
Bayesian Logistic Regression for Classification of Tabular Data

Abstract

We extend the Relevance Vector Machine
(RVM) framework to handle cases of table-
structured data such as image blocks and im-
age descriptors. This is achieved by coupling
the regularization coefficients of rows and
columns of features. We present two vari-
ants of this new gridRVM framework, based
on the way in which the regularization co-
efficients of the rows and columns are com-
bined. Appropriate variational optimization
algorithms are derived for inference within
this framework. The consequent reduction
in the number of parameters from the prod-
uct of the table’s dimensions to the sum of
its dimensions allows for better performance
in the face of small training sets, resulting in
improved resistance to overfitting problems,
as well as providing better interpretation of
results. These properties are demonstrated
on a well-known synthetic data-set as well as
on a modern and challenging visual identifi-
cation benchmark.

1. Introduction

Generalized linear models have been a popular ap-
proach to classification problems for decades. Special
attention is often paid to obtain sparse decision rules,
i.e. classifiers for which most of the assigned weights
equal zero. Within a Bayesian framework the detec-
tion of relevant features can be done automatically
by assigning an individual regularization coefficient to
each weight. This process is called automatic relevance
determination (ARD). The Relevance Vector Machine
(RVM) is an important example of the successful ap-
plication of ARD to logistic regression (Tipping, 2001).

In this paper we generalize the RVM framework to the
case of tabular data, i.e. cases where an object is de-
scribed by a matrix of features. Tabular data arises
in many domains (see section 2). Of course, it is al-
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Figure 1. The illustration of ”grid” approach on the LFW
data. Each image is split into 63 blocks (a) and for each
block 8 descriptors are computed. GridRVM assigns indi-
vidual regularization coefficients for each block and each
descriptor. The relevance of blocks (the darker the more
informative) is shown in (b) and the relevance of descrip-
tors (inverse regularization coefficient) is shown in (c)

ways possible to convert tables to feature vectors and
run standard classification algorithms. We will, how-
ever, show that this may sometimes lead to overfitting.
Here, we suggest assigning individual regularization
coefficients to each column and row of the table. The
regularization coefficient of the feature in position ij
in the table is then the result of the composition of the
coefficients for the ith row and the jth column. We con-
sider two variants of such compositions: product and
summation of regularization coefficients, thus deriv-
ing p- and s-gridRVM models. Variational inference is
used to obtain iterative equations for learning in these
models. We demonstrate results on synthetic and real-
world problems and show that the gridRVM approach
prevents overfitting in case of small datasets. In par-
ticular we address the problem of same/not-same face
classification in the Labeled Faces in the Wild (LFW)
image set (Huang et al., 2007). We convert each im-
age to a tabular presentation by computing a set of
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descriptors on distinct image blocks. GridRVM is then
applied to find the most relevant blocks and descrip-
tors (see fig. 1).

The rest of the paper is organized as follows. Moti-
vation and related work are given in sections 2 and
3 respectively. Section 4 presents the definitions of
the p- and s-gridRVM models and establishes the no-
tation used thereafter. Iterative learning algorithms
based on variational inference are described in section
5. We conclude with experiments on illustrative and
real-world problems in section 6.

2. Motivation

In classical machine learning theory, a training set con-
sists of a number of objects (precedents), each repre-
sented as a vector of features. It is assumed that there
is no hierarchy in the space of features. This is not,
however, always an optimal representation. In some
cases, a tabular presentation is more convenient. Ob-
jects are then described by a number of features that
form a table rather than a single vector.

A natural example of such case arises in a
region/descriptor-based framework for image analysis.
Within this framework, an image is split into several
regions (blocks) and a set of descriptors is then com-
puted for each region. Then, we may associate each
feature with the pair region/descriptor and form a tab-
ular view of a single image. Note that often the num-
ber of features extracted from single image exceeds the
number of images in the whole training set, resulting
in increased risk of overfitting.

Another example is related to the use of radial basis
functions (RBF) in classification algorithms. Tradi-
tionally, RBF depends only on the distance ρ(~x, ~yi)
between the object ~x and some predefined point ~yi in
the space of features Rd

φi(~x) = f(ρ(~x, ~yi)), i ∈ {1, . . . ,m}.

