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Abstract—This paper investigates a genetic algorithm of the
inductive model generation and model selection. A model is the
superposition of primitive functions and represented as a directed
labeled tree. Some of generated superpositions could be simplified
so that their maps remain unchanged. A procedure performing
this simplification is proposed. This procedure is based on a
search algorithm that finds all isomorphic subtrees in a tree.
As a result, some subtrees are substituted with another subtrees
of lesser structural complexity. The proposed procedure reduces
both structural complexity and dimensionality of the parameter
space of a superposition. European stock options trading data is
used to illustrate the procedure. The simplification is shown to
improve the quality of superpositions with respect to a functional
given in the paper. It also allows genetic programming to reach
more accurate superpositions in the same number of iterations.

Index Terms—isomorphic trees, graph rewriting system, di-
mensionality reduction, genetic programming.

I. INTRODUCTION

THIS paper investigates symbolic regression [1]–[4] to
generate forecasting models. The term symbolic regres-

sion represents a process in which measured data is fitted by a
suitable mathematical formula [5]. There are a number of ap-
proaches to construct models for symbolic regression [5]. This
paper develops genetic programming [6] approach. In genetic
programming superpositions are constructed from expert-given
primitive functions [7] to fit data. The superpositions are gen-
erated iteratively with crossing and mutation operations [6]–
[8].

The problem specific for the genetic programming is over-
fitting [9]–[11]. Possible solutions to this problem are random
sampling technique [12], interleaved sampling [13], minimis-
ing testing [14]. Another way to avoid overfitting is simplifica-
tion of generated superpositions. This paper considers simpli-
fication, which preserves the mappings of superpositions [7].
Superpositions are represented as directed labeled trees, see
Figure 1. A graph rewriting system [15] simplifies these trees.

To simplify a tree a rule-based graph rewriting system uses
a set of expert-given graph rewriting rules. Define a graph
rewriting rule (P,R) as a pair of directed labeled trees: a
pattern tree P and a replacement tree R [16], see Figure 2.
The representation of an input superposition as a directed
labeled tree is called host tree H [16]. Graph rewriting
substitutes the occurrence of P in H with the corresponding
replacement tree R. To perform simplifications, assume that
replacements trees have less cardinality of their vertex sets
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than the corresponding pattern trees. Imply that the total
numbers of parameters written in the vertices in replacement
trees are less than those in the corresponding pattern trees.
Therefore the rule-based graph rewriting system reduces both
structural complexity of a superposition and dimensionality of
its parameter space. Consider a rule

2 cos(x) sin(x) → sin(2x).

An example of a graph rewriting built on this rule is presented
below

f0 = 2 cos ( f (w, x, y)) sin ( f (w, x, y)) → sin (2 · f (w, x, y)) ,

The possibility of such substitution of a variable x with an-
other function f (w, x, y) is verified by an algorithm detecting
all isomorphic subtrees in a tree. It halves the dimensionality
of the parameter space of f0 and significantly reduces its
structural complexity. It plays a crucial role in the improving
of the superpositions fitting. There are less calculations and
less parameters necessary to fit a superposition.

Superposition-tree for

x1 tan(x2).

Primitive functions:

×, tan .

Variables:

x1, x2.
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Fig. 1: Superposition represented as a directed labeled tree.

After the generation by genetic programming some of
the superpositions have excessive structural complexity. To
reduce it they should be simplified. They are compared with
themselves after the simplification with respect to an error
function and Akaike information criterion [17]. The final
selected superpositions are compared for both initial and
modified versions of genetic programming.

The detection of an isomorphism between two graphs is
NP-hard problem [18]. It is shown to be solved in quasi-
polynomial time [19]. However, there are several polynomial
time algorithms [18], [20] for some special types of graphs.
The O(n)-time algorithm [18] detects an isomorphism between
two trees. An isomorphism between a tree and a subtree of
another tree is recognized by the O

(
k
√
kn

log k

)
-time algorithm,

where k,n are the numbers of the vertices in the trees [20].
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Simplification rule:

sin(w1 · x1) · sin(w1 · x1) = (sin(w1 · x1))2.

Substitutions:
x1 = ln (ln(x2)) ,
x2 = id.

Fig. 2: Simplification of f (x1, x2) = sin(w1 ln (ln(x2))) ·
· sin(w1 ln (ln(x2))) by rule.

The substitution of expressions in a superposition mentioned
above is provided by an algorithm detecting all pairs of
isomorphic subtrees in a tree. This paper presents a polynomial
time variant of this algorithm. The idea of this algorithm
is to split the set of vertices into equivalence classes [18].
Each two vertices from one equivalence class are roots of
isomorphic subtrees. The algorithm performs this splitting in
two steps. First, split the set of vertices into groups according
to their height. Second, make each equivalence class within
one of these groups. This algorithm has computational com-
plexity O(n log(n)), where n stands for the number of vertices
in a tree. This computational complexity is significantly lesser
than one described in [21], which is above O(n2 log(n)). Small
computational complexity is an important feature, because the
model generation should not be slowed down by a simplifica-
tion procedure.

Algorithm 1 Genetic programming implemented by MVR

Require: initial superpositions, a set of primitive functions G
Ensure: superposition f with MSE ≤ α

repeat
• apply the rule-based graph rewriting system to simplify

current set of superpositions,
• estimate their parameters by the Levenberg-Marquardt

algorithm,
• apply the cross-mutation algorithm [8] to generate new

superpositions,
• estimate the optimal parameters of new superpositions,
• calculate the errors S( f ) and MSE,
• select the best superpositions according to S and pass

them to the next iteration
until required MSE is reached. =0

To generate superpositions we use genetic programming [8]
implemented in Multivariate Regression Composer [22] soft-
ware, see Algorithm 1. MVR uses expertly-given primitives G
and initial superpositions. Using crossing and mutation op-
erations [6], [8] it iteratively generates new populations of
superpositions. The optimal parameters of the generated su-
perpositions are estimated by the Levenberg-Marquardt algo-
rithm [23]. Evaluate the error function S on the generated
superpositions. The best superpositions are passed to the next
iteration. The iterations are terminated when a desired error
of prediction is reached.

To test the proposed graph rewriting system the paper
uses the European stock options trading data. An option is
a contract giving the owner the right, but not the obligation,
to sell a specified amount of an underlying asset at a set price
within a specified time called expiration date [24]. A set price
of an option is called a strike price [24].

Theoretical estimation of the fair market value of European-
style options is given by Black-Scholes formula [24]. It has
only one parameter that can not be observed in the market.
This parameter is the average future volatility of the underlying
asset. Volatility is the degree of variation of a trading price
series over time as measured by the standard deviation of
returns. In this paper, we investigate the volatility of a financial
instrument over a specified period starting at the current time
and ending at the expiration date of an option. It is estimated
by the market price of the instrument in the assumption that
the price is relevant to expected risks.

The Black-Sholses model relies on the assumptions which
imply the independence of the volatility from the strike price
and the expiration date. However, in practice the volatility
depends on these two values. We assume that implied volatility
value σimp is calculated as an argmin of the difference between
the historical (stated on the trade) and the fair strike price in
the Black-Scholes model:

σimp = argmin
(
Chist − C(σ,Pr,B,K, t)

)
, (1)

where Chist is the historical strike price; C is the fair strike
price estimated by the Black-Scholes model; Pr is the price of
the instrument; B is the bank rate; K is the strike price; t is
the time left to the expiration date.
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To estimate the fair strike price one must approximate the
dependence σ(K, t) between the strike price of the instrument,
its volatility and the time left to the expiration date. The dataset
is collected and described in [25].

