Машинное обучение: вводная лекция

K.B.Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

февраль 2012

Содержание

- Основные понятия и обозначения
 - Данные в задачах обучения по прецедентам
 - Модели алгоритмов и методы обучения
 - Функционалы качества
 - Обобщающая способность и переобучение
- Примеры прикладных задач
 - Задачи классификации
 - Задачи регрессии
 - Задачи кластеризации
 - Задачи ранжирования

Задача обучения по прецедентам

```
X — множество объектов;
```

Y — множество *ответов*;

 $y^* \colon X \to Y$ — неизвестная зависимость (target function).

Дано:

$$\{x_1, \ldots, x_\ell\} \subset X$$
 — обучающая выборка (training sample); $y_i = y^*(x_i), \ i = 1, \ldots, \ell$ — известные ответы.

Найти:

 $a\colon X \to Y$ — алгоритм, решающую функцию (decision function), приближающую y^* на всём множестве X.

Далее мы определим более формально,

- как задаются объекты и какими могут быть ответы;
- как строится функция *a*;
- что значит «a приближает y^* на всём X».

Объекты и признаки

$$f_j \colon X o D_j$$
, $j=1,\ldots,n$ — признаки объектов.

Типы признаков:

- $D_i = \{0,1\}$ бинарный признак f_i ;
- $|D_i| < \infty$ номинальный признак f_i ;
- ullet $|D_i| < \infty$, D_i упорядочено порядковый признак f_i ;
- $D_i = \mathbb{R}$ количественный признак f_i .

Вектор $(f_1(x), \dots, f_n(x))$ — признаковое описание объекта x.

Матрица «объекты-признаки»

$$F = \|f_j(x_i)\|_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}$$

Ответы и типы задач

- $Y = \{1, ..., M\}$ задача *классификации* на M непересекающихся классов.
- $Y = \{0,1\}^M$ задача классификации на M классов, которые могут пересекаться.
- ullet $Y=\mathbb{R}$ задача восстановления регрессии.
- Y конечное упорядоченное множество
 - задача ранговой регрессии или ранжирования.

Модель алгоритмов

Модель алгоритмов — параметрическое семейство отображений

$$A = \{g(x,\theta) \mid \theta \in \Theta\},\$$

где $g: X \times \Theta \to Y$ — фиксированная функция, Θ — множество допустимых значений параметра $\theta.$

Пример.

 $ec{\mathcal{L}}$ Линейная модель с вектором параметров $\theta=(heta_1,\dots, heta_n)$, $\Theta=\mathbb{R}^n$:

$$g(\mathsf{x}, heta) = \sum_{j=1}^n heta_j f_j(\mathsf{x})$$
 — для регрессии, $Y = \mathbb{R}$;

$$g(x, \theta) = \operatorname{sign} \sum_{i=1}^n \theta_i f_i(x)$$
 — для классификации, $Y = \{-1, +1\}$.

Метод обучения

Метод обучения (learning algorithm) — это отображение вида

$$\mu \colon (X \times Y)^{\ell} \to A$$
,

которое произвольной выборке $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$ ставит в соответствие некоторый алгоритм $a \in A$.

В задачах обучения по прецедентам всегда есть два этапа:

- Этап *обучения*: метод μ по выборке X^{ℓ} строит алгоритм $a = \mu(X^{\ell})$.
- Этап применения: алгоритм a для новых объектов x выдаёт ответы y = a(x).

Функционалы качества

 $\mathscr{L}(a,x)$ — функция потерь (loss function) — величина ошибки алгоритма $a\in A$ на объекте $x\in X$.

Наиболее очевидные функции потерь, при $Y \subseteq \mathbb{R}$:

для задач классификации

• $\mathscr{L}(a,x) = [a(x) \neq y^*(x)]$ — индикатор ошибки;

для задач регрессии

- $\mathscr{L}(a,x) = |a(x) y^*(x)|$ абсолютное значение ошибки;
- $\mathscr{L}(a,x) = (a(x) y^*(x))^2$ квадратичная ошибка.

