Singular value decomposition

Victor Kitov

Definitions

Consider matrix $X \in \mathbb{R}^{N \times D}$. For this matrix:

- square roots of eigenvalues of $X^{\top} X$ are called singular values.
- orthonormal eigenvectors of $X^{\top} X$ are called right singular vectors.
- orthonormal eigenvectors of $X X^{\top}$ are called left singular vectors.

Principal component a_{i} is the i-th right singular vector of X, corresponding to i-th largest singular value λ_{i}.

SVD decomosition

Every matrix $X \in \mathbb{R}^{N \times D}$, rank $X=R$, can be decomposed into the product of three matrices:

$$
X=U \Sigma V^{T}
$$

where $U \in \mathbb{R}^{N \times R}, \Sigma \in \mathbb{R}^{R \times R}, V^{T} \in \mathbb{R}^{R \times D}$, and $\Sigma=$ $\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots \sigma_{R}\right\}, \sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{R} \geq 0, U^{\top} U=I, V^{\top} V=I$. $I \in \mathbb{R}^{D \times D}$ denotes identity matrix.

Interpretation of SVD

For $X_{i j}$ let i denote objects and j denote properties.

- U represents standardized coordinates of concepts
- V^{T} represents standardized concepts representations
- Σ shows the magnitudes of presence of standardized concepts in X.

Original SVD decomposition

Reduced SVD decomposition

Simplification to rank $K \leq R$:

$$
X_{K}=U_{K} \Sigma_{K} V_{K}
$$

$\Sigma=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots \sigma_{K}, \sigma_{K+1}, \ldots \sigma_{R}\right\} \longrightarrow \operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots \sigma_{K}\right\}=\Sigma_{K}$
$U=\left[u_{1}, u_{2}, \ldots u_{K}, u_{K+1}, \ldots u_{R}\right] \longrightarrow\left[u_{1}, u_{2}, \ldots u_{K}\right]=U_{K}$
$V=\left[v_{1}, v_{2}, \ldots v_{K}, v_{K+1}, \ldots v_{R}\right] \longrightarrow\left[v_{1}, v_{2}, \ldots v_{K}\right]=V_{K}$

Properties of reduced SVD decomposition

- Suppose $X \in \mathbb{R}^{N \times D}$, rank $X=R$, is approximated with $X_{K}=U_{K} \Sigma_{K} V_{K}$. Then:
- rank $X_{K}=K$.
- $X_{K}=\arg \min _{B: \text { rank } B \leq K}\|X-B\|$
- Which K to choose?
- Define Frobenius norm $\|X\|_{F}^{2}=\sum_{n=1}^{N} \sum_{d=1}^{D} x_{n d}^{2}$
- $\|X\|_{F}^{2}=\sum_{i=1}^{R} \sigma_{i}^{2}$
- $\left\|X_{K}\right\|_{F}^{2}=\sum_{i=1}^{K} \sigma_{i}^{2}$
- Choose $K=\arg \min _{K}\left\{\frac{\left\|X_{K}\right\|_{F}^{2}}{\|X\|_{F}^{2}} \geq t\right\}$, where t is some threshold, say $t=0.95$.

Table of Contents

(1) Applications of SVD
(2) Recommendation system with SVD

Memory efficiency

Storage costs of $X \in \mathbb{R}^{N \times D}$, assuming $N \geq D$ and each element taking 1 byte:

Memory storage costs

representation of X	memory requirements
original X	$O(N D)=O(\min \{N, D\} \max \{N, D\})$
fully SVD decomposed	$N R+R^{2}+R D=O(R \max \{N, D\})$
reduced SVD to rank K	$N K+K^{2}+K D=O(K \max \{N, D\})$

Performance efficiency

Suppose we have N documents, vocabulary size is D, typically $D \geq N$.

- $X \in \mathbb{R}^{N \times D}$ represents normalized vector representation of documents
- $q \in \mathbb{R}^{D}$ represents normalized vector representation of search query
-

$$
X \approx X_{K}=\underbrace{U_{K} \Sigma_{K}}_{B} V_{K}^{T}=B V_{K}^{T}, \quad B \in \mathbb{R}^{N_{K} K}
$$

Document x_{i} relevance is proportional to $\left\langle x_{i}, q\right\rangle$, so to find matching documents we need to calculate
$X q=\left[\left\langle x_{1}, q\right\rangle, \ldots\left\langle x_{N}, q\right\rangle\right]^{T}$.
Direct multiplication $X q$ takes
$O(N D)=O(\max \{N, D\} \min \{N, D\})$ operations.
$X_{K} q=U_{K} \Sigma_{K} V_{K}^{T} q=B V_{K}^{T} q$. $V_{K}^{T} q$ takes $O(D K)$ multiplications and $B V_{T}^{T} a$ takes $O(N K)$ so total2complexitv is $O(K \max \{N . D\})$.