In this paper we find a superposition which approximates
this dependence. This superposition must be better than the
one given by experts [25]

σ = σ(w) = w1+w2
(
1−exp(−w3x2)

)
+
w4 arctan(w5x)

w5
, (2)

where

x =
ln K − ln C(t)

√
t

,

with the parameter vector w = [w1, . . . ,w5].

II. PROBLEM STATEMENT

There given a dataset D = {(xs , ys )}N
s=1 and a set of

primitive functions

G = {g1, . . . ,gm , x1, . . . , xz }, (3)

where each gk stands for an mathematical function and each x j

stands for a variable. Denote F as a set of superpositions of
the elements from G. The superpositions are represented as
directed labeled trees. The vertices of these trees are labeled
by elements from G.

The paper is aimed at finding the superposition f (w,x)
from F, which minimizes the error function S

S = MSE + λ‖ŵ‖22 + C
(

f (ŵ,x)
)
, (4)

where λ is a positive regularization parameter and MSE is the
mean squared error of approximation

MSE =
1
N
‖ys − f (w,xs )‖2.

The vector ŵ is the optimal parameters according to MSE.
To prevent the genetic algorithm from overfitting intro-
duce C

(
f (ŵ,x)

)
controlling structural complexity of super-

positions.
Structural complexity φ ( f ) of a superposition f is the

number of elements from G, which the superposition f is
comprised of.

Introduce threshhold Φ determining the maximum accept-
able structural complexity of a superposition. The superpo-
sitions with the structural complexity above the threshhold
are penalized. The corresponding penalties are denoted by κ1
and κ2, κ1 < κ2,

C( f ) =



MSE · κ1 · φ ( f ) , if φ ( f ) < Φ,
MSE · (κ2 (φ ( f ) − Φ) + κ1 · Φ) ,else.

(5)

φ( f )0 Φ

Simple Complex
C( f )

Fig. 3: Penalty on structure complexity.

The problem is to select the superposition f̂ ∈ F which
minimizes the error function S:

f̂ = argmin
f ∈F

S( f |ŵ,D),

where the vector ŵ minimizes mean squared error:

ŵ = argmin
w

S(w| f ,D).

III. ALGORITHM DETECTING ISOMORPHIC
SUPERPOSITION-SUBTREES

Superpositions generated by genetic programming are rep-
resented as directed labeled trees. The set of labels is denoted
as G (3). Describe the algorithm, which detects all isomorphic
subtrees in a superposition-tree. Superposition-tree T = (V,E)
is directed rooted tree with labeled vertices V . The label of
a vertex v is denoted as l (v) ∈ G. Variables x from G are
assigned to the leaves of T . The other vertices are assigned
with mathematical functions from G. If a vertex has a label
corresponding to a commutative mathematical function, claim
that its children are lexycographically ordered. Subtree T ′ =
(V ′,E ′) of a superposition-tree T = (V,E) is a superposition-
tree having V ′ ⊂ V,E ′ ⊂ E.

To detect all isomorphic subtrees in superposition-tree T =
(V,E) split the vertex set V into equivalence classes according
to the following rule: each equivalence class C consists of
those vertices, which are the roots of isomorphic subtrees of T .
Two superposition-trees T1 = (V1,E1) and T2 = (V2,E2) are
isomorphic iff there is a bijective function preserving labels
and edges existence.

To perform it, first, split the vertex set V into levels

V =
h(r )⋃
i=0

Li . (6)

A level Li of superposition-tree T consists of vertices of T
which have the heights equal to i. A height h(v) of vertex v of
a superposition-tree T is the length of the longest path from v

to any of the leaves of T .
Each two vertices from one equivalence class have equal

heights as well. Describe the algorithm of splitting
The heights h of vertices are found by the depth first

search algorithm [18]. Since the heights are known, the lev-
els L0, . . . ,Lh(r ) are found. Each equivalence class C entirely
lies within one of these levels. The classes lying in one level
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are ordered. Therefore, each class C has 2 indices C = Ci, j .
The first index indicates the level Li comprising the class and
the second is the index of the class in Li .

Li =

αi⋃
j=0

Ci, j . (7)

Define an index function c(v) on the vertices of T . If a vertex v

lies in class Ci, j , the value of c(v) = (i, j). In other words, c(v)
is the two indices of the class Cc (v) comprising v.

c(v) = (i, j) : v ∈ Ci, j . (8)

For example, the values of c(v) for the graph from Figure 4
are the following (vertices are numbered from left to right)

TABLE I: Values of c(v) for the graph in Figure 4.

v1 v2 v3 v4 v5 v6
c (v) (0,0) (0,0) (0,1) (0,1) (0,2) (0,3)

Describe the iterative procedure of splitting of levels into
equivalence classes (7). Start with the lowest level L0 and split
it according to the vertices labels l (v), see Figure 4. Now
inductively traverse the levels from L1 to the root level Lh(r ) .
Suppose, the levels L0,L1, . . . Li are processed. Now proceed
with the level Li+1. Consider the directed graph Gi = Li∪Li+1,
see Figure 5.

The heads of all arcs lie in Li+1 and their tails lie
in Li . Consider each vertex v from Li+1 and the arcs e1 =

(v → v1),e2 = (v → v2), . . . going from v to Li . Assign
sorted tuple 〈l (v),c(v1),c(v2), . . . 〉 to v. Required equivalence
classes Ci+1, j consist of the vertices having equal tuples.
Therefore, sort the list of assigned tuples, traverse this list
and create the required classes Ci+1, j . Figure 5 shows that the
first two vertices of Li+1 make up class Ci+1,0 and the last one
makes up the class Ci+1,1. This inductive step is described in
the Algorithm 2.

Algorithm 2 Inductive step to split levels on classes

Require: Superposition-tree T with root r and
levels L0,L1, . . . ,Lh(r );

Ensure: equivalence classes {Ci, j }
i=h(r ), j=αi

i, j=0 ;
split L0 according to the vertices labels;
for each level Li from L1, . . . ,Lh(r ) do

for each vertex v from Li do
Denote (v,v′1), (v,v′2) as the arcs going from v

Assign sorted tuple 〈l (v),c(v′1),c(v′2), . . . 〉 to the ver-
tex v ∈ Li ;

end for
Traverse the list of assigned tuples and form the
classes {Ci, j } j=1 of equal tuples.

end for
return {Ci, j }

i=h(r ), j=αi

i, j=0 . =0

Finally, the vertex set is split into equivalence classes

V =
i=h(r ), j=αi⋃

i, j=0

Ci, j . (9)

Computational complexity of the algorithm is expressed as
follows

Computational complexity δ1 of the algorithm detecting
isomorphic subtrees in superposition-tree T = (V,E) in the
”big-O” [26] notation

δ1 = O
(
m |V | log( |V |)

)
,

where m is the maximum outgoing degree of the vertices
from V .

The depth-first search algorithm calculates the values of
heights h. Its computational complexity is O( |V |). The leaves
of T are split into classes {C0 j }

α0
j=0 through sorting their

labels in O
(
|L0 | log (|L0 |)

)
time. Evaluate complexity of the

inductive step of the algorithm.
Assume that vertices of Li+1 are ordered. Define Ek as

a set of arcs outgoing from k-th vertex of Li+1. Traverse
sets {Ek }

|Li+1 |

k=1 to assign tuples to the vertices of Li+1 and
sort these tuples. Its computational complexity is

|Li+1 |∑
k=1

O
(
|Ek | · log( |Ek |)

)
≤

|Li+1 |∑
k=1

O
(
|Ek | · log(|V |)

)
= log (|V |) ·

|Li+1 |∑
k=1

O (|Ek |) .

