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Clustering introduction

Aim of clustering

Clustering is partitioning of objects into groups so that:

inside groups objects are very similar
objects from di�erent groups are dissimilar

Unsupervised learning

No de�nition of �similar�

di�erent algorithms use di�erent formalizations of similarity
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Clustering introduction

Applications of clustering

data summarization

feature vector is replaced by cluster number

feature extraction

cluster number, distance to native cluster center / other
clusters

customer segmentation

e.g. for recommender service

community detection in networks

nodes - people, similarity - number of connections

outlier detection

outliers do not belong any cluster
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Clustering introduction

Clustering algorithms comparison

We can compare clustering algorithms in terms of:

computational complexity

do they build �at or hierarchical clustering?

can the shape of clustering be arbitrary?

if not is it symmetrical, can clusters be of di�erent size?

can clusters vary in density of contained objects?

robustness to outliers
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Representative-based clustering

Representative-based clustering

Clustering is �at (not hierarchical)

Number of clusters K is speci�ed in advance

Each object xn is associated cluster zn

Each cluster Ck is de�ned by its prepresentative µk ,
k = 1, 2, ...K .1

Criterion to �nd representatives µ1, ...µK :

Q(z1, ...zK ) =
N∑

n=1

min
k
ρ(xn, µk)→ min

µ1,...µK
(1)

1Propose clustering algorithm that can extract a set of representatives for

each cluster.
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Representative-based clustering

Generic algorithm

initialize µ1, ...µK from random training objects

while not converged:
for n = 1, 2, ...N :

zn = arg mink ρ(xn, µk)

for k = 1, 2, ...K :
µk = arg minµ

∑
n:zn=k ρ(xn, µ)

return z1, ...zN

Comments:
di�erent distance functions lead to di�erent algorithms:

ρ(x , x ′) = ‖x − x ′‖22=> K-means

ρ(x , x ′) = ‖x − x ′‖1=> K-medians

µk may be arbitrary/constrained to be existing objects
converges in few iterations, complexity O(NKD)
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Representative-based clustering

Comments

K - unknown parameter

if chosen small=>distinct clusters will get merged
better to take K larger and then merge similar clusters.

Shape of clusters is de�ned by ρ(·, ·)
Close clusters will have similar size
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K-means
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Representative-based clustering

K-means

K-means algorithm

Suppose we want to cluster our data into K clusters.

Cluster i has a center µi , i=1,2,...K.

Consider the task of minimizing

N∑
n=1

‖xn − µzn‖
2

2
→ min

z1,...zN ,µ1,...µK
(2)

where zi ∈ {1, 2, ...K} is cluster assignment for xi and
µ1, ...µK are cluster centers.

Direct optimization requires full search and is impractical.

K-means is a suboptimal algorithm for optimizing (2).
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Representative-based clustering

K-means

K-means algorithm

Initialize µj, j = 1, 2, ...K.

repeat while stop condition not satisfied:
for i = 1, 2, ...N:

find cluster number of xi:

zi = argminj∈{1,2,...K} ||xi − µj ||22
for j = 1, 2, ...K:

µj = 1∑N
n=1 I[zn=j]

∑N
n=1 I[zn = j ]xi
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Representative-based clustering

K-means

Dynamic K-means algorithm

Initialize µj, j = 1, 2, ...K, zi = 0, i = 1, 2, ...N

repeat while stop condition not satisfied:
for i = 1, 2, ...N:

find cluster number of xi:

z ′i = argminj∈{1,2,...K} ||xi − µj ||22
if z ′i ! = zi:

recalculate cluster means µzi and µz′i
:

µzi = 1∑N
n=1 I[z′n=zi ]

∑N
n=1 I[z

′
n = zi ]xi

µz′i
= 1∑N

n=1 I[z′n=z′i ]

∑N
n=1 I[z

′
n = z ′i ]xi

zi = z ′i

Converges in less iterations, situation when no objects correspond
to some cluster is impossible.
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Representative-based clustering

K-means

K-means properties

Possible stop conditions:

cluster assignments z1, ...zN stop to change (typical)
maximum number of iterations reached
cluster means {µi}Ki=1

stop changing signi�cantly

Initialization:

typically {µi}Ki=1
are initialized to randomly chosen training

objects

Optimality:

criteria is non-convex
solution depends on starting conditions
we may restart several times from di�. random starting points
and select solution giving minimal value of (2).

