Clustering - Victor Kitov

Clustering

Victor Kitov

1/76



Clustering - Victor Kitov
Clustering introduction

Table of Contents

@ Clustering introduction

2/76



Clustering - Victor Kitov
Clustering introduction

Aim of clustering

o Clustering is partitioning of objects into groups so that:

e inside groups objects are very similar
e objects from different groups are dissimilar

@ Unsupervised learning
@ No definition of “similar”
o different algorithms use different formalizations of similarity
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Clustering demo
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Applications of clustering

@ data summarization
o feature vector is replaced by cluster number
feature extraction

o cluster number, distance to native cluster center / other
clusters

@ customer segmentation
e e.g. for recommender service

@ community detection in networks
e nodes - people, similarity - number of connections
@ outlier detection

e outliers do not belong any cluster
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Clustering algorithms comparison

We can compare clustering algorithms in terms of:
@ computational complexity
@ do they build flat or hierarchical clustering?

@ can the shape of clustering be arbitrary?
e if not is it symmetrical, can clusters be of different size?

can clusters vary in density of contained objects?

robustness to outliers
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Representative-based clustering

@ Clustering is flat (not hierarchical)
@ Number of clusters K is specified in advance
o Each object x, is associated cluster z,

o Each cluster Cy is defined by its prepresentative pi,
k=12, ..K1

e Criterion to find representatives p1, ...uk:
N
z1,..2K) = min p(X,, —  min 1
Q(z1,---2k) ; in p(Xn; jie) = min (1)

1Propose clustering algorithm that can extract a set of representatives for

each cluster.
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Generic algorithm

initialize pa,...ux from random training objects

while not converged:
for n=1,2,..N:
z, = arg miny p(xn, f1k)

for k=1,2,..K:
Mk = arg min,u, Zn:z,,:k p(Xn’/‘l’)

return z,...zy

o Comments:
o different distance functions lead to different algorithms:
o p(x,x") = |x = X'||2=> K-means
o p(x,x") =||x — x'||;=> K-medians
o Lk may be arbitrary/constrained to be existing objects
e converges in few iterations, complexity O(NKD)
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Comments

@ K - unknown parameter

o if chosen small=>distinct clusters will get merged
e better to take K larger and then merge similar clusters.

@ Shape of clusters is defined by p(-, )

@ Close clusters will have similar size
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K-means

© Representative-based clustering
@ K-means
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Representative-based clustering

K-means

K-means algorithm

@ Suppose we want to cluster our data into K clusters.
@ Cluster i has a center p;, i=1,2,..K.

e Consider the task of minimizing

N
> lxe =zl = min (2)
n=1

21,0 2N L K

where z; € {1,2,...K} is cluster assignment for x; and
i1, ...l are cluster centers.

@ Direct optimization requires full search and is impractical.

e K-means is a suboptimal algorithm for optimizing (2).
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K-means

K-means algorithm

Initialize p;, j=1,2,..K.

repeat while stop condition not satisfied:
for i=1,2,..N:
find cluster number of x;:
zZj = arg mInJG{I 2,...K} [|xi — #j”%
for j=1,2,..K:

= i S T =
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Representative-based clustering

K-means

Dynamic K-means algorithm

Initialize p;, j=1,2,...K, z=0,i=1,2,..N

repeat while stop condition not satisfied:
for i=1,2,..N:
find cluster number of x;:
zl = argminjeq12,. .k} X — 1l]3
if Z/l = z:
recalculate cluster means pu. and p,:
1 N
Mz = S =z 2anmt Uzn = 21X
1 N
e = S 2o e = 2
/

Zi = Z;

Converges in less iterations, situation when no objects correspond
to some cluster is impossible.
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Representative-based clustering

K-means

K-means properties

Possible stop conditions:
@ cluster assignments z,...zy stop to change (typical)
@ maximum number of iterations reached
o cluster means {4}, stop changing significantly
Initialization:
o typically {x;}K, are initialized to randomly chosen training
objects
Optimality:
@ criteria is non-convex
@ solution depends on starting conditions
@ we may restart several times from diff. random starting points
and select solution giving minimal value of (2).
Complexity: O(NDKI), where K is the number of clusters and | is
the number of iterations.