Sort the list of tuples. To compare two tuples for equality
one needs O(maxk (|Ek |)) time. Computational complexity of
the sorting is estimated

O
(
max
k

( |Ek | · |Li+1 | log( |Li+1 |)
)
≤ O

(
m · |Li+1 | log(|V |)

)
,

where m = maxk ( |Ek |).
Finally, traverse the list of tuples and split Li+1 into

equivalence classes. Computational complexity of this step is
O (m · |Li+1 |) .

Therefore, the algorithm has computational complexity δ1
bounded from above by

O(|L0 | log( |L0 |)) + log( |V |)
h(r )∑
i=1


O(m |Lk |) +

|Lk |∑
k=1

O ( |Ek |)

.

Note that
|Vi |∑
k=1

O( |Ek |) ≤ O( |Li | · m),

and rewrite the previous expression:

δ1 ≤ O
(
|L0 | log( |L0 |)

)
+ m · log( |V |) ·

h(r )∑
k=1

O(|Lk |)

≤ O(m · |V | log(|V |)).

A superposition-tree defines a superposition of primitive
functions. Generally these primitive functions has the arities
bounded by 2. Then the estimation improves to

δ1 = O
(
|V | log(max

k
|Lk |)

)
.

Presented algorithm is noticably faster than the algorithm
described in [18], which has computational complexity O(n3).
Because of low computational complexity it is used in the rule-
based graph rewriting system described below.
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C0,0 C0,1 C0,2 C0,3x1 x1 x4 x4 x7 x8

Fig. 4: Example of the lowest level being split L0 =
3⋃
j=0
C0, j .

Li =
2⋃
j=0
Ci, j

Li+1

Ci,0 Ci,1 Ci,2g1 g1 g4 g4 x1

g2v g2 g3

e1 e2

〈g2,1,2〉 〈g2,1,2〉 〈g3,2,3〉

Fig. 5: Example of subgraph G = Li
⋃

Li+1.

IV. RULE-BASED GRAPH REWRITING SYSTEM

We propose a graph rewriting system to simplify the super-
positions generated by MVR. The system uses expert-given
set of simplification rules.

A rule of rewriting is an ordered pair of superposition-trees
(P,R) whose corresponding mathematical functions have the
same mappings. They are called pattern and replacement trees
respectively.

Consider a host tree H and a pattern tree P, see Figure 2
and Figure 2. All leaves of P are substituted by another
superposition-trees. The leaves with the same labels are sub-
stituted with the same superposition-trees. If H is isomorphic
to the resulted tree, H matches the pattern tree P. An example
of matching and leaves substitution is shown in Figure 2.

The set of Z expert-given rules ((P,R)) is given. Sim-
plify superposition f in two steps. First, represent f as a
superposition-tree H and split its vertex set into equivalence
classes according to an isomorphism (9). Second, detect all
subtrees in H matching any of the pattern trees from the rules.
Replace them with the corresponding replacement tree from
the rules. Describe the subtree detection procedure.

Consider a pattern tree P with root q. Search for the vertices
of H having the same label with q. Denote v as one of such
vertices and T as the corresponding subtree with root in v.
For example, in Figure 2 such vertex v is the root of the
host tree. Launch breadth-first search algorithm [18] to check
if T matches P. At each step consider a pair (v,p) of vertices
from T and P respectively. If p is a leaf of P, substitute it with

the subtree rooted in v, see Figure 2. To check the validity
of the final substitution, verify that the leaves with equal
labels are substituted by isomorphic subtrees. For example, in
Figure 2 both leaves of P are substituted by the same subtrees.
To perform it mark p with a pair of indices c(p) (8)

c(p) = c(v).

It means that the leaves with equal pairs of indices were
substituted by isomorphic subtrees. If the breadth-first search
is terminated and all leaves of L are marked with new
labels, one must verify if the substitution is correct: the
leaves with equal labels must be substitited by isomorphic
superpositions. If there exists such pair of leaves (p,p′) of P
that l (p) = l (p′) and c(p) , c(p′), the subtree T does not
match P. Otherwise, it matches P. The described algorithm is
presented in Algorithm 3.

Computational complexity of the implementation of the
rule-based graph rewriting system is expressed as follows

Computational complexity δ2 of the Algorithm 3 searching
for a subtree of T = (V,E) matching to a rule (P,R) from the
expert-given set of rules in the ”big-O” [26] notation

δ2 = O (Z · |V |) +O(|V | log( |V |)),

where Z is the number of rules.
Consider a pattern tree P with root q. Searching for the ver-

tices of T having the same label with q requires O(|V |) time.
For each candidate v we launch the verification Algorithm 3
in it. The Algorithm requires O(|P | log (|P |) time to check if
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Algorithm 3 Check if a subtree matches a rule

Require: subtree T and pattern tree P with the roots r and q
respectively,

index function c(v),
leaves of P are indexed by integers from 1 to l0.

Ensure: Does T match to P?
Define an empty array of size l0 and an empty queue,
push the pair (r,q) to queue.
while queue is not empty do

pop the top pair (v,p) from queue.
if p is a leaf of P with index i then

array[i] = c(v),
else

if l (p) = l (v) and outgoing degrees are equal then
Push the tail of each outgoing arc (p,pγ ) and (v,vγ )
to queue,

else
break while-loop.

end if
end if

end while
if array has unassigned values then

return no.
end if
Sort array with respect to the labels l (p) of the leaves of P,
search for indeces i, j such that

(
l (vi ) == l (v j )

)
and(

array[i] , array[ j]
)
.

if such indeces exist then
return no,

else
return yes.

end if=0

the subtree with root in v matches P. This procedure is done
at most |V | times for each rule. The found occurence of P is
replaced with R. To perform this replacement correctly it is
necessary to apply the substitutions found in Algorithm 3 to R,
see Figure 2. This replacement requires O(|V |) operations.
Therefore, the complexity δ2 of the Algorithm 3 is

δ2 = O
(
Z · |V |max(|P | log (|P |))

)
+O( |V | log(|V |)).

Generally the pattern trees have rather small size and are
bounded by some constant. This notion improves the expres-
sion above.

δ2 = O (Z · |V |) +O( |V | log(|V |)).

This outperforms the rule-based graph rewriting system
described in [21]. It allows to use this rewriting system in
the superpositions generation without it being slowed down.

V. COMPUTATIONAL EXPERIMENT

A. Data

To test the proposed graph rewriting system generate su-
perpositions fitting the European stock put options [25]. The
primitive fucntions used in the generation are listed in Table II.

TABLE II: Primitive functions used in MVR.

Name Function #param-s
expl exp(w1 · x) 1
inv 1/x1 0

frac2 x1/x2 0
hyperbola w1/x1 1

linear w1 · x1 + w2 2
ln ln x1 0

minus2 x1 − x2 0
mult w1 · x1 1

normal w1 · exp(w1 · (x1 − w2)2) 3
parabola w1 · x

2
1 + w2 · x1 + w3 3

omexpl 1 − exp(w1) 1
plus x1 + w1 1

plus2 x1 + x2 0
sin sin x1 0
sina sin(w1 · x1 + w2) 2
sqrt

√
x1 0

sqrta
√
w1 · x1 + w2 2

tansig tansig(x1) 0
times2 x1 · x2 0

TABLE III: Rules of simplification

inv(expl(x)) → expl(x)
normal(linear(x)) → normal(x)
arctanl(mult(x)) → arctanl(x)

times2(linear(x),linear(x)) → parabola(x)
times2(linear(x),plus(x)) → parabola(x)

plus2(linear(x),linear(x)) → linear(x)
plus2(linear(x),plus(x)) → linear(x)

plus2(parabola(x),mult(x)) → parabola(x)
minus2(parabola(x),parabola(x)) → parabola(x)

minus2(linear(x),mult(x)) → linear(x)
minus2(parabola(x),linear(x)) → parabola(x)
minus2(parabola(x),plus(x)) → parabola(x)

minus2(linear(x),x) → linear(x)
plus2(linear(x),x) → linear(x)

plus2(x,parabola(x)) → parabola(x)

The trading data is related to Brent Crude Oil, sym-
bol NYM. Use daily closing prices of an option and under-
lying. The set of the striking prices K = [18.0,19.0 : 0.5 :
23.0,24.0 : 0.5 : 28.5]. Use historical prices of options CK, t
and underlying Prt , where K ∈ K , t ∈ T . The sample
{(xs , ys )} = {(〈Ks , ts〉,σs )} is built with use of these data
as follows. For each values K and t calculate the volatility σ
by (1), where the bank rate B = 0.075. The time t is expressed
in years left to the expiration. There are 112 timestamps in the
data.