Complexity: O(NDKI ), where K is the number of clusters and I is

the number of iterations.

Usually algorithm converges in small number of iterations I .
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Representative-based clustering

K-means

Example of K-means
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Representative-based clustering

K-means

Example of K-means
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Representative-based clustering

K-means

Example of K-means

18/76



Clustering - Victor Kitov

Representative-based clustering

K-means

Example of K-means
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Representative-based clustering

K-means

Gotchas

K-means assumes that clusters are convex:

It always �nds clusters even if none actually exist

need to control cluster quality metrics
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Representative-based clustering

K-means

K-means for non-convex clusters
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Representative-based clustering

K-means

K-means for data without clusters
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Representative-based clustering

K-means

K-means and EM algorithm

Initialize µj, j = 1, 2, ...K.

repeat while stop condition not satisfied:
for i = 1, 2, ...N:

find cluster number of xi:
zi = argminj∈{1,2,...g} ||xi − µj ||

for j = 1, 2, ...K:

µj = 1∑N
n=1 I[zn=j]

∑N
n=1 I[zn = j ]xi

K-means is EM-algorithm when:

applied to Gaussians
with equal priors
with unity covariance matrices
with hard clustering
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Representative-based clustering

K-means

K-means and EM algorithm

Initialize µj, j = 1, 2, ...K.

repeat while stop condition not satisfied:
for i = 1, 2, ...N:

find cluster number of xi:
zi = argminj∈{1,2,...g} ||xi − µj ||

for j = 1, 2, ...K:

µj = 1∑N
n=1 I[zn=j]

∑N
n=1 I[zn = j ]xi

K-means is EM-algorithm when:

applied to Gaussians
with equal priors
with unity covariance matrices
with hard clustering
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Representative-based clustering

K-means

K-means

Not robust to outliers

K-medians is robust

K-representatives may create singleton clusters in outliers if
centroids get initialized with outlier

better to init centroids with mean of m randomly chosen
objects

Constructs spherical clusters of similar radii

Allows kernel version which can �nd non-convex clusters in
original space
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Representative-based clustering

Kernel K-means

2 Representative-based clustering
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Representative-based clustering

Kernel K-means

Kernel K-means

Let Ck := {n : zn = k} - indices of objects in cluster k .
Squared dinstance to centroid:

ρ(x , µk)2 = ‖x − µk‖2 = 〈ϕ(x)− 1

|Ck |
∑
i∈Ck

ϕ(xi ), ϕ(x)− 1

|Ck |
∑
i∈Ck

ϕ(xi )〉

= 〈ϕ(x), ϕ(x)〉 − 2〈ϕ(x),
1

|Ck |
∑
i∈Ck

ϕ(xi )〉+
1

|Ck |2
∑
i ,j∈Ck

〈ϕ(xi ), ϕ(xj)〉

= K (x , x)− 2
1

|Ck |
∑
i∈Ck

K (x , xi ) +
1

|Ck |2
∑
i ,j∈Ck

K (xi , xj)

initialize C1, ...CK

while not converged:
for n = 1, 2, ...N :

zn = arg mink ρ(xn, µk)2

return z1, ...zN
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Representative-based clustering

Kernel K-means

Intuition

Consider RBF kernel K (x , µ) = e−γ‖x−µ‖
2

.

ρ(x , µk)2 =1− 2
1

|Ck |
∑
i∈Ck

e−γ‖x−xi‖
2

+
1

|Ck |2
∑
i ,j∈Ck

e−γ‖xi−xj‖
2

1 1

|Ck |
∑

i∈Ck
e−γ‖x−xi‖

2

- average similarity of x to points in

cluster k

2 1

|Ck |2
∑

i ,j∈Ck
e−γ‖xi−xj‖

2

- constant o�set for cluster k ,

measuring its compactness.
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Representative-based clustering

Kernel K-means

Kernel K-means

Complexity: with respect to N each interation O(N2),
assuming small num of iterations total O(N2).