@ Usually algorithm converges in small number of iterations /.
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Representative-based clustering

K-means

Example of K-means

k-means after 1 iterations
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Representative-based clustering

K-means

Example of K-means

k-means after 2 iterations
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Representative-based clustering

K-means

Example of K-means

k-means after 3 iterations
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Representative-based clustering

K-means

Example of K-means

k-means after 4 iterations
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Representative-based clustering

K-means

Gotchas

@ K-means assumes that clusters are convex:

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross

o It always finds clusters even if none actually exist

e need to control cluster quality metrics
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Representative-based clustering

K-means

K-means for non-convex clusters

s k-means for non-convex clusters
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Representative-based clustering

K-means

K-means for data without clusters

k-means for data without clusters
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Representative-based clustering

K-means

K-means and EM algorithm

Initialize py;, j=1,2,..K.

repeat while stop condition not satisfied:
for i=1,2,..N:
find cluster number of x;:
zi = argminje(1,2,...¢} |1xi — 1|
for j=1,2,..K:

N .
W= S i onea 12 = )

e K-means is EM-algorithm when:

23/76



Clustering - Victor Kitov

Representative-based clustering

K-means

K-means and EM algorithm

Initialize py;, j=1,2,..K.

repeat while stop condition not satisfied:
for i=1,2,..N:
find cluster number of x;:
zi = argminje(1,2,...¢} |1xi — 1|
for j=1,2,..K:

N .
W= S i onea 12 = )

e K-means is EM-algorithm when:

applied to Gaussians

with equal priors

with unity covariance matrices
with hard clustering
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Representative-based clustering

K-means

K-means

@ Not robust to outliers
e K-medians is robust
o K-representatives may create singleton clusters in outliers if
centroids get initialized with outlier
e better to init centroids with mean of m randomly chosen
objects
@ Constructs spherical clusters of similar radii
o Allows kernel version which can find non-convex clusters in
original space
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Representative-based clustering

Kernel K-means

© Representative-based clustering

@ Kernel K-means
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Representative-based clustering

Kernel K-means

Kernel K-means

o Let Cx :={n: z, = k} - indices of objects in cluster k.
@ Squared dinstance to centroid:

p(x ) = |Ix = pu® = (p(x) — Z e(xi), p(x) — Z e (x)

IEC IECk
= {p(x), (x)) = w(X) Z p(xi) +—3 Z (xi), (%))
/€C |Ck| ijeCk
= K(x,x) —2 ZKXX,)—i— 2 Z K(xi, ;)
:GCk | ijeCy

initialize G,...Ck

while not converged:
for n=1,2,..N:

2 = arg miny (X, 1)

return zi,...zy
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Representative-based clustering

Kernel K-means

Intuition

o Consider RBF kernel K(x, y1) = eI,

1 2
2_1_9_ -~ =7llx=xil
X, Uk =1 2 e "
ey ‘Ck’,-gc
k

+iom 3 el
|Ck| ijeCe

12 . o
o |C17k| Yiec, e Ix=xl" _ average similarity of x to points in

cluster k
2
(2] ﬁ ZiJeCk e_7”X’_’(f” - constant offset for cluster k,
k

measuring its compactness.
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Kernel K-means

Kernel K-means

Kernel K-means vs. K-means

KMeans Kernel KMeans

%
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Pyclust: Open Sourca Data Glustering Pckage

o Complexity: with respect to N each interation O(N?),
assuming small num of iterations total O(N?).

e Centroids are not calculated directly
@ Allows non-convex clustering in original feature space.
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Representative-based clustering