Each object is described by a vector of m RBF val-
ues. Gaussian RBFs φi(~x) = exp(−γ‖~x − ~yi‖2) are a
popular “rule-of-thumb” choice in many classification
algorithms, e.g. in logistic regression. The obvious
drawback of Gaussian RBF is their low discriminative
ability in the presence of numerous noisy features. To
deal with noisy features one may consider basis func-
tions consisting of a single feature

φij(~x) = f(|xj − yij |).

Although representing ~x as a vector of
(φ11(~x), . . . , φm,d(~x)) is still possible, it may be

more natural to form a table of m columns and d
rows.

The tabular presentation of data provides new options
in analyzing feature sets. In particular, we may search
for relevant columns and rows instead of searching for
relevant features by setting one regularization coeffi-
cient for each column and row, hence reducing the
number of hyperparameters from m×d to m+d. With
the reduced number of adjustable parameters we may
expect the final classifier to have better generalization
properties.

3. Related work

The idea of treating image features as tables is not
new and has been considered by a number of authors.
Many papers on tabular data consider the problem of
dimensionality reduction (either supervised or unsu-
pervised). In (Yang et al., 2004) 2-dimensional PCA
is proposed where each data point is treated as a ma-
trix. In (Xu et al., 2004) the authors proposed an im-
age reconstruction criterion for obtaining the original
image matrices using two low dimensional coupled sub-
spaces, which encode the row and column subspaces of
the image. They suggested an iterative method, CSA
(Coupled Subspaces Analysis) to optimize this crite-
rion. They also prove that PCA and 2D-PCA are
special cases of CSA. The generalization of LDA to
tabular data has been proposed in (Ye et al., 2004)
and (Li & Yuan, 2005). More recently, (Yang et al.,
2009) have proposed projecting images along both row
and column directions, in an effort to maximize the so
called Laplacian Bidirectional Maximum Margin Cri-
terion (LBMMC). A variant of the Zero-norm SVM
feature selection algorithm for tabular data was pre-
sented in (Wolf et al., 2007).

In the context of sparse methods several non-
Bayesian techniques have been proposed, for ex-
ample (Boser et al., 1992; Tibshirani, 1996). Au-
tomatic relevance determination was first proposed
in (MacKay, 1992) which provides a Bayesian frame-
work for determining irrelevant parameters in machine
learning models. The application of ARD to general-
ized linear models and in particular to logistic regres-
sion was proposed in (Tipping, 2001) as the Relevance
vector machine model (RVM).

Since fully Bayesian inference is intractable even
for regression problems, different authors have used
some approximation of the general Bayesian scheme.
These include evidence maximization (MacKay, 1992;
Tipping, 2001), marginalization w.r.t. the hyper-
parameters (Williams, 1995), and variational infer-
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ence (Bishop & Tipping, 2000).

For classification, further approximations are neces-
sary to perform inference. Various approximations
of the likelihood function with a Gaussian were sug-
gested. In (Tipping, 2001) the authors used Laplace
approximation. Local variational methods were pro-
posed in (Jaakkola & Jordan, 2000). The closely re-
lated expectation propagation (Minka, 2001) tech-
nique for approximate Bayesian inference in general-
ized linear models was suggested in (Qi et al., 2004).
Although ARD methods have been applied success-
fully for the search of relevant features, objects, and
basis functions in many domains, over- and underfit-
ting of RVM was reported (Qi et al., 2004) in some
cases.

4. GridRVM models

Consider a two-class classification problem with tab-
ular data. Let (X,~t) = {~xn, tn}N

n=1 be the training
set where tn ∈ {−1, 1} are class labels and each ob-
ject ~xn is represented as a table of generalized features
(φij(~xn))M1,M2

i,j=1 . Note that we will also use one-index
notation (φk(~xn))M

k=1, M = M1M2 when we need to
treat the description of the object as a vector. Define
the following probabilistic model (p-gridRVM):

p(~t, ~w, ~α, ~β|X) = p(~t|X, ~w)p(~w|~α, ~β)p(~α)p(~β).