Эмпирический риск — функционал качества алгоритма a на X^{ℓ} :

$$Q(a, X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} \mathscr{L}(a, x_i).$$

Данные в задачах обучения по прецедентам Модели алгоритмов и методы обучения Функционалы качества Обобщающая способность и переобучение

Сведение задачи обучения к задаче оптимизации

Метод минимизации эмпирического риска:

$$\mu(X^{\ell}) = \arg\min_{a \in A} Q(a, X^{\ell}).$$

Пример. Задача восстановления регрессии: $Y = \mathbb{R}$; n числовых признаков $f_j \colon X \to \mathbb{R}, \ j = 1, \dots, n$; линейная модель регрессии $g(x_i, \theta) = \sum\limits_{j=1}^n \theta_j f_j(x), \ \theta \in \mathbb{R}^n$; квадратичная функция потерь: $\mathscr{L}(a, x) = \big(a(x) - y^*(x)\big)^2$.

Тогда метод минимизации эмпирического риска совпадает с *методом наименьших квадратов*:

$$\mu(X^{\ell}) = \arg\min_{\theta_1...\theta_n} \sum_{i=1}^{\ell} (g(x_i, \theta) - y_i)^2.$$

Обобщающая способность

Контрольная выборка — новые данные, которые не были известны на этапе обучения: $X^k = (x_i', y_i')_{i=1}^{\ell}, \ y_i' = y^*(x_i).$

Переобучение — это событие
$$Q(\mu(X^{\ell}), X^k) - Q(\mu(X^{\ell}), X^{\ell}) \geqslant \varepsilon$$
.

Формализации понятия «обобщающей способности» метода μ :

- эмпирическая оценка на отложенных данных (hold-out): $HO(\mu, X^{\ell}, X^{k}) = Q(\mu(X^{\ell}), X^{k}) o min;$
- эмпирическая оценка скользящего контроля (cross-validation): $\mathrm{CV}(\mu, X^{\ell+k}) = \frac{1}{|N|} \sum_{n \in N} Q(\mu(X_n^\ell), X_n^k) \to \min;$
- теоретическая оценка вероятности переобучения: $Q_{\varepsilon}(\mu) = \mathsf{P} \big[Q \big(\mu(X^{\ell}), X^k \big) Q \big(\mu(X^{\ell}), X^{\ell} \big) \geqslant \varepsilon \big] o \mathsf{min};$
- оценка ожидаемой потери (или вероятности ошибки): $EQ(\mu(X^{\ell}), X^k) o \min;$

Пример переобучения

Зависимость $y^*(x) = \frac{1}{1 + 25x^2}$ на отрезке $x \in [-2, 2]$.

Признаковое описание $x \mapsto (1, x^1, x^2, \dots, x^n)$.

Алгоритм полиномиальной регрессии

$$a(x,\theta) = \theta_0 + \theta_1 x + \cdots + \theta_n x^n$$
 — полином степени n .

Обучение методом наименьших квадратов:

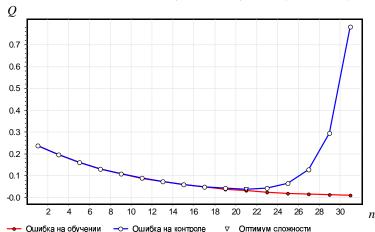
$$Q(\theta, X^{\ell}) = \sum_{i=1}^{\ell} (\theta_0 + \theta_1 x_i + \dots + \theta_n x_i^n - y_i)^2 \to \min_{\theta_0, \dots, \theta_n}.$$

Обучающая выборка: $X^\ell = \big\{ x_i = 4 rac{i-1}{\ell-1} - 2 \ ig| \ i = 1, \dots, \ell \big\}.$ Контрольная выборка: $X^k = \big\{ x_i = 4 rac{i-0.5}{\ell-1} - 2 \ ig| \ i = 1, \dots, \ell - 1 \big\}.$

Что происходит с $Q(\mu(X^{\ell}), X^k)$ при увеличении n?

Пример переобучения: эксперимент при $\ell = 50$, n = 1..31

Переобучение — это когда $Q(\mu(X^{\ell}), X^k) \gg Q(\mu(X^{\ell}), X^{\ell})$:



Переобучение — одна из проблем машинного обучения

- Из-за чего возникает переобучение?
 - избыточная сложность пространства параметров Θ , лишние степени свободы в модели $g(x,\theta)$ «тратятся» на чрезмерно точную подгонку под обучающую выборку.
 - переобучение есть всегда, когда есть оптимизация параметров по конечной (заведомо неполной) выборке.
- Как обнаружить переобучение?
 - эмпирически, с помощью скользящего контроля.
- Избавиться от него нельзя. Как его минимизировать?
 - минимизировать оценку вероятности ошибки;
 - накладывать ограничения на θ (регуляризация);
 - минимизировать HoldOut или CV, но осторожно!