In the computational experiment 72 rules are used. The first
15 of them are listed in Table III. These rules reduce the
dimensionality of the parameter space of a superposition. The
initial superpositions for MVR include the etalon function (2).

1) f1 =
(
w1 + w2K + w3K2 + w4 exp(−w5K2)

) √
w6t,

2) f2 = w1 + w2K + w3t + w4Kt + w5K2 + w6t2,
3) f3 =

(
w1 +w2K +w3 exp(−w4K2)

)
(w5t3 +w6t2 +w7t +

w8),

4) f4 = w1 + w2
(
1 − exp(−w3x2)

)
+
w4 arctan(w5x)

w5
.

B. Plan of experiment

To analyze the proposed rule-based graph rewriting system,
the following steps are taken. 1.
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1) Analyze a performance of the system on the whole set F.
Generate random superpositions fromF with fixed struc-
tural complexity φ( f ) and simplify them by the system.
Analyze the fraction of simplifiable superpositions in
the generated set. The performance of the system is the
average structural improvement after the simplifications.

improvement =
init(#primitives + #param.)
new(#primitives + #param.)

. (10)

2) Analyze a performance of the system on superpositions
generated by MVR. As the aim is to fit the dataset, the
performance is the improvement of the error function S.
As S is heuristic quality estimation, Akaike information
criterion is also analyzed. AIC stands for a theoretically
justified estimation of the superposition quality with
respect to both approximation and dimensionality of the
parameter space.

AIC = 2k + N (ln(N ·MSE)) ,

where k is the dimensionality. The fraction of simpli-
fiable superpositions is plotted and analyzed with one
recieved from the previous item.

3) Analyze the impact of the system on the quality of the
final superpositions selected by MVR. Launch MVR
with and without the proposed graph rewriting system.
Compare the final selected superpositions for both cases.
As the aim of MVR is selection structurally simple and
well fitted superposition, the comparison is conducted
with respect to S and MSE on a test sample.

C. Experiment

Start with an analysis of the system on F. Generate random
models from F with fixed structural complexity and find the
percentage of simplifiable models in the generated sets. For
each structural complexity 10000 random superpositions are
generated. The percentages strongly depend on the chosen
structural complexities, see Table IV and Figure 6.

Table IV shows that complex superpositions are more in-
clined to be simplified. It follows from the notion that the
probability of a rule presence increases as a superposition
becomes more complex. However, the simplification is equally
efficient for superpositions of all structural complexities, as
the relative improvement (10) does not change. The values
presented in Table IV depend strongly on the used sets of
primitives and rules. For example, if one uses diverse rules,
MVR will frequently generate simplifiable superpositions. On
the other hand, the use of small number of rules does not
afford to simplify generated superpositions frequently.

Now analyze the properties of the graph rewriting system
applied to MVR. After the termination MVR selects 20 best
superpositions with respect to S. The parameters of S are set
empirically, see Table VI. Here are the reasons followed in
the parameters setting: the generated superpositions should be
sufficiently simple to be analyzed and interpreted by experts,
at the same time the superpositions should be sufficiently
complex to fit the dependencies in the dataset. Varying these
parameters, a desired trade-off was achieved.

TABLE V: Relative quality changes for simplified superposi-
tions, %.

Criterion unchanged worsen improved
S 0 13 87

AIC 16 8 75

TABLE VI: Parameters of S.

Parameter λ Φ κ1 κ2
Value 0.000035 20 0.1 1

Launch the generation by MVR 30 times and search for the
best superpositions to fit the dataset. Compare the simplified
superpositions with the initial ones according to the error
function S and Akaike information criterion.

Figure 7 shows the fraction of simplifiable superpositions
among the generated till i-th iteration. All measured values
are averaged over 50 launches. After 15-20 iterations MVR
stagnates, stored superpositions are similar and the popu-
lation almost stop changing. As selected superpositions are
already simplified and not eliminated from the population,
crossover and mutation are unlikely to construct many new
simplifiable superpositions from them. Therefore the fraction
value remains relatively low (10-13%) with respect to the
random populations analyzed above. It remains constant in
average, when MVR stagnates, see Figure 7. This fraction also
significantly depends on the parameters of S. For example if
the penalty λ is chosen too big, the generated superpositions
are mostly simple structured and not simplifiable. Otherwise,
if complex superpositions are not penalyzed with λ, the
population will consist of overfitted superpositions, which are
likely simplifiable. The same logic is true for the threshhold Φ
and penalties κ1, κ2.

Simplified superpositions are compared with the initial ones
according to S and Akaike information criterion. Figure 10
shows the results. Outliners are deleted from the hists by
95% quantile. Most superpositions are improved by graph
rewriting system according to the error function S and AIC
information criterion. Nearly 64% of superpositions were
improved with respect to both criteria. In average, the AIC
was better on 0.2% and the error function S was better on 3%
after the simplification. The table below lists the percentages of
unchanged, improved and worsen superpositions with respect
to S and AIC criterion.

Finally, compare the superpositions selected by the initial
and modified versions of MVR. The modified version uses
the proposed graph rewriting system and simplify generated
superpositions. Two versions are compared based on the
error function S and MSE on a test sample. These criteria
are applied separetely to the top-1 and top-20 of selected
superpositions. Launch the genetic algorithm 200 times and
average the results over the launches, see Table VII. The
use of graph rewriting system improves the genetic algorithm
according to both MSE and S.
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TABLE IV: Percentage of simplifiable superpositions and average relative structural improvement.

Structural complexity 6 8 10 12 14 16 18 20
Percentage 0.21 0.28 0.34 0.42 0.46 0.51 0.54 0.58
Relative improvement (10) 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04
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Fig. 6: Fraction of simplifiable random superpositions of fixed structural complexity.
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Fig. 7: Fraction of simplifiable superpositions in population generated by MVR.
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Fig. 8: Initial superpositions f1−3. Fig. 9: Final selected superpositions f4−6.
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Fig. 10: Histograms of relative changes of S and AIC criterion after the simplification.

TABLE VIII: MSE on the train dataset, %.

Superposition f1 f2 f3 σ (w) (2) f4 f5 f6
MSE 0.32 0.15 0.117 0.0173 0.0068 0.0072 0.0086

TABLE VII: Relative quality changes for the best selected
superpositions, %.

MVR version MSE (top-1) S (top-1) MSE (top-20) S (top-20)
Initial 0.6 13.7 0.76 1.61

Modified 0.5 12.8 0.68 1.54

The initial superpositions of MVR evolves to better fitting
superpositions. One of the launches of MVR produces the
following functions, where P is a parabola.

f4(w,x) = P
((
w1 + w2etK + t

)
·
√
w3t + w4

)
,

f5(w,x) = P
((
w1 + ew1t+t

2
+ t

)
·
√
w2t + w3

)
,

f6(w,x) = P
(
etK

)
· P

(
normal

(
etK

))
.