Here

p(~t|X, ~w) =
N∏

n=1

σ
(
tn ~wT ~φ(~xn)

)
, (1)

p(~w|~α, ~β) =

∏M1,M2
i,j=1

√
αiβj

√
2π

M1M2
exp


−1

2

M1,M2∑

i,j=1

αiβjw
2
ij


 ,

(2)

p(~α) =
M1∏

i=1

G(αi|a0, b0), (3)

p(~β) =
M2∏

j=1

G(βj |c0, d0), (4)

where σ(y) = 1/(1 + exp(−y)) is a logistic function,
G(αi|a0, b0) stands for a gamma distribution over αi

with parameters a0, b0 and all αi, βj ≥ 0. Note that
the number of regularization coefficients ~α and ~β is
M1+M2 while the number of weights is M1M2. Within
this model we assign independent regularization coef-
ficients to each row and column of the tabular presen-
tation. The regularization coefficient for the weight
wij is the result of a combination of αi and βj . In

p-gridRVM we take the product of the two. Alterna-
tively, we may consider the sum, i.e.

p(~w|~α, ~β) =

∏M1,M2
i,j=1

√
αi + βj

√
2π

M1M2
×

exp


−1

2

M1,M2∑

i,j=1

(αi + βj)w2
ij


 , (5)

We refer to this model as s-gridRVM.

In both cases we consider the joint influence of the row
and column of each table entry on the associated fea-
ture weight. However the models have one important
distinction. In the case of s-gridRVM, large values of
αi mean that all features from the ith row have values
at least as large as the regularization coefficient. This,
since αi + βj > αi for all admissible βj . The same
of course holds for large values of βj . In p-gridRVM
the situation is different. Large values of, say, αi do
not necessarily imply large values of the regularization
coefficient for a particular weight wij since the coeffi-
cient βj may have a small value. Thus we may expect
a different behavior from these models.

5. Variational learning

Variational methods (Jordan et al., 1998) are popu-
lar technique for inference in Bayesian models. These
methods allow to move from hardly computable model
evidence to its lower bound, which is much simpler for
estimation. In this section we first briefly describe ba-
sic ideas of the variational approach and then show
its application for learning in the p- and s-gridRVM
models.

5.1. Global variational inference

Suppose we are given a probabilistic model with vari-
ables (~t, ~θ), where ~t is observable and ~θ is not. We
would like to estimate the model evidence

p(~t) =
∫

p(~t, ~θ)d~θ,

which we assume cannot be found analytically. Varia-
tional inference introduces here some distribution over
the unobservable variables q(~θ). Using this distribu-
tion the model evidence can be decomposed as follows

log p(~t) = L(q) + KL(q||p(~θ|~t)),

where

L =
∫

q(~θ) log
p(~θ|~t)
q(~θ)

d~θ (6)
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and KL(q||p) is a Kullback-Leibler divergence between
two distributions. Since KL(q||p) ≥ 0, L is a lower
bound on the log-evidence. Besides, log p(~t) does not
depend on q(~θ) and hence maximization of the lower
bound L w.r.t. q(~θ) is equivalent to minimization of
the KL divergence between q(~θ) and posterior distri-
bution p(~θ|~t).
Now consider the case when a distribution q(~θ) has a
factorized form

q(~θ) =
∏

i

qi(~θi).

Here {~θi} is some decomposition of a full set of vari-
ables so that ~θ = ti

~θi. In (Jordan et al., 1998) it’s
shown that maximization of (6) can be done iteratively
by the following recalculation formula:

qi(~θi) =
1
Z

exp




∫
log p(~t, ~θ)

∏

j 6=i

qj(~θj)d~θj


 , (7)

where Z is a normalization constant ensuring that
qi(~θi) is a distribution. In this recalculation process
the lower bound (6) monotonically increases.

5.2. Local variational inference

Global variational methods are supposed to move
from the hardly computable model evidence to its
lower bound. However, in many practical models (in-
cluding p- and s-gridRVM) this lower bound is still
analytically intractable. The local variational ap-
proach (Jaakkola & Jordan, 2000) introduces a further
bound on p(~θ|~t):

p(~θ|~t) ≥ F (~θ,~t, ~ξ).

