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Abstract

We regard histogram density estimation as
a model selection problem. Our approach
is based on the information-theoretic min-
imum description length (MDL) principle,
which can be applied for tasks such as data
clustering, density estimation, image denois-
ing and model selection in general. MDL-
based model selection is formalized via the
normalized maximum likelihood (NML) dis-
tribution, which has several desirable opti-
mality properties. We show how this frame-
work can be applied for learning generic, ir-
regular (variable-width bin) histograms, and
how to compute the NML model selection
criterion efficiently. We also derive a dy-
namic programming algorithm for finding
both the MDL-optimal bin count and the cut
point locations in polynomial time. Finally,
we demonstrate our approach via simulation
tests.

1 INTRODUCTION

Density estimation is one of the central problems in
statistical inference and machine learning. Given a
sample of observations, the goal of histogram den-
sity estimation is to find a piecewise constant density
that describes the data best according to some pre-
determined criterion. Although histograms are con-
ceptually simple densities, they are very flexible and
can model complex properties like multi-modality with
a relatively small number of parameters. Furthermore,
one does not need to assume any specific form for the
underlying density function: given enough bins, a his-
togram estimator adapts to any kind of density.

Most existing methods for learning histogram densities
assume that the bin widths are equal and concentrate

only on finding the optimal bin count. These regu-
lar histograms are, however, often problematic. It has
been argued (Rissanen, Speed, & Yu, 1992) that reg-
ular histograms are only good for describing roughly
uniform data. If the data distribution is strongly non-
uniform, the bin count must necessarily be high if one
wants to capture the details of the high density portion
of the data. This in turn means that an unnecessary
large amount of bins is wasted in the low density re-
gion.

To avoid the problems of regular histograms one must
allow the bins to be of variable width. For these irreg-
ular histograms, it is necessary to find the optimal set
of cut points in addition to the number of bins, which
naturally makes the learning problem essentially more
difficult. For solving this problem, we regard the his-
togram density estimation as a model selection task,
where the cut point sets are considered as models. In
this framework, one must first choose a set of candidate
cut points, from which the optimal model is searched
for. The quality of each of the cut point sets is then
measured by some model selection criterion.

Our approach is based on information theory, more
specifically on the Minimum description length (MDL)
principle developed in the series of papers (Rissanen,
1978, 1987, 1996). MDL is a well-founded, general
framework for performing model selection and other
types of statistical inference. The fundamental idea
behind the MDL principle is that any regularity in
data can be used to compress the data, i.e., to find
a description or code of it such that this description
uses the least number of symbols, less than other codes
and less than it takes to describe the data literally.
The more regularities there are, the more the data
can be compressed. According to the MDL principle,
learning can be equated with finding regularities in
data. Consequently, we can say that the more we are
able to compress the data, the more we have learned
about it.

Model selection with MDL is done by minimizing a



quantity called the stochastic complexity, which is the
shortest description length of a given data relative to
a given model class. The definition of the stochas-
tic complexity is based on the normalized maximum
likelihood (NML) distribution introduced in (Shtarkov,
1987; Rissanen, 1996). The NML distribution has sev-
eral theoretical optimality properties, which make it a
very attractive candidate for performing model selec-
tion. It was originally (Rissanen, 1996) formulated as
a unique solution to the minimax problem presented
in (Shtarkov, 1987), which implied that NML is the
minimax optimal universal model. Later (Rissanen,
2001), it was shown that NML is also the solution to
a related problem involving expected regret. See Sec-
tion 2 and (Rissanen, 2001; Grünwald, 2006; Rissanen,
2005) for more discussion on the theoretical properties
of the NML.

On the practical side, NML has been successfully ap-
plied to several problems. We mention here two ex-
amples. In (Kontkanen, Myllymäki, Buntine, Rissa-
nen, & Tirri, 2006), NML was used for data clustering,
and its performance was compared to alternative ap-
proaches like Bayesian statistics. The results showed
that NML was especially impressive with small sam-
ple sizes. In (Roos, Myllymäki, & Tirri, 2005), NML
was applied to wavelet denoising of computer images.
Since the MDL principle in general can be interpreted
as separating information from noise, this approach is
very natural.

Unfortunately, in most practical applications of NML
one must face severe computational problems, since
the definition of the NML involves a normalizing inte-
gral or a sum, called the parametric complexity, which
usually is difficult to compute. One of the contribu-
tions of this paper is to show how the parametric com-
plexity can be computed efficiently in the histogram
case, which makes it possible to use NML as a model
selection criterion in practice.