Centroids are not calculated directly

Allows non-convex clustering in original feature space.
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Representative-based clustering

Mahalanobis distance

2 Representative-based clustering
K-means
Kernel K-means
Mahalanobis distance
K-medoids
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Representative-based clustering

Mahalanobis distance

Mahalanobis distance

Consider statistical distribution F (µ,Σ) with mean µ and
covariance matrix Σ:
Mahalanobis distance from x to F (µ,Σ):

ρ(x ,F (µ,Σ))2 = (x − µ)TΣ−1(x − µ)

Mahalanobis distance from x to another point x ′, given
F (µ,Σ):

ρ(x , x ′)2 = (x − x ′)TΣ−1(x − x ′)
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Representative-based clustering

Mahalanobis distance

Mahalanobis distance clustering

Mahalanobis distance in clustering:

ρ(x , µk) = (x − µk)TΣ−1k (x − µk)

is di�erent for each k
µk and Σk - sample mean and covariance matrix for objects
from cluster k

Mahalanobis distance allow modeling clusters
elliptically elongated
of di�erent size and density

31/76



Clustering - Victor Kitov

Representative-based clustering

K-medoids

2 Representative-based clustering
K-means
Kernel K-means
Mahalanobis distance
K-medoids
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Representative-based clustering

K-medoids

K-medoids

K-medoids - each cluster representative µk should be existing
object from the training set.

Motivation:

robust to outliers
more interpretable (representative is existing object)
the only option if we can calculate ρ(x , x ′) but x , x ′ are
incomparable elementwise

e.g. xn - time series of varying length
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Representative-based clustering

K-medoids

K-medoids algorithm

initialize µ1, ...µK from random training objects

while not converged:

generate replacement candidates R = (µk(i), xn(i))Ii=1
select replacement maximally improving

∑N
n=1mink ρ(xn, µk)

if improvement was not achived:
fallback to previous state
break

for n = 1, 2, ...N :
zn = arg mink ρ(xn, µk)

return z1, ...zN

As replacement candidates we may generate all variants or random
subset.
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Representative-based clustering

K-medoids

General comments on K-representatives

Init {µk}Kk=1
with

random objects from training set
centroids of m randomly selected objects from training set
(more robust to outliers)

K-representatives has non-convex optimization criteria

depends in initialization of {µk}Kk=1

so we can restart clustering from di�erent starting conditions
and select the one, maximizing (1)

Outliers can create singleton clusters consisting of 1 point.

apply outlier �ltering beforehand
alternatively during clustering for clusters with too few points
replace cluster centroids with random objects.
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Hierarchical clustering
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Hierarchical clustering

Motivation

Number of clusters K not known a priory.

Clustering is usually not �at, but hierarchical with di�erent
levels of granularity:

sites in the Internet
books in library
animals in nature

37/76



Clustering - Victor Kitov

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering may be:

top-down

hierarchical K-means

bottom-up

agglomerative clustering
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Hierarchical clustering

Bottom-up hierarchical clustering

3 Hierarchical clustering
Bottom-up hierarchical clustering
Top-down hierarchical clustering
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Hierarchical clustering

Bottom-up hierarchical clustering

Bottom-up clustering demo
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Hierarchical clustering

Bottom-up hierarchical clustering

Algorithm

initialize NxN distance matrix M between
singleton clusters {x1}, ...{xN}

REPEAT:
1) pick closest pair of clusters i and j
2) merge clusters i and j
3) delete rows/columns i , j from M and add

new row/column for merged cluster
UNTIL 1 cluster is left

RETURN hiearchical clustering of objects

Early stopping is possible when:

K clusters are left
distance between most close clusters ≥threshold
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Hierarchical clustering