This bound is tight for some particular value of ~ξ and
so it is local. Substituting this bound into (6) gives
the following result:

log p(~t) ≥ L ≥ Llocal =
∫

q(~θ) log
F (~θ,~t, ~ξ)

q(~θ)
d~θ.

The last expression can be optimized w.r.t. q(~θ) and
~ξ for some sensible choice of local variational bound.

5.3. p-gridRVM

In a classification problem we wish to calculate

p(tnew|~xnew,~t,X) =
∫

p(tnew|~xnew, ~w)×

p(~w, ~α, ~β|~t,X)d~wd~αd~β (8)

for any new object ~xnew. For the model p-
gridRVM (1)-(4) as well as for the model s-gridRVM
(1),(5),(3),(4) this integration is intractable and hence
some approximation scheme is needed. Here we
use the variational approach, which has been suc-
cessfully applied for the conventional RVM model
in (Bishop & Tipping, 2000), and try to find a vari-
ational approximation q(~w, ~α, ~β) to the true posterior
p(~w, ~α, ~β|~t,X) in the following family of factorized dis-
tributions:

q(~w, ~α, ~β) = q~w(~w)q~α(~α)q~β(~β). (9)

Then (8) can be reduced to integration over the fac-
torized distribution q:

p(tnew|~xnew,~t,X) '
∫

p(tnew|~xnew, ~w)×

q(~w, ~α, ~β)d~wd~αd~β. (10)

This integration is still intractable. However, if we are
interested only in a point estimate for tnew, a useful
approximation is

p(tnew|~xnew,~t,X) ' p(tnew|~xnew,E~w ~w),

where the symbol E~w stands for expectation w.r.t. the
factorized distribution q~w(~w).

Use of the global variational approach for the p-
gridRVM model leads to estimation of the following
lower bound of the model log-evidence:

log p(~t|X) ≥ L =
∫

log
p(~t|X, ~w)p(~w|~α, ~β)p(~α)p(~β)

q~w(~w)q~α(~α)q~β(~β)
×

q~w(~w)q~α(~α)q~β(~β)d~wd~αd~β. (11)

This integral cannot be taken analytically. Follow-
ing the variational method for the conventional RVM
model (Bishop & Tipping, 2000) we use here the lo-
cal variational approach and introduce the Jaakkola-
Jordan inequality (Jaakkola & Jordan, 2000) for the
likelihood function:

p(~t|X, ~w) ≥ F (~t,X, ~w, ~ξ) =
N∏

n=1

σ(ξn) exp
(

zn − ξn

2
− λ(ξn)(z2

n − ξ2
n)

)
, (12)

where σ(y) = 1/(1 + exp(−y)) — sigmoid function,
λ(ξ) = tanh(ξ/2)/(4ξ), zn = tn ~wT ~φ(~xn). This bound
is tight for ξn = zn. Then substituting the inequal-
ity (12) into the lower bound (11) we obtain:

L ≥ Llocal =
∫

log
F (~t,X, ~w, ~ξ)p(~w|~α, ~β)p(~α)p(~β)

q~w(~w)q~α(~α)q~β(~β)
×

q~w(~w)q~α(~α)q~β(~β)d~wd~αd~β. (13)
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Figure 2. One-dimensional projection of the bound (23) for
parameters y = 3, η = 2, ζ = 4.

Maximization of the criterion function (13) w.r.t. dis-
tributions q~w(~w), q~α(~α), q~β(~β) and variational param-

eters ~ξ leads to the following result:

q~w(~w) = N (~w|~µ,Σ), (14)

q~α(~α) =
M1∏

i=1

G(αi|ai, bi), (15)

q~β(~β) =
M2∏

j=1

G(βj |cj , dj), (16)

where

Σ =
(
diag(E~ααiE~ββj) + 2ΦT ΛΦ

)−1

, Λ = diag(λ(ξn)),

~µ =
1
2
ΣΦT~t,

ai = a0 +
M2

2
, bi = b0 +

1
2

M2∑

j=1

E~ββjE~ww2
ij ,

cj = c0 +
M1

2
, dj = d0 +

1
2

M1∑

i=1

E~ααiE~ww2
ij ,

ξ2
n = ~φT (~xn)E~w ~w~wT ~φ(~xn) (~ξ2 = diag(ΦSΦT )).