There is obviously an exponential number of different
cut point sets. Therefore, a brute-force search is not
feasible. Another contribution of this paper is to show
how the NML-optimal cut point locations can be found
via dynamic programming in a polynomial (quadratic)
time with respect to the size of the set containing the
cut points considered in the optimization process.

The histogram density estimation is naturally a well-
studied problem, but unfortunately almost all of the
previous studies, e.g. (Birge & Rozenholc, 2002; Hall
& Hannan, 1988; Yu & Speed, 1992), consider regular
histograms only. Most similar to our work is (Rissanen
et al., 1992), in which irregular histograms are learned
with the Bayesian mixture criterion using a uniform
prior. The same criterion is also used in (Hall & Han-

nan, 1988), but the histograms are equal-width only.
Another similarity between our work and (Rissanen
et al., 1992) is the dynamic programming optimiza-
tion process, but since the optimality criterion is not
the same, the process itself is quite different. It should
be noted that these differences are significant as the
Bayesian mixture criterion does not possess the opti-
mality properties of NML mentioned above.

This paper is structured as follows. In Section 2 we
discuss the basic properties of the MDL framework in
general, and also shortly review the optimality proper-
ties of the NML distribution. Section 3 introduces the
NML histogram density and also provides a solution
to the related computational problem. The cut point
optimization process based on dynamic programming
is the topic of Section 4. Finally, in Section 5 our
approach is demonstrated via simulation tests.

2 PROPERTIES OF MDL AND

NML

The MDL principle has several desirable properties.
Firstly, it automatically protects against overfitting
when learning both the parameters and the structure
(number of parameters) of the model. Secondly, there
is no need to assume the existence of some underly-
ing “true” model, which is not the case with several
other statistical methods. The model is only used as
a technical device for constructing an efficient code.
MDL is also closely related to the Bayesian inference
but there are some fundamental differences, the most
important being that MDL is not dependent on any
prior distribution, it only uses the data at hand.

MDL model selection is based on minimization of the
stochastic complexity. In the following, we give the
definition of the stochastic complexity and then pro-
ceed by discussing its theoretical properties.

Let xn = (x1, . . . ,xn) be a data sample of n outcomes,
where each outcome xj is an element of some space of
observations X . The n-fold cartesian product X ×
· · · × X is denoted by Xn, so that xn ∈ Xn. Consider
a set Θ ⊆ R

d, where d is a positive integer. A class
of parametric distributions indexed by the elements
of Θ is called a model class. That is, a model class M
is defined as M = {f(· | θ) : θ ∈ Θ}. Denote the

maximum likelihood estimate of data xn by θ̂(xn), i.e.,

θ̂(xn) = arg max
θ∈Θ

{f(xn | θ)}. (1)

The normalized maximum likelihood (NML) den-
sity (Shtarkov, 1987) is now defined as

fNML(xn | M) =
f(xn | θ̂(xn),M)

Rn
M

, (2)



where the normalizing constant Rn
M is given by

Rn
M =

∫

x
n∈Xn

f(xn | θ̂(xn),M)dxn, (3)

and the range of integration goes over the space of data
samples of size n. If the data is discrete, the integral
is replaced by the corresponding sum.

The stochastic complexity of the data xn given a model
class M is defined via the NML density as

SC(xn | M) = − log fNML(xn | M) (4)

= − log f(xn | θ̂(xn),M) + logRn
M,

(5)

and the term logRn
M is called the parametric com-

plexity or minimax regret. The parametric complexity
can be interpreted as measuring the logarithm of the
number of essentially different (distinguishable) distri-
butions in the model class. Intuitively, if two distribu-
tions assign high likelihood to the same data samples,
they do not contribute much to the overall complexity
of the model class, and the distributions should not
be counted as different for the purposes of statistical
inference. See (Balasubramanian, 2006) for more dis-
cussion on this topic.

The NML density (2) has several important theoretical
optimality properties. The first one is that NML pro-
vides a unique solution to the minimax problem posed
in (Shtarkov, 1987),

min
f̂

max
x

n
log

f(xn | θ̂(xn),M)

f̂(xn | M)
= logRn

M, (6)

This means that the NML density is the minimax op-
timal universal model. A related property of NML
involving expected regret was proven in (Rissanen,
2001). This property states that NML also minimizes

min
f̂

max
g

Eg log
f(xn | θ̂(xn),M)

f̂(xn | M)
= logRn

M, (7)

where the expectation is taken over xn and g is the
worst-case data generating density.

