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Introduction I

› Huge image databases pose a significant challenge in terms of scalability to many computer vision 

applications, especially those applications that require efficient similarity search.

› Encoding high-dimensional data points into binary codes based on hashing techniques enables higher 

scalability thanks to both its compact data representation and efficient indexing mechanism.
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Introduction II

› Existing hashing techniques can be broadly categorized as

› data-independent: hashing functions are chosen independently from the input points.

› data-dependent: developing data-dependent techniques to consider the distribution of data points and 

design better hashing functions.

› In all of these existing hashing techniques, hyperplanes are used to partition the data points into two sets 

and assign two different binary codes (e.g., 0 or +1) depending on which set each point is assigned to.
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Problem I

› Approximate k‐nearest neighbor search in high dimensional space:

› widely used in various applications

› high computation cost, memory requirement

› tree‐based methods do not give any benefit (curse of dimensionality )

› spatial hashing techniques get more attention
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Binary Codes
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Binary Codes

•Benefits:

• high compression ratio (scalability)

• fast similarity calculation with Hamming distance (efficiency)

•Issue:

• how well do binary codes preserve data positions and their distances (accuracy)
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Motivation

› Propose a novel spherical hashing scheme, analyze its ability in terms of similarity search, and compare it 

against the state-of-the-art hyperplane-based techniques 

› Develop a new binary distance function tailored for the spherical hashing method.

› Formulate an optimization problem that achieves both balanced partitioning for each hashing function and 

the independence between any two hashing functions. Also, an efficient, iterative process is proposed to 

construct spherical hashing functions
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Related work

State-of-the-art Methods

› Random hyper‐planes from a specific distribution [Indyk – STOC 1998, Raginsky – NIPS 2009]

› Spectral graph partitioning [Weiss – NIPS 2008] 

› Minimizing quantization error (ITQ) [Gong – CVPR 2011]

› Independent component analysis (ICA) [He – CVPR 2011]

› Support vector machine (SVM) [Joly – CVPR 2011]

All of them use hyperplanes.
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Spherical Hashing

Set of 𝑛 data points in a 𝐷-dimensional space 𝑋 = 𝑥1, … , 𝑥𝑛 , 𝑥𝑖 ∈ ℝ𝐷.

A binary code corresponding to each data point 𝑥𝑖 is defined by 𝑏𝑖 = 0,+1 𝑐,

where 𝑐 is the length of the code.

Hashing function 𝐻 𝑥 = ℎ1 𝑥 ,… , ℎ𝑐 𝑥 maps points in ℝ𝐷 into the binary

cube 0,+1 𝑐.

Each spherical hashing function ℎ𝑘 𝑥 is defined by a pivot 𝑝𝑘 ∈ ℝ𝐷 and a

distance threshold 𝑡𝑘 ∈ ℝ+:

ℎ𝑘 𝑥 = ቊ
0 𝑤ℎ𝑒𝑛 𝑑 𝑝𝑘 , 𝑥 > 𝑡𝑘
+1 𝑤ℎ𝑒𝑛 𝑑 𝑝𝑘 , 𝑥 ≤ 𝑡𝑘

.
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Bounding power of Hypersphere

Hyperspheres show about two times tighter bounds over the hyperplane-based approach.
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Distance between Binary Codes

Most hyperplane-based binary embedding methods use the Hamming distance 𝑏𝑖 ⊕𝑏𝑗 - does not well 

reflect the property related to defining closed regions with tighter bounds.

Spherical Hamming distance

𝑑𝑠𝐻𝑑 =
𝑏𝑖 ⊕𝑏𝑗

𝑏𝑖 ∧ 𝑏𝑗

Having the common +1 bits in two binary codes gives us tighter bound

information than having the common 0 bits in our spherical hashing functions.
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Independence between Hashing Functions
Independent hashing functions distribute points in a balanced manner to different binary codes.

Achieving such properties lead to minimizing the search time and improving the accuracy even for longer bit 
lengths.

Balance: Pr ℎ𝑘 𝑥 = +1 =
1

2
, 𝑥 ∈ 𝑋, 1 ≤ 𝑘 ≤ 𝑐.

Independence: Pr ℎ𝑖 𝑥 = +1, ℎ𝑗 𝑥 = +1 = Pr ℎ𝑖 𝑥 = +1 ∙ Pr ℎ𝑗 𝑥 = +1 =
1

4
, 𝑥 ∈ 𝑋, 1 ≤ 𝑖, 𝑗 ≤ 𝑐.

SPHERICAL HASHING23.11.2017 13From http://sglab.kaist.ac.kr/Spherical_Hashing/



Iterative Optimization
𝑜𝑖 = 𝑠𝑘|ℎ𝑖 𝑠𝑘 = +1,1 ≤ 𝑘 ≤ 𝑚

𝑜𝑖,𝑗 = 𝑠𝑘|ℎ𝑖 𝑠𝑘 = +1, ℎ𝑗 𝑠𝑘 = +1,1 ≤ 𝑘 ≤ 𝑚 , 1 ≤ 𝑖, 𝑗 ≤ 𝑐

Force computation: 𝑓𝑖←𝑗 =
1

2

𝑜𝑖,𝑗−
𝑚

4
𝑚

4

𝑝𝑖 − 𝑝𝑗 - force from 𝑝𝑗 to 𝑝𝑖.

An accumulated force: 𝑓𝑖 =
1

𝑐
σ𝑗=1
𝑐 𝑓𝑖←𝑗.

Time complexity: 𝑂 𝑐2 + 𝑐𝐷 𝑚 .
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Evaluation
Three datasets:

• GIST-1M-384D

• GIST-1M-960D

• GIST-75M-384D

Randomly choose 100K data points from the original dataset as a training set for data-dependent methods.

Test: randomly chosen 1000 queries.

The performance is measured by mean Average Precision.

The ground truth is defined by 𝑘 nearest neighbors that are computed by the exhaustive, linear scan based on 

the Euclidean distance. 
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Evaluation II
Method shows significantly higher results than all the other tested
methods across all the tested bit lengths even with this large-scale
dataset.

Method takes 0.08 ms for generating a 256 bit-long binary code.
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Conclusion

• Novel hypersphere-based binary embedding technique for providing compact data representation and 

highly scalable nearest neighbor search with high accuracy.

• Method significantly outperformed the tested six state-of-the-art hashing techniques based on 

hyperplanes with one and 75 million GIST descriptors that have 384 or 960 dimensions.
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