The necessary statistics are calculated as follows:

E~w ~w = ~µ, (17)

E~ww2
ij = Sij,ij + µ2

ij , (18)

E~ααi =
ai

bi
, (19)

E~α log αi = Ψ(ai)− log bi, (20)

E~ββj =
ci

di
, (21)

E~β log βj = Ψ(cj)− log dj , (22)

where Ψ(a) = d
da log Γ(a) — digamma function.

5.4. s-gridRVM

Similar to the previous case we propose to apply the
variational approach for the s-gridRVM model. In
this way we try to find a variational approximation
q to the true posterior p(~w, ~α, ~β|~t,X) in the family
of factorized distributions (9) by optimizing the lower
bound (13). However, in the case of the s-gridRVM
model the criterion function (13) becomes intractable
and we need a further lower bound in the sense of
the local variational methods. For this reason let
us consider the function f(x, y) = log(x + y). This
function is strictly concave. Now let us make the
change of variables x1 = log(x), y1 = log(y) and con-
sider the function f1(x1, y1) = f(exp(x1), exp(y1)) =
log(exp(x1) + exp(y1)). The function f1 is convex and
hence satisfies the following inequality:

f1(x1, y1) ≥ ∂f1

∂x1
(η)(x1−η)+

∂f1

∂y1
(ζ)(y1−ζ)+f1(η, ζ)

for arbitrary η and ζ. This inequality is just a relation
between the function and its tangent line and becomes
equality when x1 = η, y1 = ζ. Moving back to ini-
tial variables x, y, we obtain the following variational
bound:

log(x + y) ≥ log(η + ζ)+
η(log(x)− log(η)) + ζ(log(y)− log(ζ))

η + ζ
, (23)

which is tight when x/y = η/ζ. One-dimensional pro-
jection of this bound is illustrated in Figure 2. Inequal-
ity (23) leads to the following bound on log p(~w|~α, ~β):

log p(~w|~α, ~β) =
1
2

M1,M2∑

i,j=1

[log(αi+βj)−(αi+βj)w2
ij ]−

M1M2

2
log 2π ≥ G(~w, ~α, ~β, ~η, ~ζ) =

1
2

M1,M2∑

i,j=1

[
log(ηij+ζij)+

ηij(log(αi)− log(ηij))
ηij + ζij

+
ζij(log(βj)− log(ζij))

ηij + ζij

]
−

1
2

M1,M2∑

i,j=1

(αi + βj)w2
ij −

M1M2

2
log 2π.

This bound is tight if ηij = αi and ζij = βj . Substi-
tuting this inequality into (13) we obtain:

log p(~t|X) ≥
∫

log
F (~t,X, ~w, ~ξ)G(~w, ~α, ~β, ~η, ~ζ)p(~α)p(~β)

q~w(~w)q~α(~α)q~β(~β)
×

q~w(~w)q~α(~α)q~β(~β)d~wd~αd~β. (24)
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Maximization of the criterion function (24) w.r.t. dis-
tributions q~w(~w), q~α(~α), q~β(~β) and variational param-

eters ~ξ, ~η, ~ζ leads to the formula (14)-(16), where

Σ =
(
diag(E~ααi + E~ββj) + 2ΦT ΛΦ

)−1

,

Λ = diag(λ(ξn)),

~µ =
1
2
ΣΦT~t,

ai = a0 +
1
2

M2∑

j=1

ηij

ηij + ζij
, bi = b0 +

1
2

M2∑

j=1

E~ww2
ij ,

cj = c0 +
1
2

M1∑

i=1

ζij

ηij + ζij
, dj = d0 +

1
2

M1∑

i=1

E~ww2
ij

ηij = exp(E~α log αi), ζij = exp(E~β log βj),

ξ2
n = ~φT (~xn)E~w ~w~wT ~φ(~xn) (~ξ2 = diag(ΦSΦT ))

The necessary statistics are still calculated using (17)–
(22).

