Singular value decomposition - Victor Kitov

Singular value decomposition

Victor Kitov

Definitions

Consider matrix $X \in \mathbb{R}^{N \times D}$. For this matrix:

- square roots of eigenvalues of X^TX are called singular values.
- orthonormal eigenvectors of X^TX are called *right singular* vectors.
- orthonormal eigenvectors of XX^T are called left singular vectors.

Principal component a_i is the i-th right singular vector of X, corresponding to i-th largest singular value λ_i .

SVD decomosition

Every matrix $X \in \mathbb{R}^{N \times D}$, rank X = R, can be decomposed into the product of three matrices:

$$X = U\Sigma V^T$$

where $U \in \mathbb{R}^{N \times R}$, $\Sigma \in \mathbb{R}^{R \times R}$, $V^T \in \mathbb{R}^{R \times D}$, and $\Sigma = diag\{\sigma_1, \sigma_2, ... \sigma_R\}$, $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_R \geq 0$, $U^T U = I$, $V^T V = I$. $I \in \mathbb{R}^{D \times D}$ denotes identity matrix.

Interpretation of SVD

For X_{ii} let i denote objects and j denote properties.

- U represents standardized coordinates of concepts
- \bullet V^T represents standardized concepts representations
- ullet Shows the magnitudes of presence of standardized concepts in X.

Original SVD decomposition

Reduced SVD decomposition

Simplification to rank $K \leq R$:

$$X_{\kappa} = U_{\kappa} \Sigma_{\kappa} V_{\kappa}$$

$$\begin{split} \Sigma &= \textit{diag}\{\sigma_1, \sigma_2, ... \sigma_K, \sigma_{K+1}, ... \sigma_R\} \longrightarrow \textit{diag}\{\sigma_1, \sigma_2, ... \sigma_K\} = \Sigma_K \\ U &= [u_1, u_2, ... u_K, u_{K+1}, ... u_R] \longrightarrow [u_1, u_2, ... u_K] = U_K \\ V &= [v_1, v_2, ... v_K, v_{K+1}, ... v_R] \longrightarrow [v_1, v_2, ... v_K] = V_K \end{split}$$

Properties of reduced SVD decomposition

- Suppose $X \in \mathbb{R}^{N \times D}$, rank X = R, is approximated with $X_K = U_K \Sigma_K V_K$. Then:
 - rank $X_{\kappa} = K$
 - $X_K = \operatorname{arg\,min}_{B:\operatorname{rank} B \leq K} \|X B\|$
- Which K to choose?
 - Define Frobenius norm $||X||_F^2 = \sum_{n=1}^N \sum_{d=1}^D x_{nd}^2$
 - $||X||_F^2 = \sum_{i=1}^R \sigma_i^2$
 - $||X_K||_F^2 = \sum_{i=1}^K \sigma_i^2$
 - Choose $K = \arg\min_K \left\{ \frac{\|X_K\|_F^2}{\|X\|_F^2} \geq t \right\}$, where t is some threshold, say t = 0.95.

Table of Contents

- Applications of SVD
- 2 Recommendation system with SVD

Memory efficiency

Storage costs of $X \in \mathbb{R}^{\textit{N} \times \textit{D}}$, assuming $\textit{N} \geq \textit{D}$ and each element taking 1 byte:

Memory storage costs

representation of X	memory requirements
original X	$O(ND) = O(\min\{N, D\} \max\{N, D\})$
fully SVD decomposed	$NR + R^2 + RD = O(R \max\{N, D\})$
reduced SVD to rank K	$NK + K^2 + KD = O(K \max\{N, D\})$

•

Performance efficiency

Suppose we have N documents, vocabulary size is D, typically D > N.

- $X \in \mathbb{R}^{N \times D}$ represents normalized vector representation of documents
- $oldsymbol{q} \in \mathbb{R}^D$ represents normalized vector representation of search query

$$X \approx X_K = \underbrace{U_K \Sigma_K}_{R} V_K^T = B V_K^T, \quad B \in \mathbb{R}^{N \times K}$$

Document x_i relevance is proportional to $\langle x_i, q \rangle$, so to find matching documents we need to calculate $Xq = [\langle x_1, q \rangle, ... \langle x_N, q \rangle]^T$.

Direct multiplication Xq takes

$$O(ND) = O(\max\{N, D\} \min\{N, D\})$$
 operations.

$$X_K q = U_K \Sigma_K V_K^T q = B V_K^T q$$
. $V_K^T q$ takes $O(DK)$ multiplications and $B V_K^T q$ takes $O(NK)$, so total complexity is $O(K \max\{N, D\})$.

SVD for square non-degenerate matrix

For square non-degenerate matrix X:

- $X \in \mathbb{R}^{D \times D}$, rg X = D, so $U \in \mathbb{R}^{D \times D}$, $V \in \mathbb{R}^{D \times D}$, $U^{-1} = U^T$, $V^{-1} = V^T$.
- U, V^T represent rotations, Σ represents scaling, every square matrix may be represented as superposition of rotation, scaling and another rotation.
- For full rank X:

$$X^{-1} = V\Sigma^{-1}U^T,$$

since
$$XX^{-1} = U\Sigma V^T V\Sigma^{-1}U^T = I$$
.