SVD for square non-degenerate matrix

For square non-degenerate matrix X :

- $X \in \mathbb{R}^{D \times D}, \operatorname{rg} X=D$, so $U \in \mathbb{R}^{D \times D}, V \in \mathbb{R}^{D \times D}, U^{-1}=U^{T}$, $V^{-1}=V^{T}$.
- U, V^{\top} represent rotations, Σ represents scaling, every square matrix may be represented as superposition of rotation, scaling and another rotation.
- For full rank X :

$$
X^{-1}=V \Sigma^{-1} U^{\top}
$$

since $X X^{-1}=U \Sigma V^{T} V \Sigma^{-1} U^{T}=I$.

Table of Contents

(1) Applications of SVD

(2) Recommendation system with SVD

Example

		$\begin{aligned} & \frac{\vdots}{0} \\ & \frac{. \pi}{0} \\ & \frac{\pi}{0} \end{aligned}$		-	$\begin{aligned} & \text { त } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
Andrew	4	5	5	0	0	0
John	4	4	5	0	0	0
Matthew	5	5	4	0	0	0
Anna	0	0	0	5	5	5
Maria	0	0	0	5	5	4
Jessika	0	0	0	4	5	4

Example

$$
\left.\left.\left.\left.\begin{array}{rl}
U & =\left(\begin{array}{cccccc}
0 . & 0.6 & -0.3 & 0 . & 0 . & -0.8 \\
0 . & 0.5 & -0.5 & 0 . & 0 . & 0.6 \\
0 . & 0.6 & 0.8 & 0 . & 0 . & 0.2 \\
0.6 & 0 . & 0 . & -0.8 & -0.2 & 0 . \\
0.6 & 0 . & 0 . & 0.2 & 0.8 & 0 . \\
0.5 & 0 . & 0 . & 0.6 & -0.6 & 0 .
\end{array}\right) \\
\Sigma & =\operatorname{diag}\{(14 . \\
13.7 & 1.2
\end{array}\right) 0.6 \quad 0.6 \quad 0.5\right)\right\}, 1 \begin{array}{ccccccc}
0 . & 0 . & 0 . & 0.6 & 0.6 & 0.5 \\
0.5 & 0.6 & 0.6 & 0 . & 0 . & 0 . \\
0.5 & 0.3 & -0.8 & 0 . & 0 . & 0 . \\
0 . & 0 . & 0 . & -0.2 & 0.8 & -0.6 \\
-0 . & -0 . & -0 . & 0.8 & -0.2 & -0.6 \\
0.6 & -0.8 & 0.2 & 0 . & 0 . & 0 .
\end{array}\right)
$$

Example (excluded insignificant concepts)

$$
\begin{gathered}
U_{2}=\left(\begin{array}{cc}
0 . & 0.6 \\
0 . & 0.5 \\
0 . & 0.6 \\
0.6 & 0 . \\
0.6 & 0 . \\
0.5 & 0 .
\end{array}\right) \\
\Sigma_{2}=\operatorname{diag}\{(14 . \\
13.7)\} \\
V_{2}^{T}=\left(\begin{array}{cccccc}
0 . & 0 . & 0 . & 0.6 & 0.6 & 0.5 \\
0.5 & 0.6 & 0.6 & 0 . & 0 . & 0 .
\end{array}\right)
\end{gathered}
$$

Concepts may be

- patterns among movies (along j) - action movie / romantic movie
- patterns among people (along i) - boys / girls

Dimensionality reduction case: patterns along j axis.

Applications

- Example: new movie rating by new person

$$
x=\left(\begin{array}{llllll}
5 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- Dimensionality reduction: map x into concept space:

$$
y=V_{2}^{T} x=\left(\begin{array}{ll}
0 & 2.7
\end{array}\right)
$$

- Recommendation system: map y back to original movies space:

$$
\widehat{x}=y V_{2}^{\top}=\left(\begin{array}{llllll}
1.5 & 1.6 & 1.6 & 0 & 0 & 0
\end{array}\right)
$$