Table 1. Train/Test error/number of relevant weights for
standard variational RVM, p- and s-gridRVM respectively.
Rows 1, 4, 7 correspond to direct classification on top of
the vector of features. Rows 2, 5, 8 correspond to the use
of RBFs (25) whilst rows 3, 6, 9 correspond to the use of
basis functions (26). Note that in the presence of noisy
features (the last 6 rows) the accuracy of RBF classifiers
decreases. With the increase of M standard RVM also
overfits the training data.

d M RVM p-gridRVM s-gridRVM

2 2 27/27.08/ 27/27.08/ 27/27.08/
2 2 2

2 200 15.5/20.44/ 15.5/20.46/ 15.5/21.22/
40 38 196

2 400 16.50/22.50/ 15.50/22.24/ 17.50/22.82/
33 14 274

4 4 26.50/27.96/ 26.50/27.94/ 26/28.70/
2 2 4

4 200 3.5/31.12/ 3.5/29.64/ 1.5/29.86/
160 158 200

4 800 16.5/23.22/ 16/22.26/ 17/22.86/
65 53 271

17 17 27/28.78/ 27/28.78/ 24.5/30.06/
6 6 15

17 200 0/49.7/ 0/40.40/ 0/40.40/
200 200 200

17 3400 6.5/29.46/ 14.5/22.74/ 15/23.40/
125 195 271

6. Experiments

We start with an artificial problem and then consider
real-world problem for which tabular presentation of
data is natural.

6.1. Toy example

First consider an artificial dataset1 taken from
(Friedman et al., 2001). This is a 2-class problem with
200 objects in the training set and 5000 objects in the
test set. The feature space is two-dimensional and the
data are generated from a specified distribution with
Bayesian error rate 19%. The optimal discriminative
surface is non-linear. RVM with 200 basis functions

φj(~x) = exp
(
−‖~x− ~xj‖2

2σ2

)
(25)

and σ = 0.3 almost achieves Bayesian error level (see
table 1). We considered two modifications of the prob-
lem by adding 2 and 15 noisy features respectively. In
both cases we treated objects first as initial vectors
(corresponding to a linear hyperplane), then as vec-
tors of basis functions values (25), and third as tables
of basis functions evaluated per each dimension

φij(~x) = exp
(
− (xi − xji)2

2σ2

)
. (26)

In the latter case we may either treat the object as
the vector of basis functions and run standard RVM
(or another classifier) on it, or as a table and then
run gridRVM. All classifiers were trained on the set
of 200 objects and then run on the test set of 5000
objects. The results are shown in table 1. It can
be seen that performance of RVM with basis func-
tions (25) degrades in the presence of noisy features.
Note that training error is very small (zero with 15
noisy features) thus evidently the classifiers suffer from
over-fitting. Since in the case of RBFs (25) the data
points are vectors, the performance of gridRVM is very
similar to standard RVM. However, RVMs with basis
functions (26) are more stable and maintain their ac-
curacy. In the case of 2 noisy features, the difference
between standard RVM and gridRVM is insignificant
but in the presence of 15 noisy features RVM overfits
the data since 3400 regularization coefficients are to be
adjusted. In gridRVMs there are only 17 + 200 = 217
regularization coefficients in this case. Both of them
have almost the same accuracy being less affected by
over-fitting. One may consider the use of 3400 basis

1http://www-stat.stanford.edu/̃ hastie/
/ElemStatLearnII/figures2.pdf to view
http://www-stat.stanford.edu/̃ tibs/ElemStatLearn/
/datasets/mixture.example.data to download
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functions for 200 of training objects in 17 dimensional
space to be somewhat artificial but the results of RVMs
on 200 RBFs of the form (25) are disastrous. Besides
the training and test errors, the number of relevant
weights (the ones which exceed 0.01) is also shown.
Both p- and s-gridRVM tend to be sparse with slight
advantage of p-gridRVM.
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Figure 3. LFW results. Please see the text for more details

6.2. Face image pair-matching

We test our method on the Labeled Faces in the
Wild (LFW) pair-matching benchmark (Huang et al.,
2007). The LFW data set provides around 13,000 fa-
cial images of 5,749 individuals, each having anywhere
from one to 150 images. These images were automat-
ically harvested from news websites and thus present
faces under challenging, unconstrained viewing con-
ditions. The goal of the benchmark is to determine,
given a pair of images from the collection, whether the
two images match (portray the same subject) or not.