Bottom-up hierarchical clustering

Agglomerative clustering - distances

Consider clusters A = {xi1 , xi2 , ...} and B = {xj1 , xj2 , ...}.
We can de�ne the following natural distances

nearest neighbour (or single link)

ρ(A,B) = min
a∈A,b∈B

ρ(a, b)

furthest neighbour (or complete-link)

ρ(A,B) = max
a∈A,b∈B

ρ(a, b)

group average link

ρ(A,B) = mean a∈A,b∈Bρ(a, b)

closest centroid
ρ(A,B) = ρ(µA, µB)

where µU = 1

|U|
∑

x∈U x or mU = medianx∈U{x}
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Hierarchical clustering

Bottom-up hierarchical clustering

Intercluster distance properties3

Nearest neighbour

extracts clusters of arbitrary shape
may merge distinct clusters connected by mistake by outliers
M(i∪j)k = min{Mik ,Mjk}

Furthest neighbour

creates very compact clusters
diameter of clusters grows
M(i∪j)k = max{Mik ,Mjk}

Group average link2 and closest centroid distance give the
compromise between nearest and furtherst neighbour.

2How M(i∪j)k will be recalulated for average link?
3Suppose we modify distance ρ(x , x ′) with monotone transformation F :

ρ′(x , x ′) = F (ρ(x , x ′)). Which of the cluster distances will not be a�ected by

this change?
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Hierarchical clustering

Bottom-up hierarchical clustering

Intercluster distance properties

Group average link is preferred to closest centroid distance, because

centroid distance may lead to non-monotonous joining
distance sequences in agglomerative algorithm.

in contrast nearest neighbour , furtherst neightbour and group
average link always lead to monotonous joining distance
sequences

representation of cluster by mean/median ignores cluster shape

centroid and median distance tend to prefer larger clusters, for
which means are generally closer.
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Hierarchical clustering

Bottom-up hierarchical clustering

Variance based clustering

For each cluster i keeps statistics:

mi = |Ci | , F d
i =

∑
k∈Ci

xdk , S
d
i =

∑
k∈Ci

(
xdk

)2
Using statistics we can calculate in-cluster variance

Vi =
D∑

d=1

[
Sd
i

mi
−
(
F d
i

mi

)2
]

After merge variance always ↑, distance:

ρ(A,B) = VA∪B − VA − VB
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Hierarchical clustering

Bottom-up hierarchical clustering

Complexity

Memory requirements: O(N2) - keep all pairwise distances.

Computational requirements:
O(D) - distance calculation
O(N2D) - calculate all pairwise distances
Binary min-heap of size m: O(lnm)-insert element,
O(lnm)-delete element, O(1)-�nd min
Create heap of N2 paisewise distances: O(N2 lnN)
merging of clusters:

�nd minimum O(1), delete O(lnN), calculate O(N), insert
O(lnN)
do it N times: O(N2)

total complexity: (N2D + N2 lnN)

When N is large we can:
use only random subsample of objects
merge points with K−representatives to K clusters to which
apply agglomerative clustering.
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Hierarchical clustering

Bottom-up hierarchical clustering

K-representatives+agglomerative clustering

E�cient combination:
1 apply K-representatives with M > K clusters
2 use agglomerative clustering to merge excessive clusters to K

K -means has complexity O(N)
agglomerative clustering complexity O

(
M2 lnM

)
but agglomerative clustering allows non-convex clusters!
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Hierarchical clustering

Top-down hierarchical clustering

3 Hierarchical clustering
Bottom-up hierarchical clustering
Top-down hierarchical clustering
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Hierarchical clustering

Top-down hierarchical clustering

Algorithm

INPUT:
data D, flat clustering algorithm A
leaf selection criterion, termination criterion

Initialize tree T to root, containing all data

REPEAT
based on selection criterion, select leaf L
using algorithm A split L into children L1, ...LK

add L1, ...LK as child nodes to tree T
UNTIL termination criterion

49/76



Clustering - Victor Kitov

Hierarchical clustering

Top-down hierarchical clustering

Comments

Leaf selection criterion:
split leaf most close to the root

balanced tree by height

split leaf with maximum elements

balanced tree by cluster weight

Building hierarchy top-down is more natural for a human
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Probabilistic clustering
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Probabilistic clustering

