Построение карты связности функциональных групп в задаче декодирования сигналов головного мозга

Вареник Наталия

Московский физико-технический институт Физтех-школа прикладной математики и информатики Кафедра интеллектуальных систем

Научный руководитель: д.ф.-м.н. В.В. Стрижов

Москва, 2022

Графовое представление сигналов

Задача: Построить модель анализа активности головного мозга, учитывающую пространственную структуру сигналов.

Мозг представляет собой динамическую систему, в которой информация постоянно обрабатывается и передается в другие взаимосвязанные регионы. Группы активности составляют сложную сеть с иерархической пространственной и функциональной организацией.

Проблема: Из-за отсутствия регулярности структуры сигнала на сферической поверхности мозга CNN не могут быть эффективно применены для учета пространственной информации.

Решение: Предлагается рассмотреть графовое представление сигналов для учета функциональных взаимосвязей различных частей мозга в пространстве. Такое предсталение обоснованно нерегулярной структурой физической и функциональной связи различных областей мозга.

Исследуются методы построения карты связности электродов для ее последующего использования графовой моделью GCN.

Основные работы

Детерминированные методы оценки связи сигналов

 Sakkalis V., Tsiaras V., Tollis I. Assessment of Linear and Nonlinear Synchronization Measures for Analyzing EEG. // Journal of Healthcare Engineering, 2010

Моделирование последовательностей пространственной структуры

- Ruiz, L., Gama, F., & Ribeiro, A. Gated Graph Recurrent Neural Networks. // IEEE Transactions on Signal Processing, 2020
- Seo Y., Defferrard M., Vandergheynst P., Bresson X. Structured Sequence Modeling with Graph Convolutional Recurrent Networks. // Neural Information Processing, 2018

Постановка задачи построения карты связности

 $\underline{\mathbf{X}} = \begin{bmatrix} \mathbf{X}_m \end{bmatrix}_{m=1}^M, \ \mathbf{X}_m \in \mathbb{R}^{E \times N} \ -$ исходный сигнал, N — число отсчетов времени, E — число электродов, M — число испытаний.

Дополнительно известна матрица координат электродов $\mathbf{Z} \in \mathbb{R}^{E \times 3}$.

Рассмотрим ненаправленный динамический граф:

$$\mathcal{G}(m,t) = (\mathcal{V}(m,t), \mathcal{E}(m,t), \mathbf{A}_{\underline{\mathbf{X}},\mathbf{Z}}(m,t)),$$

в котором $\mathcal{V}(m,t)$ есть множество электродов, множество ребер $\mathcal{E}(m,t)$ и их веса определяются из матрицы связности $\mathbf{A}_{\mathbf{X},\mathbf{Z}}(m,t)$.

Требуется найти функцию:

$$\mathbf{A}_{\underline{\mathbf{X}},\mathbf{Z}}(m,t): M \times T' \to \mathbb{R}_{+}^{E \times E}, \ T' \subseteq T, \ T = \{t_n\}_{n=1}^{N}.$$

Постановка задачи декодирования

Данные сигналов: $\mathbf{X} = \begin{bmatrix} \mathbf{X}_m \end{bmatrix}_{m=1}^M$, $\mathbf{X}_m = [\mathbf{x}_t]_{t \in T}$, $\mathbf{x}_t \in \mathbb{R}^E$, $T = \{t_n\}_{n=1}^N$, где N — число отсчетов времени, E = 62 — число электродов, M — число испытаний;

Координаты электродов: $\mathbf{Z} = [\mathbf{z}_k]_{k=1}^E$, $\mathbf{z}_k \in \mathbb{R}^3$; Целевая переменная: $\mathbf{y} = [y_m]_{m=1}^M$, $y_m \in \{1, \dots C\}$, C — число классов. Априорный штраф за плотность матрицы:

$$\underline{\underline{\mathbf{A}}}_{\underline{\mathbf{X}},\mathbf{Z}}^* = \arg\min_{\underline{\underline{\mathbf{A}}}_{\underline{\mathbf{X}},\mathbf{Z}}} ig| |1 - pig|, \ p$$
 — степень разреженности.