In the plots above the left column stands for the initial
superpositions f1−3 and the right for the final selected f4−6. 50
iterations are sufficient for MVR to build a well fitted function.
Table VIII shows the improvement in the approximation after
the evolving of f1−3. The selected superpositions outperforms
the expert-given function σ(w) (2) as well.

To reproduce the represented results, download the project
code from the reference.

VI. CONCLUSION

A procedure of a superposition simplification is proposed.
This procedure is implemented as a rule-based graph rewriting
system, which uses an algorithm of detection isomorphic
subtrees in a tree. The procedure reduces both structural
complexity of a superposition and dimensionality of its pa-
rameter space. Computational complexity of the procedure
is small enough to use it in the genetic programming to
generate superpositions. After the simplification the quality of
superpositions mostly increases according to the AIC criterion
and the error function. The modified version of MVR generates
better superpositions according to the MSE on the test sample
and the error function.
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Abstract

This paper improves a genetic algorithm for generating simple structured IR

ranking functions. These functions are constructed as superpositions of expert-

given primitive functions. This paper solves the problems of overfitting and

evolutionary stagnation, specific for genetic algorithms. To solve the problem of

overfitting it uses a regularizer controlling the structural complexity of generated

superpositions. Evolutionary stagnation is detected with a structural metric

on superpositions. Adding new random superpositions devirsifies a stagnating

population. The quality of a ranking function is evaluated by mean average

precision (MAP). The computational experiment is conducted on TREC5-8.

The best selected superpositions have uniformly higher quality on TRECs than

classical IR models and the ones selected by an exhaustive algorithm.

Keywords: information retrieval, evolutionary stagnation, ranking function,

genetic programming, overfitting

1. Introduction

Information retrieval is finding relevant documents, which satisfy an infor-

mation need, from within large collections [1]. To retrieve documents relevant

to a query, one needs a rank estimation procedure called ranking model. It is

defined on pairs document-query and for each pair returns relevance of the doc-5
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ument to the query. IR ranking models in [2] use two basic features of such

pairs: term frequency (tf ) and document frequency (idf ). In this paper ranking

models are considered as mathematical functions defined on tf-idf features. In-

stead of enlarging the set of features to provide better performance [3], current

paper use the same tf-idf features to make further comparison consistent.10

The ranking models in [4, 5, 6, 7, 8] are derived on some theoretical assump-

tions. This approach allows to build ranking models without an IR collection,

but these assumptions are not often met. For example, the derived ranking

models are not optimal according to mean average precision [1] on TREC col-

lections [2]. Moreover, the quality of these models significantly differs on the15

collections [2].

High-performing ranking models are also discovered by automatic proce-

dures. The paper [2] exhaustively explores a set of IR ranking models repre-

sented as superpositions of expert-given grammar elements. The grammar is an

expert-given set of primitive mathematical functions, where variables are tf-idf20

features [9]. The exhaustive algorithm explores the set of superpositions, which

consists of at most 8 grammar elements. The best explored ranking functions

in [2] are better in average on TREC collections than ones in [4, 5, 6, 7, 8].

Moreover, these functions are guaranteed to have simple structure. However,

this algorithm has high computational complexity [2]. Therefore, an exploration25

of more complex superpositions is an intractable problem.

Another approaches to improve IR systems include various genetic algo-

rithms: search for an optimal document indexing [10, 11], clustering docu-

ments according to their relevance to queries [12, 13], tuning parameters of

queries [14, 15], facilitate automatic topic selections [16], search for key words30

in documents [17] and optimal coefficients of a linear superposition of rank-

ing models [18, 19]. Genetic algorithms are applied to select features in image

retrieval and classification [20]. Genetic algorithms are used to generate rank-

ing functions represented as superpositions of grammar elements [21, 22, 23].

These procedures significantly extend the set of ranking superpositions consid-35

ered in [2]. However, the basic algorithms in [21, 22] produce superpositions
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with significant structural complexity after 30-40 iterations of mutations and

crossovers [23]. The basic algorithms do not control the structural complexity

of generated superpositions and do not solve a problem of evolutionary stagna-

tion, when a population stops to change.40

The problem of evolutionary stagnation appears when a majority of stored

superpositions have similar structure and high quality. Next crossover opera-

tions constructs superpositions, which are similar to the stored ones. The mu-

tation operation constructs a superposition, which is unlikely to have as high

quality as the stored superpositions. This superposition highly probably will45

be eliminated. Therefore the population will pass to the next iteration without

changes. The genetic algorithm stops actual generation.

To outperform the ranking functions found in [2], one needs to extend the set

of superpositions considered there. To perform it, a modified genetic algorithm

is proposed. First, it detects evolutionary stagnation and replaces the worst50

stored superpositions with random ones. This detection is implemented with a

structural metric on superpositions. Regularizers solve the problem of overfit-

ting. They penalize the excessive structural complexity of superpositions. The

paper analyzes various pairs regularizer-metric and chooses the pair providing

a selection of better ranking superpositions.55

The paper [2] uses TREC collections to test ranking functions. To make

the comparison of approaches consistent, the present paper also use these col-

lections. The collection TREC-7 (trec.nist.gov) is used as the train dataset to

evaluate quality of generated superpositions. The collections TREC-5, TREC-6,

TREC-8 are used as test datasets to test selected superpositions.60

2. Problem statement

There given a collection C consisting of documents {di}|C|i=1 and queries Q =

{qj}|Q|j=1. For each query q ∈ Q some documents Cq from C are ranked by

experts. These ranks g are binary

g : Q× Cq → Y = {0, 1},

3



where 1 corresponds to relevant documents and 0 to irrelevant.

To approximate g, superpositions of grammar elements are generated. The

grammar G is a set {g1, . . . , gm, xdw, yw}, where each gi stands for an mathemat-

ical function and xdw, yw stand for variables. These variables are tf-idf features

of document-query pair (d, q). Feature xdw is a frequency of the word w ∈ q in d,

feature yw is a frequency of w in C:

xdw = twd log

(
1 +

la
ld

)
, yw =

Nw

|C|
, (1)

where Nw is the number of documents from C containing w, twd is the frequency

of w in d, ld is the number of words in d (the size of a document d), la is an

average size of documents in C. Each superposition f of grammar elements is65

stored as a directed labeled tree Tf with vertices labeled by elements from G.

The set of these superpositions is defined as F.

The value of f on a pair (d, q) is defined as a sum of its values on (d,w),

where w is a word from q:

f(d, q) =
∑
w∈q

f(xdw, yw).

The superposition f ranks the documents for each q. The quality of f is the

mean average precision [1]

MAP(f, C,Q) =
1

|Q|

Q∑
q=1

AveP(f, q),

where

AveP(f, q) =

∑|Cq|
k=1

(
Prec(k)× g(k)

)∑|Cq|
k=1 Rel(k)

, Prec(k) =

∑k
s=1 g(s)

k
,

where g(k) ∈ {0, 1} is a relevance of the k-th document from C.

This paper aims at finding the superposition f , which maximizes the follow-

ing quality function70

f∗ = argmax
f∈F

S(f, C,Q), S(f, C,Q) = MAP(f, C,Q)− R(f), (2)

where R is a regularizer controlling the structural complexity of f .
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The exhaustive algorithm in [2] generates random ranking superpositions

consisting at most of 8 elements of the grammar G. Let F0 be the set of the

best superpositions selected in [2]. The solution f∗ is compared with the super-

positions from F0 with respect to to MAP.75

3. Generation of superpositions

IR ranking functions are superpositions of expert-given primitive functions.