Table of Contents

- Applications of SVD
- Recommendation system with SVD

Example

	Terminator	Gladiator	Rambo	Titanic	Love story	A walk to remember
			r			
Andrew	4	5	5	0	0	0
Andrew John	4	5 4	5 5	0	0	0
John	4	4	5	0	0	0
John Matthew	4 5	4 5	5 4	0	0	0

Example

$$U = \begin{pmatrix} 0. & 0.6 & -0.3 & 0. & 0. & -0.8 \\ 0. & 0.5 & -0.5 & 0. & 0. & 0.6 \\ 0. & 0.6 & 0.8 & 0. & 0. & 0.2 \\ 0.6 & 0. & 0. & -0.8 & -0.2 & 0. \\ 0.6 & 0. & 0. & 0.2 & 0.8 & 0. \\ 0.5 & 0. & 0. & 0.6 & -0.6 & 0. \end{pmatrix}$$

$$\Sigma = \text{diag}\{(14. \ 13.7 \ 1.2 \ 0.6 \ 0.6 \ 0.5)\}$$

$$V^{T} = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \\ 0.5 & 0.3 & -0.8 & 0. & 0. & 0. \\ 0. & 0. & 0. & -0.2 & 0.8 & -0.6 \\ -0. & -0. & -0. & 0.8 & -0.2 & -0.6 \\ 0.6 & -0.8 & 0.2 & 0. & 0. & 0. \end{pmatrix}$$

Example (excluded insignificant concepts)

$$U_2 = egin{pmatrix} 0. & 0.6 \ 0. & 0.5 \ 0. & 0.6 \ 0.6 & 0. \ 0.6 & 0. \ 0.5 & 0. \end{pmatrix}$$

$$\Sigma_2 = \text{diag}\{ \begin{pmatrix} 14. & 13.7 \end{pmatrix} \}$$

$$V_2^T = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \end{pmatrix}$$

Concepts may be

- patterns among movies (along j) action movie / romantic movie
- patterns among people (along i) boys / girls

Dimensionality reduction case: patterns along j axis.

Applications

• Example: new movie rating by new person

$$x = (5 \ 0 \ 0 \ 0 \ 0 \ 0)$$

• **Dimensionality reduction:** map x into concept space:

$$y = V_2^T x = (0 \ 2.7)$$

• **Recommendation system:** map y back to original movies space:

$$\hat{x} = yV_2^T = \begin{pmatrix} 1.5 & 1.6 & 1.6 & 0 & 0 \end{pmatrix}$$

Fronebius norm

- Fronebius norm of matrix X is $||X||_F \stackrel{df}{=} \sqrt{\sum_{n=1}^N \sum_{d=1}^D x_{nd}^2}$
- Using properties $||X||_F^2 = \operatorname{tr} XX^T$ and $\operatorname{tr} AB = \operatorname{tr} BA$, we obtain:

$$||X||_F^2 = \operatorname{tr}[U\Sigma V^T V\Sigma U^T] = \operatorname{tr}[U\Sigma^2 U^T] =$$

$$= \operatorname{tr}[\Sigma^2 U^T U] = \operatorname{tr}[\Sigma^2] = \sum_{r=1}^R \sigma_r^2$$
(1)

Matrix approximation

Consider approximation $X_k = U\Sigma_k V^T$, where $\Sigma_k = \text{diag}\{\sigma_1, \sigma_2, ... \sigma_k, 0, 0, ..., 0\} \in \mathbb{R}^{R \times R}$.

Theorem 1

 X_k is the best approximation of X retaining k concepts.

Proof: consider matrix $Y_k = U\Sigma'V^T$, where Σ' is equal to Σ except some R-k elements set to zero:

$$\sigma_{i_1}'=\sigma_{i_2}'=...=\sigma_{i_{R-k}}'=$$
 0. Then, using (1)

$$\|X - Y_k\|_F^2 = \left\| U(\Sigma - \Sigma')V^T \right\|_F^2 = \sum_{p=1}^{R-k} \sigma_{i_p}^2 \le \sum_{p=1}^{R-k} \sigma_p^2 = \|X - X_k\|_F^2$$

since $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_R \geq 0$.

Matrix approximation

How many components to retain?

General case: Since

$$\|X - X_k\|_F^2 = \|U(\Sigma - \Sigma_k)V^T\|_F^2 = \sum_{i=k+1}^R \sigma_i^2$$

a reasonable choice is k^* such that

$$\frac{\|X - X_{k^*}\|_F^2}{\|X\|_F^2} = \frac{\sum_{i=k^*+1}^R \sigma_i^2}{\sum_{i=1}^R \sigma_i^2} \ge threshold$$

Visualization: 2 or 3 components.

Theorem 2

For any matrix Y_k with rank $Y_k = k \colon \|X - X_k\|_F \le \|X - Y_k\|_F$

19/21

Finding U and V

• Finding V $X^TX = (U\Sigma V^T)^T U\Sigma V^T = (V\Sigma U^T)U\Sigma V^T = V\Sigma^2 V^T.$ It follows that

$$X^TXV = V\Sigma^2V^TV = V\Sigma^2$$

So V consists of eigenvectors of X^TX with corresponding eignvalues $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$.

• Finding *U*:

$$XX^T = U\Sigma V^T (U\Sigma V^T)^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$$
. So $XX^T U = U\Sigma^2 U^T U = U\Sigma^2$.

So *U* consists of eigenvectors of XX^T with corresponding eigenvalues $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$.

Comments

- ullet Denote the average $ar{X} \in \mathbb{R}^D$: $ar{X}_j = \sum_{i=1}^N x_{ij}$
- ullet Denote the n-th row of X be $X_n \in \mathbb{R}^D$: $X_{nj} = x_{nj}$
- For centered X sample covariance matrix $\widehat{\Sigma}$ equals:

$$\widehat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (X_n - \bar{X})(X_n - \bar{X})^T = \frac{1}{N} \sum_{n=1}^{N} X_n X_n^T$$
$$= \frac{1}{N} X^T X$$

- V consists of principal components since
 - V consists of eigenvectors of X^TX ,
 - ullet principal components are eignevectors of $\widehat{\Sigma}$ and
 - $\widehat{\Sigma} \propto X^T X$