Mahalanobis distance

© Representative-based clustering

@ Mahalanobis distance
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Representative-based clustering

Mahalanobis distance

Mahalanobis distance

o Consider statistical distribution F(u,¥) with mean p and
covariance matrix X:
e Mahalanobis distance from x to F(u,X):

IO(X7 F(,LL, Z))2 = (X - /'L)Tz_l(x - /'L)
@ Mahalanobis distance from x to another point x/, given

F(p,X):
p(x,x')? = (x = xX) T x - x)
(A) B
\ ;/
T\
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Representative-based clustering

Mahalanobis distance

Mahalanobis distance clustering

@ Mahalanobis distance in clustering:

p(x, i) = (x = ) T (x — k)

e is different for each k
o iy and X, - sample mean and covariance matrix for objects
from cluster k

@ Mahalanobis distance allow modeling clusters
o elliptically elongated
o of different size and density

SPARSE CLUSTER

hES CLUSTER 1
~

~
~
~

W
CLUSTERZ ™% | 88 1lsTeR 3
1
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K-medoids

© Representative-based clustering

@ K-medoids
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Representative-based clustering
K-medoids

K-medoids

@ K-medoids - each cluster representative py should be existing
object from the training set.
@ Motivation:

e robust to outliers

e more interpretable (representative is existing object)

o the only option if we can calculate p(x, x") but x, x’ are
incomparable elementwise

@ e.g. x, - time series of varying length
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Representative-based clustering
K-medoids

K-medoids algorithm

initialize pi,...ux from random training objects

while not converged:
generate replacement candidates R::(,uk(i),x,,(i)),{:1
select replacement maximally improving }:ﬁ;lnﬁnkp(xn,uk)

if improvement was not achived:
fallback to previous state

break

for n=1,2,..N:
2 = arg min, p(xn, 1)

return z,...zy

As replacement candidates we may generate all variants or random

subset.
34/76



Clustering - Victor Kitov

Representative-based clustering
K-medoids

General comments on K-representatives

o Init {u i, with
e random objects from training set
e centroids of m randomly selected objects from training set
(more robust to outliers)
o K-representatives has non-convex optimization criteria
o depends in initialization of {ux}fK_;
e so we can restart clustering from different starting conditions
and select the one, maximizing (1)
@ Outliers can create singleton clusters consisting of 1 point.
o apply outlier filtering beforehand
o alternatively during clustering for clusters with too few points
replace cluster centroids with random objects.
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Motivation

@ Number of clusters K not known a priory.
@ Clustering is usually not flat, but hierarchical with different
levels of granularity:

o sites in the Internet
e books in library
e animals in nature
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Hierarchical clustering

Hierarchical clustering may be:

e top-down

o hierarchical K-means

@ bottom-up

o agglomerative clustering
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Hierarchical clustering

Bottom-up hierarchical clustering

© Hierarchical clustering
@ Bottom-up hierarchical clustering
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Hierarchical clustering

Bottom-up hierarchical clustering

Bottom-up clustering demo

@
- &

i

ABCDEF ABCDEF ABGCDEF
(b) (c) (d)
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Hierarchical clustering

Bottom-up hierarchical clustering

Algorithm

initialize NxN distance matrix M between
singleton clusters {xi},...{xn}

REPEAT:
1) pick closest pair of clusters i and j
2) merge clusters /i and j
3) delete rows/columns i,j from M and add
new row/column for merged cluster
UNTIL 1 cluster is left

RETURN hiearchical clustering of objects

o Early stopping is possible when:
o K clusters are left
o distance between most close clusters >threshold

41/76



Clustering - Victor Kitov

Hierarchical clustering

Bottom-up hierarchical clustering

Agglomerative clustering - distances

o Consider clusters A = {xj,, Xi,, ...} and B = {xj,, X}, ...}
@ We can define the following natural distances

e nearest neighbour (or single link)

p(A B) = aer;‘un p(a, b)

o furthest neighbour (or complete-link)