EM-algorithm for normal mixtures

Initialize φj , µj and Σj, j = 1, 2, ...g.

repeat while stopping condition not satisfied:
E-step. Calculate correspondences of xn

to component z:
for n = 1, 2, ...N:

for z = 1, 2, ...Z:

wnz = φzN(xn ;µz ,Σz )∑
k φkN(xn ;µk ,Σk )

# =p(z|x(n))

M-step. Update component parameters:
for z = 1, 2, ...Z:

φ̂z = 1
N

∑N
n=1 wnz

µ̂z =
∑N

n=1 wnz xn∑N
n=1 wnz

Σ̂z = 1∑N
n=1 wnz

∑N
n=1 wnz (xn − µ̂z) (xn − µ̂z)T
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Probabilistic clustering

K-means versus EM clustering

For each xn EM algorithm gives wnz = p(z |xn).

This is soft or probabilistic clustering into Z clusters, having
priors φ1, ...φZ and probability distributions
p(x ; θ1), ...p(x ; θZ ).

We can make it hard clustering using zn = argmaxz wnz .

EM clustering becomes K-means clustering when:

applied to Gaussians
with equal priors
with unity covariance matrices
with hard clustering
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Grid-based clustering
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Grid-based clustering

Grid-based clustering

Divide each dimension into p equal intervals

Obtain pD hypercubes

Consider hypercube �lled when it contains ≥ k points.

need not consider all possible hypercubes - look at data
distribution along each axis.

Consider hypercubes locally connected if they share r < D
common dimensions

r=0: corner, r=1: border, r>1: side

Create graph:

node - �lled hypercube
edges - between locally connected hypercubes

Clusters: connected components in the graph4

4Propose an algorithm to index all objects with connected components they

belong to.
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Grid-based clustering

Illustration
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Grid-based clustering

Discussion

Number of clusters is determined automatically

Clusters may have arbitrary shape

Need to specify: p, k , r .

Under what selection of p, k the algorithm will have tendency
to:

join distinct clusters?
separate true cluster due to local variations in density?

Method will fail when cluster has varying density.

K-representatives - not, but it will fail for clusters of di�erent
size
mixture of Gaussians - not, but it will fail for non-elliptic
clusters
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Grid-based clustering

Selection of p
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Grid-based clustering

Failure for varying density

Large k : cluster C is missed

Small k : clusters A and B get merged
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Grid-based clustering

DBScan

Core point: point having ≥ k points in its ε neighbourhood

Border point: not core point, having at least 1 core point in its
ε neighbourhood

Noise point: neither a core point nor a border point

k, ε - parameters of the method.
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Grid-based clustering

Algorithm

INPUT: training set, parameters ε, k.

1) Determine core, border and noise points with ε, k.
2) Create graph in which core points are connected if they

are within ε of one another
3) Determine connected components in the graph
4) Assign each border point to connected component with which

it is best connected

RETURN points in each connected component as a cluster
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Grid-based clustering

Comments

Connecting core points - agglomerative clustering with single
linkage, stopping at distance ε.

Resistant to outliers by ignoring noise points.

Similar to grid-based clustering:

automatically determines the number of clusters
works badly for density varying clusters

Complexity O(N2D)

can be reduced to O(N lnN) for small D with spatial indexing.
grid-based methods �nd objects in the same region in O(D).
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Grid-based clustering

DENCLUE clustering

INPUT: training set x1, ...xN , threshold τ .

Construct kernel density of dataset:

p(x) = 1

NhD

∑N
n=1

K
(
ρ(x ,xn)

h

)
Associate each point a peak it follows to by gradient ascent:

1 x0 = x
2 repeat while not converged: xn+1 = xn + ε∇p(xn)

Make clusters of data points, converging to the same peak.

Discard clusters, corresponding to peaks with p(x) < τ

Merge clusters, connected by path of data points{
p(xi(k))

}K
k=1

, having p(xi(k)) ≥ τ k = 1, 2, ...K .