These superpositions are generated by the genetic algorithm. It uses an ex-

pertly given grammar G and constructs superpositions of its elements. On each

iteration it stores a population of the best selected superpositions. To update

them and pass to the next iteration, it generates new superpositions with use of

the stored ones. Since the superpositions are represented as trees, the algorithm

applies crossover c(f, h) and mutation m(f) operations to the stored trees

c(f, h) : F× F→ F, m(f) : F→ F,

Crossover operation c(f, h) : F×F→ F produces a new superpositions from

given f and h. This operation represents f and h as trees, uniformly selected a

subtree for each of them and swaps these subtrees.

Here is an example of crossover on two superpositions, where randomly se-

lected subtrees are in bold.

f(x, y) = exp(x) + ln(xy), h(x, y) =
√
x+ (x+y)

↓80

f ‘(x, y) = exp(x) + (x+y), h‘(x, y) =
√
x+ ln(x · y),

The new superpositions are formed by swapping of these subtrees.

Mutationm(f) uniformly selects a subtree from f and replace it with another

random superposition. Mutation produces one new superposition.

Here is an example of mutation on a superposition

f(x, y) =
√
x+ ln(x · y)→ f ‘(x, y) =

√
x+ exp(y).

5



Algorithm 1 Basic genetic algorithm

Require: grammar G, required value α of MAP

Ensure: superposition f of elements from G with MAP ≤ α;

create a set of initial, random superpositions M0,

repeat

• crossover random pairs of stored superpositions M,

• mutate random superpositions from the population M,

• consider these generated superpositions and the ones stored in M.

Select the best of them according to MAP,

• store the best generated superpositions in the population M and pass

it to the next iteration,

until the required value of MAP is reached;

Size |T | of a tree T is the number of its vertices.85

Restrict the size of substituting tree. If mutation replaces a subtree T with a

tree T ′, then bound the size of T ′ by c|T |, where c is a constant. This restriction

allows us to explore the set F more gradually. The reason is to prevent the

algorithm from instantaneous moving toward complicated superpositions if the

stored population consists mainly of simple structured superpositions. Now the90

genetic algorithm is described in Algorithm 1. It will be referred as basic genetic

algorithm.

4. Metric properties of basic genetic algorithm

To analyze the genetic algorithm, introduce a structural metric µ(T, T ′). It

is defined on pairs of directed labeled trees. Therefore, it is defined on pairs of

elements from F as well.

µ(f, f ′) = µ(Tf , T
′
f ).

This structural metric satisfies the following conditions
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1) µ(f, f) = 0, µ(f, f ′) > 0 if f 6= f ′ (non-negativity),95

2) µ(f, f ′) = µ(f ′, f) (symmetry),

3) µ(f, f ′) ≤ µ(f, f ′′) + µ(f ′′, f ′) (triangle inequality). enumerate

For r > 0 define the r-neighborhood Ur(f) of superposition f as a set of

superpositions in F that are at distance less than r from f

Ur(f) = {f ′ ∈ F : µ
(
f, f ′

)
< r}.

To associate the structural distance between superpositions with a distance

on their values, introduce an extra condition. Claim that the functions, lying

in one structural neighborhood, should rank the documents mainly similarly.

Define a distance function η on the ranks of IR ranking functions:

η(f, f ′) =
1

|C|
(
|C| − 1

) ∑
dj ,dk∈C

[f(dj) < f(dk)][f ′(dj) > f ′(dk)],

where [A] is the indicator of event A. It is related with Kendall rank corre-

lation coefficient by the equation:

τ(f, f ′) = 1− 2η(f, f ′).

The function η is the normalized number of inversions necessary to transform

one list with ranks to the other. Therefore η(f, f ′) is a distance on the values

of the superpositions. Call the neighborhood Vr(f) = {f ′ : η(f, f ′) < r} the100

value-neighborhood.

Introduce a condition for µ to detect evolutionary stagnation of the genetic

algorithm enumerate

4)

α(M) = ν

(
[µ(f, f ′) ≤ α1]⇒ [η(f, f ′) ≤ α2]

∣∣f, f ′ ∈M

)
≥ 1− ε, (3)

where α1, α2, ε are some constants and ν
(
A
)

is the frequency of event A.

It claims that structurally similar functions rank documents mainly similarly.105

Figure 1 shows supposed relation between structural neighborhood Ur(f) and
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Ur(f)
Vr(f)

α(M)
r

Figure 1: Illustration of supposed relation between Ur(f) and Vr(f).

value-neighborhood Vr(f). Condition (3) states that the area of the black region

on Figure 1 should be relatively small.

Let fopt be a superposition of high quality according to S. If µ satisfies con-

dition (3), then the superpositions in the neighborhood Ur (fopt) will also have110

high quality. Suppose that fopt 6= f∗ (2). It means that the optimal ranking su-

perposition f∗ is not found yet. If all superpositions of a stored population Mi

lye in Ur (fopt), then they will rarely leave Ur (fopt) on the next iterations, since

crossovers produce superpositions mainly from Ur (fopt) and mutations produce

superpositions mainly of lower quality. Therefore, the optimal function f∗ will115

frequently become unreachable for the genetic algorithm, as consequence of this

evolutionary stagnation.

Evolutionary stagnation is a situation in a genetic algorithm, when stored

superpositions are pairwise similar. The generated algorithm stops generation

of principally new superpositions and the population mainly does not change120

from iteration to iteration.

Radius r(M) of a population M is the minimum size of r-neighborhood with

center in f ∈ M, which accommodates M. It shows how are the functions

from M scattered across the set F.

r(M) = argmin
r>0

{∃f ∈ F ∀f ′ ∈M : f ′ ∈ Ur(f)} = min
f∈M

max
f ′∈M

{µf ′, f}. (4)

8



Detect evolutionary stagnation with structural metric µ. Lets consider a

population M stored by the genetic algorithm. If the genetic algorithm stag-

nates, then r(M) is relatively small. Oppositely, if the population is diverse,125

then the r(M) is big. Therefore evolutionary stagnation could be detected with

the radius r(M). However, it is an intractable problem to find the exact value

of r(M). Therefore, propose an empirical estimation of this radius.

Structural complexity |f | of superposition f is the number of grammar ele-

ments, which f consists of.130

Empirical radius re(M) of is a normalized average distance between super-

positions in M.

re(M) =

∑
f,f ′∈M

µi(f, f
′)

|M|
∑

f∈M
|fj |

. (5)

This estimation is used to detect evolutionary stagnation of the genetic al-

gorithm. If re(M) is less than a threshhold r(M) < Thresh, eliminate the

worst superpositions from M and replace them with random superpositions of

the same structural complexity. This procedure increases the radius of M and135

diversifies it. Therefore, the present aim of this paper is to select a proper

structural metric µ, which satisfies all mentioned conditions.

5. Structural metrics

Each ranking superposition f ∈ F is represented as directed tree Tf , which

vertices are labeled by elements from grammar G. Structural metrics are defined140

on pairs of such trees. It automatically defines them on pairs of superpositions.

This paper analyzes three metrics.
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5.1. Similarity according to an isomorphism

The first structural metric µ1 uses a definition of common subgraph of two

graphs [24]. Two graphs G1 and G2 are called isomorphic if there is an edge-145

preserving bijection between their vertex sets. The edge-preserving property

states that two vertices are adjacent iff their images are adjacent.

Two trees Ti, Tj have a common subtree T if each of them has a subtree

isomorphic to T .

A size |T | of a tree T is the number of its vertices.150

The largest common subtree Tij of two directed labeled trees Ti and Tj is

the tree of the largest size among all common subtrees of Ti and Tj .

The distance between Ti and Tj is calculated by the following formula

µ1(Ti, Tj) = |Ti|+ |Tj | − 2|Tij |.