(A, B) = Lmax p(a, b)

e group average link
p(A, B) = mean aca bepp(a, b)

o closest centroid
p(A, B) = p(pa, 1g)
where py = \Tlfl > xeu X of my = median,cy{x}
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Hierarchical clustering

Bottom-up hierarchical clustering

Intercluster distance properties®

@ Nearest neighbour
e extracts clusters of arbitrary shape
e may merge distinct clusters connected by mistake by outliers
o Miujyk = min{Mi, Mjx }
o Furthest neighbour
o creates very compact clusters
o diameter of clusters grows
o Miujye = max{ M, Mj}
o Group average link? and closest centroid distance give the
compromise between nearest and furtherst neighbour.

2How Miujyk will be recalulated for average link?
3Suppose we modify distance p(x, x’) with monotone transformation F:
P’ (x,x") = F(p(x,x")). Which of the cluster distances will not be affected by

this change?
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Bottom-up hierarchical clustering

Intercluster distance properties

Group average link is preferred to closest centroid distance, because

@ centroid distance may lead to non-monotonous joining
distance sequences in agglomerative algorithm.

@ in contrast nearest neighbour , furtherst neightbour and group
average link always lead to monotonous joining distance
sequences

@ representation of cluster by mean/median ignores cluster shape

@ centroid and median distance tend to prefer larger clusters, for
which means are generally closer.
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Bottom-up hierarchical clustering

Variance based clustering

@ For each cluster i keeps statistics:

mi=|Gl, Ff =Y x{, 5 =" (Xf>2

keG; keC;

@ Using statistics we can calculate in-cluster variance

D 2
sd Fd
V: = 2 [ ]
! — mj (: mj :)

@ After merge variance always 7, distance:

p(A,B) = Vaug — Va— Vi
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Bottom-up hierarchical clustering

Complexity

o Memory requirements: O(N?) - keep all pairwise distances.
e Computational requirements:
O(D) - distance calculation
O(N2D) - calculate all pairwise distances
Binary min-heap of size m: O(In m)-insert element,
O(In m)-delete element, O(1)-find min
Create heap of N? paisewise distances: O(N?In N)
merging of clusters:
o find minimum O(1), delete O(In N), calculate O(N), insert
O(In )
o do it N times: O(N?)
o total complexity: (N?D + N?In N)
@ When N is large we can:
e use only random subsample of objects
e merge points with K —representatives to K clusters to which
apply agglomerative clustering.
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Bottom-up hierarchical clustering

K-representatives+agglomerative clustering

e Efficient combination:
© apply K-representatives with M > K clusters
© use agglomerative clustering to merge excessive clusters to K

o K-means has complexity O(N)
o agglomerative clustering complexity O (/\/I2 In M)
e but agglomerative clustering allows non-convex clusters!
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Top-down hierarchical clustering

© Hierarchical clustering

@ Top-down hierarchical clustering
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Hierarchical clustering

Top-down hierarchical clustering

Algorithm

INPUT:
data D, flat clustering algorithm A
leaf selection criterion, termination criterion

Initialize tree T to root, containing all data

REPEAT
based on selection criterion, select leaf L

add Li,...Lx as child nodes to tree T
UNTIL termination criterion

using algorithm A split L into children Lg,..

Lk
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Hierarchical clustering

Top-down hierarchical clustering

Comments

o Leaf selection criterion:
o split leaf most close to the root
e balanced tree by height
o split leaf with maximum elements
o balanced tree by cluster weight

@ Building hierarchy top-down is more natural for a human
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Probabilistic clustering

EM-algorithm for normal mixtures

Initialize ¢;,p; and %;, j=1,2,..g.

repeat while stopping condition not satisfied:
E-step. Calculate correspondences of x,
to component z:
for n=1,2,...N:
for z=1,2,...Z:
W, — LzNGninz,Ts)
N2 3k dkN(xnipk Zk)
M-step. Update component parameters:

for z=1,2,..7:

—~ 1 N
¢z = N Zn:1 Whz
o~ __ Z,,N:]_ WnzXn

I’LZ - ZN w

n=1 "Vnz
_ N ) A
o= s Yo Wae (Xo — i) (60 — i)
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Probabilistic clustering

K-means versus EM clustering

e For each x, EM algorithm gives w,, = p(z|x,).