Having now discussed the MDL principle and the NML
density in general, we return to the main topic of the
paper. In the next section, we instantiate the NML
density for the histograms and show how the para-
metric complexity can be computed efficiently in this
case.

3 NML HISTOGRAM DENSITY

Consider a sample of n outcomes xn = (x1, . . . ,xn) on
the interval [xmin,xmax]. Typically, xmin and xmax are

defined as the minimum and maximum value in xn, re-
spectively. Without any loss of generality, we assume
that the data is sorted into increasing order. Further-
more, we assume that the data is recorded at a finite
accuracy ǫ, which means that each xj ∈ xn belongs to
the set X defined by

X = {xmin + tǫ : t = 0, . . . ,
xmax − xmin

ǫ
}. (8)

This assumption is made to simplify the mathematical
formulation, and as can be seen later, the effect of the
accuracy parameter ǫ on the stochastic complexity is
a constant that can be ignored in the model selection
process.

Let C = (c1, . . . , cK−1) be an increasing sequence of
points partitioning the range [xmin − ǫ/2,xmax + ǫ/2]
into the following K intervals (bins):

([xmin − ǫ/2, c1], ]c1, c2], . . . , ]cK−1,xmax + ǫ/2]). (9)

The points ck are called the cut points of the his-
togram. Note that the original data range [xmin,xmax]
is extended by ǫ/2 from both ends for technical rea-
sons. It is natural to assume that there is only one cut
point between two consecutive elements of X , since
placing two or more cut points would always produce
unnecessary empty bins. For simplicity, we assume
that the cut points belong to the set C defined by

C = {xmin + ǫ/2 + tǫ : t = 0, . . . ,
xmax − xmin

ǫ
− 1},

(10)
i.e., each ck ∈ C is a midpoint of two consecutive values
of X .

Define c0 = xmin − ǫ/2, cK = xmax + ǫ/2 and let Lk =
ck − ck−1, k = 1, . . . ,K be the bin lengths. Given a
parameter vector θ ∈ Θ,

Θ = {(θ1, . . . , θK) : θk ≥ 0, θ1 + · · · + θK = 1}, (11)

and a set (sequence) of cut points C, we now define
the histogram density fh by

fh(x | θ, C) =
ǫ · θk

Lk

, (12)

where x ∈ ]ck−1, ck]. Note that (12) does not de-
fine a density in the purest sense, since fh(x | θ, C)
is actually the probability that x falls into the inter-
val ]x− ǫ/2, x + ǫ/2]. Given (12), the likelihood of the
whole data sample xn is easy to write. We have

fh(xn | θ, C) =

K
∏

k=1

(

ǫ · θk

Lk

)hk

, (13)

where hk is the number of data points falling into bin k.



To instantiate the NML distribution (2) for the his-
togram density fh, we need to find the maximum likeli-
hood parameters θ̂(xn) = (θ̂1, . . . , θ̂K) and an efficient
way to compute the parametric complexity (3). It is
well-known that the ML parameters are given by the
relative frequencies θ̂k = hk/n, so that we have

fh(xn | θ̂(xn), C) =
K
∏

k=1

(

ǫ · hk

Lk · n

)hk

. (14)

Denote now the parametric complexity of a K-bin his-
togram by logRn

hK
. First thing to notice is that since

the data is pre-discretized, the integral in (3) is re-
placed by a sum over the space Xn. We have

Rn
hK

=
∑

x
n∈Xn

K
∏

k=1

(

ǫ · hk

Lk · n

)hk

(15)

=
∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

Lk

ǫ

)hk

·
K
∏

k=1

(

ǫ · hk

Lk · n

)hk

(16)

=
∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

hk

n

)hk

, (17)

where the term (Lk/ǫ)hk in (16) follows from the fact
that an interval of length Lk contains exactly (Lk/ǫ)
members of the set X , and the multinomial coeffi-
cient n!/(h1! · · ·hK !) counts the number of arrange-
ments of n objects into K boxes each containing
h1, . . . , hK objects, respectively.

Although the final form (17) of the parametric com-
plexity is still an exponential sum, we can compute it
efficiently. It turns out that (17) is exactly the same as
the parametric complexity of a K-valued multinomial,
which we studied in (Kontkanen & Myllymäki, 2005).
In this work, we derived the recursion

Rn
hK

= Rn
hK−1

+
n

K − 2
Rn

hK−2
, (18)

which holds for K > 2. It is now straightforward to
write a linear-time algorithm based on (18). The com-
putation starts with the trivial case Rn

h1
≡ 1. The

case K = 2 is a simple sum

Rn
h2

=
∑

h1+h2=n

n!

h1!h2!