The paper [24] defines µ1 likewise on pairs of graphs and proves that µ1 satisfies

1-3 conditions if the graph size is defined as the number of its edges. For a tree

the number of its vertices is equal to the number of its edges plus 1. Therefore,155

the results mentioned in [24] are applicable for our case and µ1 satisfies 1-3

conditions. The last 4th condition is checked empirically.

5.2. Similarity according to edit distance

As before, a superposition is represented by a directed labeled tree. Repre-

sent a tree as a string of characters. This string is constructed as a sequence of160

labels of vertices written in pre-order [25].

Now define a structural metric µ2 on pairs of character strings. It automat-

ically defines the structural metric on pairs of superpositions. As the arities of

10



functions from G are known, each superposition could be reconstructed from its

string representation. Therefore, there is no two character strings corresponding165

to one superposition of primitive functions. The structural metric µ2 is called

a Levenshtein distance.

The Levenshtein distance between two character strings is the minimum

number of single-character edits (insertions, deletions and rewritings) required

to change one string into the other.170

Each edit distance satisfies the conditions 1-3. The metric µ2 also satisfies

them in the case when it is defined on pairs of superpositions, because the string

representation is bijective. The last 4th condition is checked empirically.

The third structural metric µ3 is a Levenshtein distance defined on pairs of

directed labeled trees.175

The Levenshtein distance between two trees is the minimum number of edits

(edge insertions, edge deletions and vertex relabeling) required to change one

tree into the other.

The structural metric µ3 satisfies the metric axioms [26]. The last 4th con-

dition is checked empirically.180

6. Regularizers

To approximate noisy data accurately, the genetic algorithm generate com-

plex superpositions after some iterations. To prevent this overfitting, it should

control the structural complexity of superpositions by a regularizer. The regu-

larizer restricts a set F′ ⊂ F of superpositions reachable by the genetic algorithm.185

Search for a regularizer, which makes the set F′ sufficiently rich to find there a

proper approximating superposition and sufficiently small to avoid overfitting

11



of the algorithm. Lets consider the structural parameters of directed labeled

trees

1) The size of a tree, see Definition 3.190

2) The number of leaves in a tree.

3) The height of a tree.

A restriction of these parameters makes complex superpositions unreachable for

the genetic algorithm. This paper analyzes three regularizers built on these

structural parameters. To penalize accurate superpositions less, all of these195

regularizers are proportional to MAP.

1) R1(f) = p ·MAP(f) · I(|f | < CT),

where CT is a threshhold for the structural complexity, p is a penalty parame-

ter. The regularizer R1 penalizes those superpositions, which have structural

complexity larger than the threshhold CT.200

2) R2(f) = p ·MAP(f) · I(|f | ≥ CT) · (|f | − CT),

where C is a positive parameter. The regularizer R2 penalizes the superpo-

sitions having structural complexity larger than the threshhold CT. And the

more complex a superposition, the higher the penalty.

3) R3(f) = p ·MAP(f) · |f |∗ · log(|f |+ 1),205

The regularizer R3 treats a structural complexity of a superposition as the

number of leaves |f |∗ of its tree multiplied by the estimation log(|f |+ 1) of

its height.

All parameters from the definitions should be set empirically. To set them

one needs to follow the principle mentioned above: the set F′ should be suffi-210

ciently rich to find there a proper approximating superposition and sufficiently

small to avoid overfitting of the genetic algorithm.

Select proper structural metric and regularizer to modify the basic genetic

algorithm. The modified version solves the problems of overfitting and evolu-

tionary stagnation. This version is described in Algorithm 2.215
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Algorithm 2 Modified genetic algorithm

Require: grammar G, required value α of MAP

Ensure: superposition f of elements from G with MAP ≤ α;

create a set of initial, random superpositions M0,

repeat

• crossover random pairs of stored superpositions M,

• mutate random superpositions from the population M,

• consider these generated superpositions and the ones stored in M.

Select the best of them according to the quality function S (2),

• store the best superpositions in a population M′ and pass it to the

next iteration,

• if de(M
′) < Thresh then

evolutionary stagnation is detected and we replace the worst su-

perpositions from the population M′ by random superpositions,

• end if

• M = M′.

until the required value of MAP is reached;

13



7. Computational experiment

The main goal of this paper is to generate superpositions outperforming the

ones from F0 selected in [2]. These functions, in turn, outperform known rank-

ing models BM25, LGD, LMDIR. Therefore, if the modified genetic algorithm

succeeds in outperforming functions from F0, it will also outperform BM25,220

LGD, LMDIR as well. Now describe the data used to estimate the quality of the

generated superpositions.

Data. Authors in [2] estimate the quality ranking functions on TRECs. To

make the comparison with F0 consistent, use TRECS as well. Perform the

computational experiment on Trec-5, Trec-6, Trec-7, Trec-8 (trec.nist.gov). The225

Text REtrieval Conference (TREC), co-sponsored by the National Institute of

Standards and Technology (NIST) and U.S. Department of Defense, was started

in 1992 as part of the TIPSTER Text program. For each TREC, National

Institute of Standards and Technology (NIST) provides a test set of documents

and questions. Participants run their own retrieval systems on the data, and230

return to NIST a list of the retrieved top-ranked documents. NIST pools the

individual results, judges the retrieved documents for correctness, and evaluates

the results. Thus each TREC consists of a collection of documents, user queries

and judgments for a subset of a collection Each TREC is associated with this

triplet. Each triplet has a collection of nearly 500 000 documents. 50 queries235

to the collection and 2000 judgments for each query in average. The number

specified after the name ¡¡Trec¿¿ denotes the year of the creation of the TREC.

7.1. Data processing

As TREC collections are large, calculations of the variables xdw and yw (1) are

computationally expensive. To speed up the calculations, one should perform240

data preprocessing. Terrier IR Platform v3.6 (terrier.org) perform necessary
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Figure 2: Scheme of data preprocessing steps.

steps for this preprocessing. It provides flexible processing of terms through

a pipeline of components (stopwords removing, stemmers, etc.). The platform

indexes a collection of documents. The preprocessing steps include stemming

using Porter stemmer and removing stop-words using the stopword list. Second,245

Terrier performs a query expansion techniques and retrieves required documents

efficiently. It processes the data stored in Trec5-8 and returns the matrices of

features xdw and yw for each word w ∈ q and each document from the collection

having this word.

The algorithm of primary data preprocessing makes the following steps, see250

Figure 2.

1. Split documents on tokens. Reduce each token to its stem form by Porter

stemmer [4].

2. Filter the set of stemmed tokens is according to the stopwords list.

3. The collection is represented as an index document-token.255

4. Create a lexicon-class, which represents the list of terms (dictionary) in

the index.

After the preliminary steps are performed, one can calculate the variables xdw

and yw for each query q, see Figure 3.

1. Split q on tokens. Process each token by the stemmer and filter the resulted260

set by the stopword list.
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Figure 3: Scheme of query processing steps.

2. Lexicon-class collects statistics about the tokens. It calculates the fea-

ture yw.

3. Eliminate tokens with high value of yw as uninformative.

4. For each token the platform retrieves the information about its second265

feature xdw from the index.

The described scheme is used by the modified genetic algorithm to estimate

the quality of a superposition. Now describe the system performing this modified

genetic algorithm. This system generates superpositions of primitive functions.

7.2. Generation system270

Algorithm 2 gives the description of the modified genetic algorithm used

for generation of ranking superpositions. These superpositions are constructed

from the elements of G = {xdw, yw,+,−,×, ·· , log, exp,
√
·}. On each iteration

the algorithm stores 20 best generated superpositions. To create new superpo-

sitions, it performs 10 crossovers and 10 mutations on the stored ones. Then275

it selects 20 best according to (2) and pass to the next iteration. This pa-

per terminates the generation after 300 iterations. The selected superposi-

tions are compared with the ones from F0 To use this algorithm, one must

select proper regularizer and structural metric. The code for this system is
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found in https://github.com/KuluAndrej/Generation-of-simple-structured-IR-280

functions-by-genetic-algorithm-without-stagnation.