Рассматривается класс графовых рекуррентных нейронный сетей:

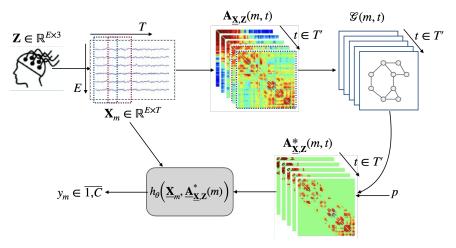
$$h_{m{ heta}}: (\underline{\mathbf{X}},\underline{\mathbf{A}}_{\mathbf{X},\mathbf{Z}}^*)
ightarrow \mathbf{y}.$$

Функция ошибки — кросс – энтропия:

$$\mathcal{L} = -rac{1}{M}\sum_{m=1}^{M}\left[\sum_{c=1}^{C}\mathbb{1}(y_m=c)\log(p_m^c)
ight],$$
 где $p_m^c=h_{m{ heta}}ig(\mathbf{X}_m, \mathbf{\underline{A}}_{\mathbf{X},\mathbf{Z}}^*(m)ig).$

Внешний критерий качества: точность.

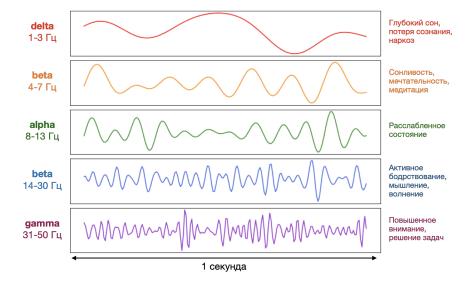
Графовое представление сигнала



Построение и использование графовой структуры

Ритмы головного мозга

Частотные полосы мозговой активности



Физическое расстояние и линейная корреляция

Обозначим $\mathbf{x} = \mathbf{x}_{mi}$ и $\mathbf{y} = \mathbf{x}_{mj}$ строки матрицы \mathbf{X}_m соответствующие сигналам в отрезке времени $[t_n - T_w, t_n]$ в m-ом испытании для i и j электрода с координатами $\mathbf{z}_i, \mathbf{z}_j$.

Евклидово расстояние: ввиду постоянства координат электродов положим $d_{ij}(m,t)=d_{ij}$, где

$$d_{ij} = ||\mathbf{z}_i - \mathbf{z}_j||_2^2, \ i, j$$
 — номера электродов,

$$\mathbf{A}_{\mathbf{X},\mathbf{Z}}^*(m,t) = ig[a_{ij} ig] \in \mathbb{R}_+^{\mathcal{E} imes \mathcal{E}}, \; a_{ij} = egin{cases} d_{ij}, & ext{если } d_{ij} \leq
ho(p) \ 0, & ext{иначе.} \end{cases}$$

Линейная корреляция Пирсона:

$$\tilde{r}_{ij}(m,t_n) = \frac{\sum\limits_{k=t_n-T_w}^{t_n} (x_k - \overline{\mathbf{x}})(y_k - \overline{\mathbf{y}})}{\sqrt{\sum\limits_{k=t_n-T_w}^{t_n} (x_k - \overline{\mathbf{x}})^2 \sum\limits_{k=t_n-T_w}^{t_n} (y_k - \overline{\mathbf{y}})^2}}, \ r_{ij}(m,t_n) = |\tilde{r}_{ij}(m,t_n)|,$$

$$\mathbf{A}_{\mathbf{X},\mathbf{Z}}^*(m,t) = \left[a_{ij}(m,t)
ight] \in \mathbb{R}_+^{ extbf{E} imes extbf{E}}, \ a_{ij}(m,t) = egin{cases} r_{ij}(m,t), & ext{если } r_{ij}(m,t) \geq
ho(p) \ 0, & ext{иначе}. \end{cases}$$

Спектральная когерентность

Обозначим $\mathbf{x}=\mathbf{x}_{mi}$ и $\mathbf{y}=\mathbf{x}_{mj}$ строки матрицы \mathbf{X}_m соответствующие сигналам в отрезке времени $[t_n-T_w,\ t_n]$ в m-ом испытании для i и j электрода. Тогда:

$$\gamma_{ij}(m,t_n,f) = \frac{|S_{xy}(t_n,f)|^2}{S_{xx}(t_n,f)S_{yy}(t_n,f)},$$

 $S_{\sf xx}(t_{\sf n},f), S_{\sf xy}(t_{\sf n},f)$ — авто и кросс – спектральная функции плотности.