Fronebius norm

- Fronebius norm of matrix X is $\|X\|_{F} \stackrel{d f}{=} \sqrt{\sum_{n=1}^{N} \sum_{d=1}^{D} x_{n d}^{2}}$
- Using properties $\|X\|_{F}^{2}=\operatorname{tr} X X^{T}$ and $\operatorname{tr} A B=\operatorname{tr} B A$, we obtain:

$$
\begin{align*}
\|X\|_{F}^{2} & =\operatorname{tr}\left[U \Sigma V^{T} V \Sigma U^{T}\right]=\operatorname{tr}\left[U \Sigma^{2} U^{T}\right]= \\
& =\operatorname{tr}\left[\Sigma^{2} U^{T} U\right]=\operatorname{tr}\left[\Sigma^{2}\right]=\sum_{r=1}^{R} \sigma_{r}^{2} \tag{1}
\end{align*}
$$

Matrix approximation

Consider approximation $X_{k}=U \Sigma_{k} V^{T}$, where $\Sigma_{k}=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots \sigma_{k}, 0,0, \ldots, 0\right\} \in \mathbb{R}^{R \times R}$.

Theorem 1

X_{k} is the best approximation of X retaining k concepts.
Proof: consider matrix $Y_{k}=U \Sigma^{\prime} V^{T}$, where Σ^{\prime} is equal to Σ except some $R-k$ elements set to zero:
$\sigma_{i_{1}}^{\prime}=\sigma_{i_{2}}^{\prime}=\ldots=\sigma_{i_{R-k}}^{\prime}=0$. Then, using (1)
$\left\|X-Y_{k}\right\|_{F}^{2}=\left\|U\left(\Sigma-\Sigma^{\prime}\right) V^{T}\right\|_{F}^{2}=\sum_{p=1}^{R-k} \sigma_{i_{p}}^{2} \leq \sum_{p=1}^{R-k} \sigma_{p}^{2}=\left\|X-X_{k}\right\|_{F}^{2}$
since $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{R} \geq 0$.

Matrix approximation

How many components to retain?

General case: Since

$$
\left\|X-X_{k}\right\|_{F}^{2}=\left\|U\left(\Sigma-\Sigma_{k}\right) V^{T}\right\|_{F}^{2}=\sum_{i=k+1}^{R} \sigma_{i}^{2}
$$

a reasonable choice is k^{*} such that

$$
\frac{\left\|X-X_{k^{*}}\right\|_{F}^{2}}{\|X\|_{F}^{2}}=\frac{\sum_{i=k^{*}+1}^{R} \sigma_{i}^{2}}{\sum_{i=1}^{R} \sigma_{i}^{2}} \geq \text { threshold }
$$

Visualization: 2 or 3 components.

Theorem 2

For any matrix Y_{k} with rank $Y_{k}=k:\left\|X-X_{k}\right\|_{F} \leq\left\|X-Y_{k}\right\|_{F}$

Finding U and V

- Finding V
$X^{T} X=\left(U \Sigma V^{T}\right)^{T} U \Sigma V^{T}=\left(V \Sigma U^{T}\right) U \Sigma V^{T}=V \Sigma^{2} V^{T}$. It follows that

$$
X^{T} X V=V \Sigma^{2} V^{T} V=V \Sigma^{2}
$$

So V consists of eigenvectors of $X^{\top} X$ with corresponding eignvalues $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots \sigma_{R}^{2}$.

- Finding U :

$$
\begin{gathered}
X X^{T}=U \Sigma V^{T}\left(U \Sigma V^{T}\right)^{T}=U \Sigma V^{T} V \Sigma U^{T}=U \Sigma^{2} U^{T} \text {. So } \\
X X^{T} U=U \Sigma^{2} U^{T} U=U \Sigma^{2} .
\end{gathered}
$$

So U consists of eigenvectors of $X X^{\top}$ with corresponding eigenvalues $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots \sigma_{R}^{2}$.

Comments

- Denote the average $\bar{X} \in \mathbb{R}^{D}: \bar{X}_{j}=\sum_{i=1}^{N} x_{i j}$
- Denote the n-th row of X be $X_{n} \in \mathbb{R}^{D}: X_{n j}=x_{n j}$
- For centered X sample covariance matrix $\widehat{\Sigma}$ equals:

$$
\begin{aligned}
\widehat{\Sigma} & =\frac{1}{N} \sum_{n=1}^{N}\left(X_{n}-\bar{X}\right)\left(X_{n}-\bar{X}\right)^{T}=\frac{1}{N} \sum_{n=1}^{N} X_{n} X_{n}^{T} \\
& =\frac{1}{N} X^{T} X
\end{aligned}
$$

- V consists of principal components since
- V consists of eigenvectors of $X^{\top} X$,
- principal components are eignevectors of $\widehat{\Sigma}$ and
- $\hat{\Sigma} \propto X^{T} X$.

