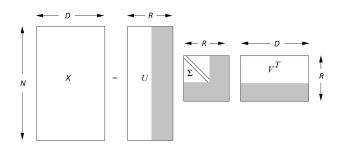
SVD decomposition is unique if $X^TX \in \mathbb{R}^{D \times D}$ has a set of D unique eigenvalues.

- Unique set of eigenvalues mean that eigenvectors are uniquely defined (up to multiplicative constant).
- If two eigenvalues are equal respective eigenvectors are not uniquely defined.
- Sometimes condition $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_R \geq 0$ is not required.
 - Then we can freely change ordering simultaneously of $u_1, ... u_R$; $\sigma_1, ... \sigma_R$; $v_1, ... v_R$.
 - So SVD is not unique

Table of Contents

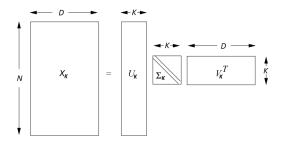
- Definition of SVD
- 2 Reduced (truncated) SVD
- 3 Applications of SVD
- Recommendation system with SVD

Reduced SVD decomposition



$$\begin{split} \Sigma &= \textit{diag}\{\sigma_1, \sigma_2, ... \sigma_K, \sigma_{K+1}, ... \sigma_R\} \longrightarrow \\ \textit{diag}\{\sigma_1, \sigma_2, ... \sigma_K, 0, 0, ... 0\} &= \Sigma_K \end{split}$$

Reduced SVD decomposition



Simplification to rank $K \leq R$:

$$X_K = U_K \Sigma_K V_K$$

$$\begin{split} \Sigma &= \text{diag}\{\sigma_1, \sigma_2, ... \sigma_K, \sigma_{K+1}, ... \sigma_R\} \longrightarrow \text{diag}\{\sigma_1, \sigma_2, ... \sigma_K\} = \Sigma_K \\ U &= [u_1, u_2, ... u_K, u_{K+1}, ... u_R] \longrightarrow [u_1, u_2, ... u_K] = U_K \\ V &= [v_1, v_2, ... v_K, v_{K+1}, ... v_R] \longrightarrow [v_1, v_2, ... v_K] = V_K \end{split}$$

Now rows of U give reduced representation of rows of X.

Properties of reduced SVD decomposition

Frobenius norm of matrix

$$||X||_F^2 = \sum_{n=1}^N \sum_{d=1}^D x_{nd}^2$$

ullet For matrix X and its approximation \widehat{X} we can measure $\mathrm{approximation} \ \mathrm{error} = \left\| \widehat{X} - X \right\|_E^2$

Theorem 2

Suppose $X \in \mathbb{R}^{N \times D}$, is approximated with $\widehat{X}_K = U_K \Sigma_K V_K$. Then:

- \bigcirc rank $X_K = K$.

Proof of theorem 2

- rg $U_K = \operatorname{rg} U_K \Sigma_K = K$, rg $V_K = K$, so rg $\widehat{X}_K = \operatorname{rg} [U_K \Sigma_K V_K] = K$
- ② Let $X = [x_1, ...x_N]^T$, $B = [b_1, ...b_N]^T$, $D = U\Sigma$,

$$D_K = U_K \Sigma_K$$
, so $X = DV$, $\widehat{X}_K = D_K V_K$

- consider subspace L spanned by $b_1, ... b_N$. Since $\operatorname{rg} B \leq K, \operatorname{dim}(L) \leq K$.
- **②** $\|X B\|_F^2 = \sum_{n=1}^N \|x_n b_n\|^2 \le \sum_{n=1}^N \|x_n \tilde{b}_n\|^2$, where \tilde{b}_n is projection of x_n on L.
- Since rows of V_K are top K principal components, rows of D_K are coordinates in first K principal components, and $\widehat{X}_K = [p_1, ... p_N]^T$ consists of projections onto K best fit subspace.

Which K to choose for approximation?

- Suppose $X = U\Sigma V^T$, $\Sigma = diag\{\sigma_1, ...\sigma_R\}$
- Approximation $\widehat{X}_K = U\Sigma_K V^T$, $\Sigma = diag\{\sigma_1, ...\sigma_K, 0, 0, ...0\}$.
- Then error of approximation $E_K = X \widehat{X}_K = U\widetilde{\Sigma}V^T$, where $\widetilde{\Sigma} = diag\{0,0,...0,\sigma_{K+1},...\sigma_R\}$

Which K to choose for approximation?

Select K giving relative error below some threshold t:

$$K = \arg\min_{K} \left\{ \frac{\|E_K\|_F^2}{\|X\|_F^2} = \frac{\sum_{i=K+1}^R \sigma_i^2}{\sum_{i=1}^R \sigma_i^2} < t \right\}$$

We used theorem 3 for calculation of Frobenius matrix norm.