Рассмотрим

частотную полосу $[f_1, f_2]$:

$$\gamma_{ij}(m,t_n) = \int_{t_n}^{t_2} \gamma_{ij}(m,t_n,f) df,$$

$$\mathbf{A}_{\mathbf{X},\mathbf{Z}}^*(m,t) = ig[a_{ij}(m,t)ig] \in \mathbb{R}_+^{E imes E}, \ a_{ij}(m,t) = egin{cases} \sqrt{\gamma_{ij}(m,t)}, & \text{если } \gamma_{ij}(m,t) \geq
ho(p) \ 0, & \text{иначе.} \end{cases}$$

delta

Частично направленная когерентность

Обозначим $\mathbf{x}_m(t) = [x_{m1}(t), \dots, x_{mE}(t)]^\mathsf{T}$ набор одновременно наблюдаемых временных рядов в отрезке времени $[t_n - T_w, t_n]$ в m-ом испытании. Векторная регрессионная модель порядка q:

$$\mathbf{x}_m(t) = \sum_{k=1}^q \mathbf{W}_k \mathbf{x}_m(t-k) + \mathbf{b}(t), \ b(t) \in \mathcal{N}(\mathbf{0}, \mathbf{S}).$$

Строится преобразование Фурье матрицы коэффициентов:

$$\mathbf{W}(f) = \sum_{k=1}^q \mathbf{W}_k e^{-i2\pi fk}$$
, где f — частота.

Тогда:

$$\pi_{j\to i}(m,t_n,f) = \frac{\frac{1}{\sigma_i}|\mathbf{W}_{ij}(f)|}{\sqrt{\sum_{k=1}^q \frac{1}{\sigma_k^2} \overline{\mathbf{W}}_{kj}(f) \overline{\mathbf{W}}_{kj}^H(f)}}, \ \overline{\mathbf{W}}(f) = \mathbf{I} - \mathbf{W}(f), \ \sigma_i^2 = \mathbf{S}_{ii},$$

$$\pi_{ij}(m,t_n) = rac{1}{2} \Big(\int\limits_{t_n}^{f_2} \pi_{i o j}(m,t_n,f) df + \int\limits_{t_n}^{f_2} \pi_{j o i}(m,t_n,f) df \Big), \ [f_1,f_2]$$
 — частота.

Мера синхронизации фаз

Обозначим x(t), y(t) динамические системы, соответствующие наблюдениям сигнала \mathbf{x}_{mi} и \mathbf{x}_{mj} в отрезке времени $[t_n-T_w,\ t_n]$ в m-ом испытании.

Две динамические системы могут иметь синхронизацию фаз, даже если их амплитуды независимы. Синхронизация фаз понимается как:

$$|\phi_x(t) - \phi_y(t)| = const.$$

Аналитическое представление сигнала:

$$H(t)=x(t)+i ilde{x}(t),$$
 где $ilde{x}(t)-$ преобразование Гильберта $x(t).$

Фаза аналитического сигнала:

$$\phi(t) = \arctan\left(\frac{\tilde{x}(t)}{x(t)}\right).$$

Тогда для двух сигналов равной продолжительности:

$$p_{ij}(m,t_n)=\Big|rac{1}{T_w}\sum_{k=1}^{T_w}\exp(s(\phi_{\scriptscriptstyle X}(k\Delta t)-\phi_{\scriptscriptstyle Y}(k\Delta t)))\Big|,$$
 где Δt — шаг по времени, $s=\sqrt{-1}$.