@ This is soft or probabilistic clustering into Z clusters, having
priors ¢1, ...¢7 and probability distributions
p(x; 01), ...p(x; 0z).

@ We can make it hard clustering using z, = arg max, wy,;.

o EM clustering becomes K-means clustering when:

applied to Gaussians

with equal priors

with unity covariance matrices
with hard clustering
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Grid-based clustering

@ Divide each dimension into p equal intervals

@ Obtain pP hypercubes
o Consider hypercube filled when it contains > k points.

e need not consider all possible hypercubes - look at data
distribution along each axis.

e Consider hypercubes locally connected if they share r < D
common dimensions

e r=0: corner, r=1: border, r>1: side

Create graph:

e node - filled hypercube
o edges - between locally connected hypercubes

o Clusters: connected components in the graph?

*Propose an algorithm to index all objects with connected components they

belong to.
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[[lustration

o

3.

ek
4.
./

&

(a) Data points and grid (b) Agglomerating adjacent grids

56/76



Clustering - Victor Kitov
Grid-based clustering

Discussion

Number of clusters is determined automatically
Clusters may have arbitrary shape
Need to specify: p, k, r.
Under what selection of p, k the algorithm will have tendency
to:
e join distinct clusters?
o separate true cluster due to local variations in density?

Method will fail when cluster has varying density.
o K-representatives - not, but it will fail for clusters of different
size
e mixture of Gaussians - not, but it will fail for non-elliptic
clusters
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Grid-based clustering

Selection of p

H
° 2 i

(c) Moderate-grained grid (d) Fine-grained grid
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Failure for varying density

CLUSTER B

o Large k: cluster C is missed

e Small k: clusters A and B get merged
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DBScan

e Core point: point having > k points in its € neighbourhood

@ Border point: not core point, having at least 1 core point in its
¢ neighbourhood

@ Noise point: neither a core point nor a border point

Border Point

Noise Point

@ k, £ - parameters of the method.
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Algorithm

INPUT: training set, parameters e, k.

1) Determine core, border and noise points with ¢, k.

2) Create graph in which core points are connected if they
are within ¢ of one another

3) Determine connected components in the graph

4) Assign each border point to connected component with which
it is best connected

RETURN points in each connected component as a cluster
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Comments

Connecting core points - agglomerative clustering with single
linkage, stopping at distance €.

Resistant to outliers by ignoring noise points.

Similar to grid-based clustering:
o automatically determines the number of clusters
o works badly for density varying clusters
Complexity O(N?D)
e can be reduced to O(N In N) for small D with spatial indexing.
o grid-based methods find objects in the same region in O(D).
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DENCLUE clustering

o INPUT: training set xy, ...xy, threshold 7.
@ Construct kernel density of dataset:
P = gl iy K (2520)
@ Associate each point a peak it follows to by gradient ascent:

Q xo=x

@ repeat while not converged: x,11 = x, + eV p(x,)
@ Make clusters of data points, converging to the same peak.
@ Discard clusters, corresponding to peaks with p(x) < 7
@ Merge clusters, connected by path of data points
{p(x,-(k))}szl, having p(xjx)) > 7k =1,2,..K.
o OUTPUT: cluster indices of xq,...xp.