(

h1

n

)h1
(

h2

n

)h2

, (19)

which clearly can be computed in time O (n). Fi-
nally, recursion (18) is applied K − 2 times to end
up with Rn

hK
. The time complexity of the whole com-

putation is O (n + K).

Having now derived both the maximum likelihood pa-
rameters and the parametric complexity, we are now
ready to write down the stochastic complexity (5) for
the histogram model. We have

SC(xn | C)

= − log

∏K

k=1

(

ǫ·hk

Lk·n

)hk

Rn
hK

(20)

=
K

∑

k=1

−hk(log(ǫ · hk) − log(Lk · n))

+ logRn
hK

. (21)

Equation (21) is the basis for measuring the qual-
ity of NML histograms, i.e., comparing different cut
point sets. It should be noted that as the term
∑K

k=1
−hk log ǫ = −n log ǫ is a constant with respect

to C, the value of ǫ does not affect the comparison.
In the next section we will discuss how NML-optimal
histograms can be found in practice.

4 LEARNING MDL-OPTIMAL

HISTOGRAMS

In this section we will describe a dynamic program-
ming algorithm, which can be used to efficiently find
both the optimal bin count and the cut point loca-
tions. We start by giving the exact definition of the
problem. Let C̃ ⊆ C denote the candidate cut point
set, which is the set of cut points we consider in the
optimization process. How C̃ is chosen in practice, de-
pends on the problem at hand. The simplest choice is
naturally C̃ = C, which means that all the possible cut
points are candidates. However, if the value of the ac-
curacy parameter ǫ is small or the data range contains
large gaps, this choice might not be practical. Another
idea would be to define C̃ to be the set of midpoints
of all the consecutive value pairs in the data xn. This
choice, however, does not allow empty bins, and thus
the potential large gaps are still problematic.

A much more sensible choice is to place two candidate
cut points between each consecutive values in the data.
It is straightforward to prove and also intuitively clear
that these two candidate points should be placed as
close as possible to the respective data points. In this
way, the resulting bin lengths are as small as possible,
which will produce the greatest likelihood for the data.
These considerations suggest that C̃ should be chosen
as

C̃ =({xj − ǫ/2 : xj ∈ xn} ∪ {xj + ǫ/2 : xj ∈ xn})

\ {xmin − ǫ/2,xmax + ǫ/2}. (22)

Note that the end points xmin − ǫ/2 and xmax + ǫ/2



are excluded from C̃, since they are always implicitly
included in all the cut point sets.

After choosing the candidate cut point set, the his-
togram density estimation problem is straightforward
to define: find the cut point set C ⊆ C̃ which optimizes
the given goodness criterion. In our case the criterion
is based on the stochastic complexity (21), and the cut
point sets are considered as models. In practical model
selection tasks, however, the stochastic complexity cri-
terion itself may not be sufficient. The reason is that
it is also necessary to encode the model index in some
way, as argued in (Grünwald, 2006). In some tasks, an
encoding based on the uniform distribution is appro-
priate. Typically, if the set of models is finite and the
models are of same complexity, this choice is suitable.
In the histogram case, however, the cut point sets of
different size produce densities which are dramatically
different complexity-wise. Therefore, it is natural to
assume that the model index is encoded with a uniform
distribution over all the cut point sets of the same size.
For a K-bin histogram with the size of the candidate
cut point set fixed to E, there are clearly

(

E
K−1

)

ways
to choose the cut points. Thus, the codelength for
encoding them is log

(

E
K−1

)

.

After these considerations, we define the final criterion
(or score) used for comparing different cut point sets
as

B(xn | E,K,C)

= SC(xn | C) + log

(

E

K − 1

)

(23)

=

K
∑

k=1

−hk (log(ǫ · hk) − log(Lk · n))

+ logRn
hK

+ log

(

E

K − 1

)

. (24)

It is clear that there is an exponential number of pos-
sible cut point sets, and thus an exhaustive search
to minimize (24) is not feasible. However, the opti-
mal cut point set can be found via dynamic program-
ming, which works by tabulating partial solutions to
the problem. The final solution is then found recur-
sively.