Frobenius norm

Theorem 3

for any matrix X and its singular value decomposition $A = U\Sigma V^T$, $\Sigma = diag\{\sigma_1, ... \sigma_R\}$:

$$||X||_F^2 = \sum_{i=1}^R \sigma_i^2$$

Proof. Using lemmas 1 and 2, we obtain:

$$||X||_F^2 = \operatorname{tr}[U\Sigma V^T V\Sigma U^T] = \operatorname{tr}[U(\Sigma^2 U^T)] =$$

$$= \operatorname{tr}[(\Sigma^2 U^T)U] = \operatorname{tr}[\Sigma^2] = \sum_{r=1}^R \sigma_r^2$$

Lemmas

Lemma 1

For any
$$X \in \mathbb{R}^{N \times D} ||X||_F^2 = \operatorname{tr} X X^T$$

Proof.
$$\{XX^T\}_{i,j} = \sum_{k=1}^{D} x_{ik} x_{kj}^t = \sum_{k=1}^{D} x_{ik} x_{jk}$$
. So
$$\operatorname{tr} XX^T = \sum_{i=1}^{N} \{XX^T\}_{i,i} = \sum_{i=1}^{N} \sum_{k=1}^{D} x_{ik} x_{ik} = \|X\|_F^2$$

Lemmas

Lemma 2

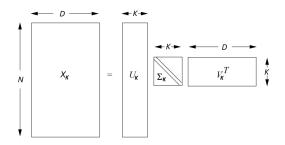
For any
$$A \in \mathbb{R}^{N \times D}$$
 and $B \in \mathbb{R}^{D \times N}$
tr $AB = \operatorname{tr} BA$

Proof.
$$\{AB\}_{n,n} = \sum_{d=1}^{D} a_{n,d} b_{d,n}$$
, so
$$\operatorname{tr} AB = \sum_{n=1}^{N} \{AB\}_{n,n} = \sum_{n=1}^{N} \sum_{d=1}^{D} a_{n,d} b_{d,n}$$
$$\{BA\}_{d,d} = \sum_{n=1}^{N} b_{d,n} a_{n,d}, \text{ so}$$
$$\operatorname{tr} BA = \sum_{d=1}^{D} \{BA\}_{d,d} = \sum_{d=1}^{D} \sum_{n=1}^{N} b_{d,n} a_{n,d} = \sum_{n=1}^{N} \sum_{d=1}^{D} a_{n,d} b_{d,n} = \operatorname{tr} AB$$

Table of Contents

- Definition of SVD
- 2 Reduced (truncated) SVD
- Applications of SVD
- 4 Recommendation system with SVD

Dimensionality reduction



- ullet rows of U give reduced representation of rows of X.
- $x_n \in \mathbb{R}^D \longrightarrow u_n \in \mathbb{R}^K$

Memory efficiency

Storage costs of $X \in \mathbb{R}^{\textit{N} \times \textit{D}}$, assuming $\textit{N} \geq \textit{D}$ and each element taking 1 byte:

Memory storage costs

representation of X	memory requirements
original X	?
fully SVD decomposed	?
reduced SVD to rank K	?

Performance efficiency

- Multiplication Xq
 - X normalized documents representation
 - q normalized search query

representation of X	<i>Xq</i> complexity		
original X	?		
reduced SVD to rank K	?		

Table of Contents

- Applications of SVD
- Recommendation system with SVD

Example

	Terminator	Gladiator	Rambo	Titanic	Love story	A walk to remember
Andrew	4	5	5	0	0	0
Andrew John	4	5 4	5 5	0	0	0
John	4	4	5	0	0	0
John Matthew	4 5	4 5	5 4	0	0	0

Example

$$U = \begin{pmatrix} 0. & 0.6 & -0.3 & 0. & 0. & -0.8 \\ 0. & 0.5 & -0.5 & 0. & 0. & 0.6 \\ 0. & 0.6 & 0.8 & 0. & 0. & 0.2 \\ 0.6 & 0. & 0. & -0.8 & -0.2 & 0. \\ 0.6 & 0. & 0. & 0.2 & 0.8 & 0. \\ 0.5 & 0. & 0. & 0.6 & -0.6 & 0. \end{pmatrix}$$

$$\Sigma = \text{diag}\{ \begin{pmatrix} 14. & 13.7 & 1.2 & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \\ 0.5 & 0.3 & -0.8 & 0. & 0. & 0. \\ 0. & 0. & 0. & -0.2 & 0.8 & -0.6 \\ -0. & -0. & -0.0 & 0.8 & -0.2 & -0.6 \\ 0.6 & -0.8 & 0.2 & 0. & 0. & 0. \end{pmatrix}$$

Example (excluded insignificant concepts)

$$U_2 = \begin{pmatrix} 0. & 0.6 \\ 0. & 0.5 \\ 0. & 0.6 \\ 0.6 & 0. \\ 0.6 & 0. \\ 0.5 & 0. \end{pmatrix}$$

$$\Sigma_2 = \operatorname{diag}\{ \begin{pmatrix} 14. & 13.7 \end{pmatrix} \}$$

$$V_2^T = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \end{pmatrix}$$

Concepts may be

- patterns among movies (along j) action movie / romantic movie
- patterns among people (along i) boys / girls

Dimensionality reduction case: patterns along *j* axis.

Applications

• Example: new movie rating by new person

$$x = (5 \ 0 \ 0 \ 0 \ 0 \ 0)$$

• Dimensionality reduction: map x into concept space:

$$y = V_2^T x = (0 \ 2.7)$$

 Recommendation system: map y back to original movies space:

$$\hat{x} = yV_2^T = (1.5 \ 1.6 \ 1.6 \ 0 \ 0)$$