Задачи медицинской диагностики

Объект — пациент в определённый момент времени.

Классы: способы лечения или исходы заболевания.

Примеры признаков:

- **бинарные**: пол, наличие головной боли, слабости, тошноты, и т. д.
- порядковые: тяжесть состояния, желтушность, и т. д.
- количественные: возраст, пульс, артериальное давление, содержание гемоглобина в крови, доза препарата, и т. д.

- обычно много «пропусков» в данных;
- нужен интерпретируемый алгоритм классификации;
- нужна оценка вероятности ошибки.

Задача кредитного скоринга

Объект — заявка на выдачу банком кредита.

Классы — bad или good.

Примеры признаков:

- бинарные: пол, наличие телефона, и т. д.
- номинальные: место проживания, профессия, работодатель, и т. д.
- порядковые: образование, должность, и т. д.
- количественные: возраст, зарплата, стаж работы, доход семьи, сумма кредита, и т. д.

Особенности задачи:

• нужно оценивать вероятность дефолта P(bad).

Задача предсказания оттока клиентов

Объект — абонент в определённый момент времени.

Классы — уйдёт или не уйдёт в следующем месяце.

Примеры признаков:

- бинарные: корпоративный клиент, включение услуг, и т. д.
- номинальные: тарифный план, регион проживания, и т. д.
- количественные: длительность разговоров (входящих, исходящих, СМС, и т. д.), частота оплаты, и т. д.

- нужно оценивать вероятность ухода;
- сверхбольшие выборки;
- не ясно, какие признаки вычислять по «сырым» данным.

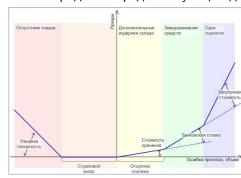
Задача прогнозирования объёмов продаж

Объект — тройка \langle товар, магазин, день \rangle .

Примеры признаков:

- бинарные: выходной день, праздник, промоакция, и т. д.
- количественные: объёмы продаж в предшествующие дни.

- функция потерь не квадратична и даже не симметрична;
- разреженные данные.



Задача кластеризации регионов

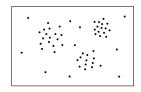
Объекты — регионы Российской Федерации.

Классы y_i не заданы, неизвестно даже число классов |Y|. Объекты надо сгруппировать по *сходству*.

Примеры признаков:

• **количественные:** население, доля городского населения, уровень безработицы, уровень преступности, и т. д.

- результат зависит от того, как задать «сходство»;
- результат необходимо
 визуализировать и интерпретировать



Задача каталогизации текстовых документов

Объект — текстовый документ.

Классы — рубрики иерархического тематического каталога.

Примеры признаков:

- номинальные: автор, издание, год, и т. д.
- количественные: для каждого термина частота в тексте, в заголовках, в аннотации, и т. д.

- лишь небольшая часть документов имеют метки *y_i*;
- документ может относиться к нескольким рубрикам.

Задача ранжирования поисковой выдачи

Объект — пара \langle запрос, документ \rangle .

Классы — релевантен или не релевантен, разметка делается людьми — асессорами.

Примеры признаков:

 количественные: частоты слов запроса в документе, число ссылок на документ, частота обращений к документу, и т. д.

- минимизировать надо не число ошибок, а более сложные функционалы качества ранжирования;
- сверхбольшие выборки;
- проблема конструирования признаков по сырым данным.

Резюме в конце лекции

 Основные понятия машинного обучения: объект, ответ, признак, алгоритм, модель алгоритмов, метод обучения, эмпирический риск.

• Этапы решения задач машинного обучения:

- понимание задачи и данных;
- предобработка данных и изобретение признаков;
- построение модели;
- сведение обучения к оптимизации;
- решение проблем переобучения и эффективности;
- оценивание качества;
- внедрение и эксплуатация.
- Прикладные задачи машинного обучения: очень много, очень разных, во всех областях бизнеса, науки, производства.