Let us first assume that the elements of C̃ are indexed
in such a way that

C̃ = {c̃1, . . . , c̃E}, c̃1 < c̃2 < · · · < c̃E . (25)

We also define c̃E+1 = xmax + ǫ/2. Denote

B̂K,e = min
C⊆C̃

B(xne | E,K,C), (26)

where xne = (x1, . . . ,xne
) is the portion of the data

falling into interval [xmin, c̃e] for e = 1, . . . , E+1. This

means that B̂K,e is the optimizing value of (24) when

the data is restricted to xne . For a fixed K, B̂K,E+1 is
clearly the final solution we are looking for, since the
interval [xmin, c̃E+1] contains all the data.

Consider now a K-bin histogram with cut points C =
(c̃e1

, . . . , c̃eK−1
). Assuming that the data range is re-

stricted to [xmin, c̃eK
] for some c̃eK

> c̃eK−1
, we can

straightforwardly write the score function B(xneK |
E,K,C) by using the score function of a (K − 1)-bin
histogram with cut points C ′ = (c̃e1

, . . . , c̃eK−2
) as

B(xneK | E,K,C)

= B(xneK−1 | E,K − 1, C ′)

− (neK
− neK−1

)(log(ǫ · (neK
− neK−1

))

− log((c̃eK
− c̃eK−1

) · n))

+ log
R

neK

hK

R
neK−1

hK−1

+ log
E − K + 2

K − 1
, (27)

since (neK
−neK−1

) is the number of data points falling
into the Kth bin, (c̃eK

− c̃eK−1
) is the length of that

bin, and

log

(

E
K−1

)

(

E
K−2

) = log
E − K + 2

K − 1
. (28)

We can now write the dynamic programming recursion
as

B̂K,e = min
e′

{

B̂K−1,e′ −(ne−ne′) ·(log(ǫ ·(ne−ne′))

− log((c̃e − c̃e′) · n))

+ log
Rne

hK

R
n

e′

hK−1

+ log
E − K + 2

K − 1

}

, (29)

where e′ = K−1, . . . , e−1. The recursion is initialized
with

B̂1,e = −ne · (log(ǫ · ne)− log((c̃e − (xmin − ǫ/2)) · n)),
(30)

for e = 1, . . . , E + 1. After that, the bin count
is always increased by one, and (29) is applied for
e = K, . . . , E + 1 until a pre-determined maximum
bin count Kmax is reached. The minimum B̂K,e is
then chosen to be the final solution. By constantly
keeping track which e′ minimizes (29) during the pro-
cess, the optimal cut point sequence can also be re-
covered. The time complexity of the whole algorithm
is O

(

E2 · Kmax

)

.

5 EMPIRICAL RESULTS

The quality of a density estimator is usually measured
by a suitable distance metric between the data gen-
erating density and the estimated one. This is often



problematic, since we typically do not know the data
generating density, which means that some heavy as-
sumptions must be made. The MDL principle, how-
ever, states that the stochastic complexity (plus the
codelength for encoding the model index) itself can be
used as a goodness measure. Therefore, it is not neces-
sary to use any additional way of assessing the quality
of an MDL density estimator. The optimality proper-
ties of the NML criterion and the fact that we are able
to find the global optimum in the histogram case will
make sure that the final result is theoretically valid.

Nevertheless, to demonstrate the behaviour of the
NML histogram method in practice we implemented
the dynamic programming algorithm of the previous
section and ran some simulation tests. We generated
data samples of various size from four densities of dif-
ferent shapes (see below) and then used the dynamic
programming method to find the NML-optimal his-
tograms. In all the tests, the accuracy parameter ǫ was
fixed to 0.1. We decided to use Gaussian finite mix-
tures as generating densities, since they are very flexi-
ble and easy to sample from. The four generating den-
sities we chose and the corresponding NML-optimal
histograms using a sample of 10000 data points are
shown in Figures 1 and 2. The densities are labeled
gm2, gm5, gm6 and gm8, and they are mixtures of 2, 5,
6 and 8 Gaussian components, respectively, with vari-
ous amount of overlap between the components. From
the plots we can see that the NML histogram method
is able to capture properties such as multi-modality
(all densities) and long tails (gm6). Another nice fea-
ture is that the algorithm automatically places more
bins to the areas where more detail is needed like the
high, narrow peaks of gm5 and gm6.