7.3. Selection of regularizer and structural metric

This paper analyzes three metrics and three regularizers defined above with

respect to the genetic algorithm. There are 9 combinations of these metrics and

regularizers. Selects the pair, which provides better generation of superpositions285

both in terms of structural diversity and prediction accuracy. The selected

pair is used by the modified genetic algorithm to generate an optimal ranking

superposition.

Table 1 shows a computational efficiency of calculation of different met-

rics with respect to different regularizers. There are 9 possible pairs metric-290

regularizer. The modified genetic algorithm is launched 100 times for each pair.

The CPU time required to calculate all values of a metric is averaged over

these 100 launches and 300 iterations for each launch. Table 1 shows that µ2

is uniformly easiest to calculate. At the same time, µ1 is uniformly hardest to

calculate. This efficiency is considered in the selection. Now analyze the pairs295

with respect to the generation of superpositions.

But first, analyze the modified genetic algorithm without regularizers. All

measured values are averaged over 100 launches, see Figure 4. On the last

300-th iteration the average structural complexity of superpositions in the pop-

ulation is more than 40. Figure 4 shows slow trend to evolutionary stagnation.300

The reason is that structural complexity of the generated superpositions grows

dramatically with the iteration number. It makes the stored superpositions

sufficiently diverse. Therefore during the whole evolution the empirical diame-

ter de of the stored population is large. However, the generated superpositions

are significantly overfitted and should be penalized for the excessive structural305

complexity.
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Figure 5: Dynamics of d(M) and la when the regularizer R1 is used.
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regularizer Metric µ1 Metric µ2 Metric µ3

R1 11.52 1.84 4.54

R2 6.7876 0.9347 1.5666

R3 7.63 1.05 1.87

Table 1: Comparison of CPU time required by structural metrics

Now analyze 3 metrics with presence of a regularizer. For each pair metric-

regularizer plot the empirical diameter de depending on the number of iteration.

Figures 5, 6, 7 also shows the average structural complexity la of stored super-

positions. It allows to make inferences about the presence of overfitting.310

Note that the empirical diameter d(M) calculated with µ1 remains approxi-

mately unchanged during the whole evolution, see Figures 5, 6, 7. This particu-

lar feature does not allow to detect evolutionary stagnation in proper time. The

actual start of evolutionary stagnation can not be denoted with µ1. Moreover,

calculation of µ1 is computationally inefficient comparing with µ2 and µ3, see315

Table 1. These reasons lead to elimination of µ1 from the further analysis.

The two other metrics µ2 and µ3 provide almost equal values of d(M), see

Figures 5, 6, 7. The relative difference in these values is under 5% for all variants

of used regularizer. Therefore, without loss of generality, select the structural

metric µ2 as more efficiently calculated, see Table 1.320

The first regularizer R1 is too strict, see Figure 5. The algorithm falls into

evolutionary stagnation on the first iterations, because the set of reachable su-

perpositions F′ is small. The similar situation is observed for the second regular-

izer R2, see Figure 6. The algorithm does not immediately fall into evolutionary

stagnation. The stored superpositions are updated up to the 300-th iteration.325

However, the empirical diameter d(M) significantly decreases after 30-40 itera-

tions, see Figure 6. It means that although the stored superpositions are being

updated throughout the evolution, they have mainly similar structures. These
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reasons lead us to the use of the third regularizer R3. The value of the empiri-

cal diameter d(M) decreases smoothly with R3, see Figure 7. It allows to have330

enough iterations to learn the structure of optimal superposition and detect evo-

lutionary stagnation. Since the structural metric µ2 and the regularizer R3 are

selected, the modification of the genetic algorithm is ready to generate ranking

superpositions. s

Generation of ranking superpositions. Modified genetic algorithm is launched335

on TREC-7. The best selected superpositions are compared with ones from F0.

The superpositions in F0 are of simple structure and have a high quality in

average on analyzed collections. Besides, these superpositions are better in

average than the traditionally used ranking models BM25, LGD, LMDIR. Here

is the list of the best superpositions from F0340

2

1. f1 = e

√√√√ln

(
x

y

)
,

2. f2 =

√
ln(x)
√
y
,

3. f3 = 4

√
x

y
,

4. f4 =

√
y +

√
x

y
,345

5. f5 = 4

√
x

y
· e−y/2,

6. f6 =

√
√
x+

√
x

y
.

The selection of the best superpositions is performed by the modified genetic

algorithm on TREC-7. The other datasets TREC-5, TREC-6, TREC-8 serve

as test datasets. After 1000 iterations the modified genetic algorithm selects350

the following family of superpositions (for the convenience denote ln(x + 1) as

ln(x) and g(x) = ln ln(x)):

21



2

1. h1 = g

(
g(x)√

ln(x) + x

)
− ln(y),

2. h2 = g

 g(x)√
1
2 ln(x) + x

− ln(y),355

3. h3 = g

ln

 g(x)√
1
2 ln(x) + x

− ln(y)

 ,

4. h4 = g

(
g(x)√

g (
√
x) + x

)
− ln(y),

5. h5 = g

(
g(x)√

ln(x) + ln(y)

)
− ln(y),

6. h6 = g

(
g (ln(x))√
ln(x) + x

)
− ln(y).

The values of MAP on the superpositions {hj} and {fi} are presented in360

Table 2. The superpositions from F0 are presented in the upper half of the

table. The superpositions {hj} are presented in the lower half. The qualities

of the best functions {fi} are bold in each column in the upper half. In the

lower half we bold those values, which are higher than the bold values in the

corresponding column in the upper half.365

Note that the superpositions h1, h2, h3, h4 are uniformly better than the

functions from [2] on all 4 datasets. The other superpositions are better in

average. The modified genetic algorithm is able to build effective yet simple

structured superpositions, which outperform the known ones.

8. Conclusion370

This paper solves IR problem by generating a proper ranking function, which

estimates relevance of documents to queries. This function is generated by a
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Superposition TREC-5 TREC-6 TREC-7 TREC-8

Superpositions from F0

f1 8.785 13.715 10.038 13.902

f2 8.518 12.996 9.216 13.074

f3 8.908 13.615 9.905 13.708

f4 8.908 13.615 9.905 13.708

f5 8.908 13.615 9.908 13.709

f6 8.872 13.613 9.890 13.695

Family of selected superpositions

h1 8.965 13.693 10.600 14.403

h2 9.472 13.723 10.650 14.402

h3 9.558 13.786 10.631 14.376

h4 9.226 13.713 10.5 14.374

h5 8.862 13.388 10.439 14.359

h6 8.104 13.483 10.421 14.355

Table 2: Comparison of the superpositions {hj} to {fi} according to the MAP criterion

genetic algorithm. However, its basic version is inclined to generate overfit

functions. To avoid overfitting, one must control their structural complexity

and solve an evolutionary stagnation problem. Its solved by use of regulariz-375

ers and structural metrics respectively. A regularizer, presented in the quality

function, controls the structural complexity of the functions. Overfit functions

are penalized and unlikely to pass to the next iterations in the genetic algo-

rithm. A structural metric estimates the diversity of the generated functions.

If all generated functions are similar to each other, some of them are replaced380

by random ones. It solves a problem of evolutionary stagnation. This paper

analyzes different regularizers and structural metrics and chooses those, which

provide a better generation. The modified genetic algorithm uses the selected

pair metric-regularizer and generate effective yet simple structured functions.

These functions outperform BM25, LGD, LMDIR. and the ones selected by an385
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exhaustive approach.
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