63/76



Clustering - Victor Kitov
Grid-based clustering

DENCLUE Comments

@ Depending on threshold 7 may obtain different number of
clusters:

DENSITY ESTIMATE
8583

N
8

DENSITY ESTIMATE

@ Automatically determines number of clusters, given .
@ Clusters can be of arbitrary shape

@ By varying 7, we can build hierarchical clustering.
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DENCLUE Comments®

e DENCLUE becomes DBSCAN for
o K(p(x,x')) = I[p(x, x') < e]
o 7= k/Vp(e), where Vp(e)-volume of sphere with radius ¢ in
D-dimensional space.
o Complexity O(N?1), I-number of iterations ig gradient ascent.

o for N points | times need to calculate p(x)
o p(x) can be calculated in less than O(N) by looking only at
neighboright points which can be found fast with spatial index
@ using: ball trees, KD-trees, mapping: bin on the axis->objects
in that bin.

®Gradient ascent in DENCLUE can be replaced with recursive mean shift

method.
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Spectral clustering - example

Spectral clustering

1.5 ' T T
oa
Lor ] ):-:'. e %’ ]
o8 e . % o
.. ® ¢o$
05+ ooy ;'-_. o ;': .
: x 9Qp® ° .'
0.0 | b .-‘*.‘. R Q0 |
Bt 2 o
° S - °
-0.5 | .." z’“.".’b |
105 -1.0 -0.5 0.0 05 1.0 1.5 2.0 2.5

67/76



Clustering - Victor Kitov
Spectral clustering

Description

@ Spectral clustering relies upon similarity matrix W between
objects.

@ Similarity matrix <-> weighted connection graph
@ Examples:

e nodes represent people, edge weights - how much they
communicate

e nodes represent web-pages, edge weights - scalar products of
TF — IDF

68/76



Clustering - Victor Kitov
Spectral clustering

Similarity matrix calculation

°® ||x; — x;|| < threshold
o RBF

@ based on nearest neighbours
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Graph with disjoint components
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Graph Laplacian

o W=WT, w; >0 - the similarity between object i and
object ;.

@ Define D = diag{di,...dy}, where d; = ZJN:1 w;jj-weighted
degree of node J.

@ Define graph Laplacian

L=D-W

@ Properties of graph Laplacian:

e it is symmetric

o It has eigenvector 1 € RN consisting of ones with eigenvalue 0.
Why?

e it is positive semi-definite: ¥f ¢ RV : fTLf > 0.

o L has eigenvalues Ay > Ao > ... > Ay =0
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Positive semi-definiteness of Laplacian

Consider arbitrary f € RV:

FILF=fTDf — FTWF = Zdﬂ > fifiwy =
I’J?

S af? -2 3w + Y a7 | =

i iJ J
D wiff =23 wififi+ D wif? | = 3)
ij ij gy

N =

Z:Wijfi2 _QZWijfiﬁ-f-ZW,-sz =
7 i >
*ZWU -

72/76



Clustering - Victor Kitov
Spectral clustering

Eigenvectors of Laplacian

Consider eigenvector f corresponding to eigenvalue A = 0.
o FTLF=ATFf=0

Using (3) we have that

1
0=FTLF =2 wij(fi—f) (4)
i

If objects i and j are connected on the graph, there exists a
path with wy,, > 0 along the path and from (4) it should be
that f; = f;.

So the set of eigenvectors of L is spanned by indicator vectors
lays lays - la, where A; is i-th isolated region on the graph.

Order of A = 0 gives the number of isolated components.
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Spectral clustering algorithm

© Find order K of singular value A =0 for L
@ Find set of eigenvectors vy, ...vk corresponding to A =0
© Cluster rows of V = [v1,...vx] € RM¥ with K-means.

RETURN clustering for rows as clustering for initial objects
X1y XN-
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Practical application

o L' = D7 1L is considered instead of L (“normalized” Laplacian)

e to account for different connectivity levels of different nodes

@ Most often singular values of L’ are not exactly zero, but close
to zero. So we select K almost-zero eigenvalues and
corresponding K eigenvectors.
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Example

Histogram of the sample
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