To see the behaviour of the NML histogram density
algorithm with varying amount of data, we generated
data samples of various sizes between 100−10000 from
the four generating densities. For each case, we mea-
sured the distance between the generating density and
the NML-optimal histogram. As the distance measure
we used the (squared) Hellinger distance

h2(f, g) =

∫

(
√

f(x) −
√

g(x))2dx, (31)

which has often been used in the histogram context be-
fore (see, e.g., (Birge & Rozenholc, 2002; Kanazawa,
1993)). The actual values of the Hellinger distance
were calculated via numerical integration. The results
can be found in Figure 3. The curves are averaged over
10 different samples of each size. The figure shows that
the NML histogram density converges to the generat-
ing one quite rapidly when the sample size is increased.
The shapes of the convergence curves with the four
generating densities are also very similar, which is fur-
ther evidence of the flexibility of the variable-width
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Figure 1: The Gaussian finite mixture densities gm2
and gm5 and the NML-optimal histograms with sam-
ple size 10000.

histograms.

To visually see the effect of the sample size, we plotted
the NML-optimal histograms against the generating
density gm6 with sample sizes 100, 1000 and 10000.
These plots can be found in Figure 4. As a refer-
ence, we also plotted the empirical distributions of the
data samples as a (mirrored) equal-width histograms
(the negative y-values). Each bar of the empirical plot
has width 0.1 (the value of the accuracy parameter ǫ).
When the sample size is 100, the NML histogram al-
gorithm has chosen only 3 bins, and the resulting his-
togram density is rather crude. However, the small
sample size does not justify placing any more bins as
can be seen from the empirical distribution. There-
fore, we claim that the NML-optimal solution is ac-
tually a very sensible one. When the sample size is
increased, the bin count is increased and more and
more details are captured. Notice that with all the
sample sizes, the bin widths of the NML-optimal his-
tograms are strongly variable. It is clear that it would
be impossible for any equal-width histogram density
estimator to produce such detailed results using the
same amount of data.

6 CONCLUSION

In this paper we have presented an information-
theoretic framework for histogram density estimation.
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Figure 2: The Gaussian finite mixture densities gm6
and gm8 and the NML-optimal histograms with sam-
ple size 10000.

The selected approach based on the MDL principle
has several advantages. Firstly, the MDL criterion for
model selection (stochastic complexity) has nice the-
oretical optimality properties. Secondly, by regarding
histogram estimation as a model selection problem,
it is possible to learn generic, variable-width bin his-
tograms and also estimate the optimal bin count auto-
matically. Furthermore, the MDL criterion itself can
be used as a measure of quality of a density estima-
tor, which means that there is no need to assume any-
thing about the underlying generating density. Since
the model selection criterion is based on the NML dis-
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Figure 3: The Hellinger distance between the four gen-
erating densities and the corresponding NML-optimal
histograms as a function of the sample size.
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Figure 4: The generating density gm6, the NML-
optimal histograms and the empirical distributions
with sample sizes 100, 1000 and 10000.

tribution, there is also no need to specify any prior
distribution for the parameters.

To make our approach practical, we presented an effi-
cient way to compute the value of the stochastic com-
plexity in the histogram case. We also derived a dy-
namic programming algorithm for efficiently optimiz-
ing the NML-based criterion. Consequently, we were
able to find the globally optimal bin count and cut
point locations in quadratic time with respect to the
size of the candidate cut point set.

In addition to the theoretical part, we demonstrated
the validity of our approach by simulation tests. In
these tests, data samples of various sizes were gener-
ated from Gaussian finite mixture densities with highly
complex shapes. The results showed that the NML his-
tograms automatically adapt to various kind of densi-
ties.



In the future, our plan is to perform an extensive set
of empirical tests using both simulated and real data.
In these tests, we will compare our approach to other
histogram estimators. It is anticipated that the vari-
ous equal-width estimators will not be performing well
in the tests due to the severe limitations of regular
histograms. More interesting will be the compara-
tive performance of the density estimator in (Rissanen
et al., 1992), which is similar to ours but based on the
Bayesian mixture criterion. Theoretically, our version
has an advantage at least with small sample sizes.

Another interesting application of NML histograms
would be to use them for modeling the class-specific
distributions of classifiers such as the Naive Bayes.
These distributions are usually modeled with a Gaus-
sian density or a multinomial distribution with equal-
width discretization, which typically cannot capture
all the relevant properties of the distributions. Al-
though the NML histogram is not specifically tailored
for classification tasks, it seems evident that if the
class-specific distributions are modeled with high ac-
curacy, the resulting classifier also performs well.
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