OUTPUT: cluster indices of x1, ...xN .
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Grid-based clustering

DENCLUE Comments

Depending on threshold τ may obtain di�erent number of
clusters:

Automatically determines number of clusters, given τ .

Clusters can be of arbitrary shape

By varying τ , we can build hierarchical clustering.
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Grid-based clustering

DENCLUE Comments5

DENCLUE becomes DBSCAN for

K (ρ(x , x ′)) = I[ρ(x , x ′) ≤ ε]
τ = k/VD(ε), where VD(ε)-volume of sphere with radius ε in
D-dimensional space.

Complexity O(N2I ), I -number of iterations ig gradient ascent.

for N points I times need to calculate p(x)
p(x) can be calculated in less than O(N) by looking only at
neighboright points which can be found fast with spatial index

using: ball trees, KD-trees, mapping: bin on the axis->objects

in that bin.

5Gradient ascent in DENCLUE can be replaced with recursive mean shift

method.
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Spectral clustering
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Spectral clustering

Spectral clustering - example
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Spectral clustering

Description

Spectral clustering relies upon similarity matrix W between
objects.

Similarity matrix <-> weighted connection graph

Examples:

nodes represent people, edge weights - how much they
communicate
nodes represent web-pages, edge weights - scalar products of
TF − IDF
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Spectral clustering

Similarity matrix calculation

‖xi − xj‖ < threshold

RBF

based on nearest neighbours
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Spectral clustering

Graph with disjoint components
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Spectral clustering

Graph Laplacian

W = W T , wij ≥ 0 - the similarity between object i and
object j .

De�ne D = diag{d1, ...dN}, where di =
∑N

j=1
wij -weighted

degree of node i .

De�ne graph Laplacian

L = D −W

Properties of graph Laplacian:

it is symmetric
It has eigenvector 1 ∈ RN consisting of ones with eigenvalue 0.

Why?

it is positive semi-de�nite: ∀f ∈ RN : f TLf ≥ 0.
L has eigenvalues λ1 ≥ λ2 ≥ ... ≥ λN = 0
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Spectral clustering

Positive semi-de�niteness of Laplacian

Consider arbitrary f ∈ RN :

f TLf = f TDf − f TWf =
∑
i

di f
2

i −
∑
i ,j ,

fi fjwij =

1

2

∑
i

di f
2

i − 2
∑
i ,j

wij fi fj +
∑
j

dj f
2

j

 =

1

2

∑
i ,j

wij f
2

i − 2
∑
i ,j

wij fi fj +
∑
j ,i

wji f
2

j

 =

1

2

∑
i ,j

wij f
2

i − 2
∑
i ,j

wij fi fj +
∑
i ,j

wij f
2

j

 =

1

2

∑
i ,j

wij(fi − fj)
2 ≥ 0

(3)
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Eigenvectors of Laplacian

Consider eigenvector f corresponding to eigenvalue λ = 0.

f TLf = λf T f = 0

Using (3) we have that

0 = f TLf =
1

2

∑
i ,j

wi ,j (fi − fj)
2 (4)

If objects i and j are connected on the graph, there exists a
path with wuv > 0 along the path and from (4) it should be
that fi = fj .

So the set of eigenvectors of L is spanned by indicator vectors
IA1 , IA2 , ...IAK

where Ai is i-th isolated region on the graph.

Order of λ = 0 gives the number of isolated components.
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Spectral clustering algorithm

1 Find order K of singular value λ = 0 for L

2 Find set of eigenvectors v1, ...vK corresponding to λ = 0

3 Cluster rows of V = [v1, ...vK ] ∈ RNxK with K -means.

RETURN clustering for rows as clustering for initial objects
x1, ...xN .
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Practical application

L′ = D−1L is considered instead of L (�normalized� Laplacian)

to account for di�erent connectivity levels of di�erent nodes

Most often singular values of L′ are not exactly zero, but close
to zero. So we select K almost-zero eigenvalues and
corresponding K eigenvectors.
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Example
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