We represent the images using the following
four image descriptors: Local Binary Patterns
(LBP) (Ojala et al., 2001), Center Symmetric LBP
(CSLBP) (Heikkilä et al., 2006), and the Three and
Four Patch LBP descriptors (TPLBP and FPLBP
resp.) (Wolf et al., 2008). Each face image was subdi-

vided into 63 non-overlapping blocks of 23× 18 pixels
centered on the face. A separate histogram of codes
was computed for each block, with 59 values for the
uniform version of the LBP descriptor, sixteen values
for each of the CSLBP and FPLBP descriptors, and
256 values for the TPLBP descriptor.

Each pair of images to be compared is represented by
one table of similarity values. The rows of the ta-
bles correspond to types of similarities values, and the
columns correspond to the 63 facial regions depicted
in Figure 1(a). The types of similarity values are all
possible combinations of the four image representation
above, and four histogram distances and similarities.

These four different histogram distances/similarities
are computed block by block between the correspond-
ing histograms of the two images. They are the L2
norm, the Hellinger Distance obtained by taking the
square root of the histogram values, the so called One-
Shot Similarity (OSS) measure (Wolf et al., 2008) (us-
ing code made available by the authors), and OSS ap-
plied to the square root of the histogram values. To
compute OSS scores we used 1,200 images in one of
the training splits as a “negative” training set.

We report our results in Figure 3 where the pair-
matching performance of s-gridRVM and p-gridRVM
is compared against two baseline methods. Both fig-
ures plot classification scores across the ten-folds of
the LFW benchmark, along with standard error val-
ues for different amounts of training (measured as the
percentage of nine splits used as a training set). Fig-
ure 3(a) presents results using an 8 × 63 features of
L2 and Hellinger distances between the four image de-
scriptors; in Figure 3(b) we add also the four OSS
scores and four OSS scores applied to the square roots
of the histogram values.

As baseline methods we take linear SVM and stan-
dard RVM. As can be seen, the gridRVM methods
show a clear advantage over both baseline methods.
This is particularly true when only a small amount
of training data is available. Although this advan-
tage diminishes as more training is made available,
both grid methods remain superior. Note that the re-
sults improve the ones reported in (Wolf et al., 2007),
where the same features were used for the whole im-
age and the reported accuracy was 0.7847. p-gridRVM
and s-gridRVM showed 0.7934 and 0.7942 of correct
answers respectively. Note that since the publica-
tion of (Wolf et al., 2007), higher performance rates
were reported on this benchmark. These, however, re-
quired additional training information, were obtained
through a different protocol, or made possible by fur-
ther processing of the images.
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7. Conclusions

The experiments allow us to draw some conclusions.
The first observation is that in some learning scenarios
gridRVM is significantly more robust w.r.t. overfitting
than standard RVM. This is particularly true for the
case of small training samples with large amounts of
basis functions. It is important to stress that in case
of large samples both standard and gridRVMs show
almost identical results, so gridRVMs are not affected
by underfitting although we reduced the number of
adjustable regularization coefficients. The second ob-
servation is that both gridRVMs are sparse both in
terms of regularization coefficients (many of them hav-
ing large values) and in terms of the weights (many of
whom are close to zero). Therefore, this useful and
important property of standard RVM is kept. The
grid approach can be straightforwardly generalized for
the case of tensors (multidimensional tables) as well.
For example we could treat the blocks in Figure 1 as
a two-dimensional array hence obtaining a third di-
mension (together with the descriptor dimension) in
the objects’ description. Finally one might also con-
sider regression problems with tabular data in similar
manner.
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