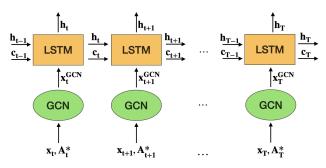
Модель GCN LSTM

Опустим номер испытания m и обозначим в момент времени t:

$$\mathcal{G}(m,t)=\mathcal{G}_t,\;\mathcal{V}(m,t)=\mathcal{V}_t,\;\mathcal{E}(m,t)=\mathcal{E}_t,$$
 $\mathbf{A}_{\mathbf{X},\mathbf{Z}}^*(m,t)=\mathbf{A}_t^*,\;\mathbf{x}_{mt}=\mathbf{x}_t\;\;-t$ -й столбец матрицы $\mathbf{X}_m.$

$$\mathbf{x}_{t}^{GCN} = GCN(\mathbf{x}_{t}) = g_{\eta} *_{\mathcal{G}_{t}} \mathbf{x}_{t} = g_{\eta}(\mathbf{L}_{t}^{*})\mathbf{x}_{t} = \sum_{k=0}^{N-1} \eta_{k} T_{k}(\tilde{\mathbf{L}}_{t}^{*})\mathbf{x}_{t}, \ \tilde{\mathbf{L}}_{t}^{*} = 2\mathbf{L}_{t}^{*}/\lambda_{t}^{max} - \mathbf{I},$$

 $\mathbf{L}_t^* \in \mathbb{R}^{E imes E}$ — матрица Лапласа, $T_k(\mathbf{ ilde{L}}_t^*)$ — полином Чебышева.



Итоговая модель декодирования

Вычислительный эксперимент

Гипотеза: Учет простраственной и функциональной структуры сигнала улучшает качество модели декодирования.

Цели:

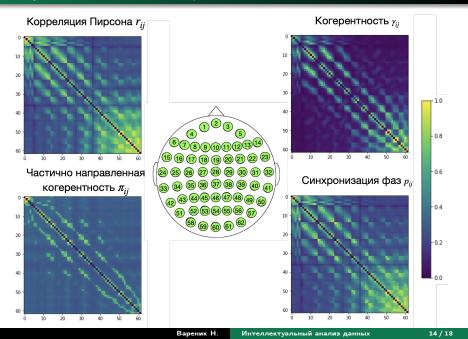
- Построить матрицы связей электродов рассматриваемыми методами,
- Оценить качество работы пространственно временной модели на основе полученных матриц.

Данные: Выборка SEED по распознаванию эмоций. В качестве стимулов использовались отрывки видео, вызывающие определенные эмоциональные отклики (позитивный, негативный или нейтральный). ЭЭГ сигнал измерялся 62 электродами, частота дискретизации 200 Hz.

Признаки: дифференциальная энтропия в 5 частотных диапазонах delta $(1-3\Gamma \mu)$, theta $(4-7\Gamma \mu)$, alpha $(8-13\Gamma \mu)$, beta $(14-30\Gamma \mu)$, gamma $(31-50\Gamma \mu)$:

$$DE(X) = -\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \log\Big(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}\Big) dx,$$
 $X \in \mathcal{N}(\mu, \sigma^2)$ — временной ряд.

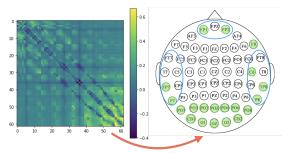
Результаты оценки матрицы связности



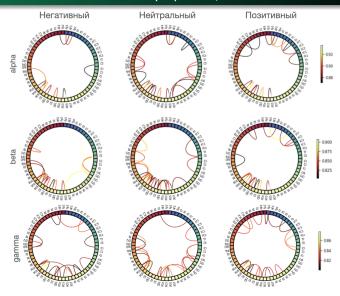
Результаты декодирования сигналов

Модель	Точность	Потери
LSTM	0.869 ± 0.010	0.268 ± 0.014
GCN LSTM: d _{ij}	0.894 ± 0.013	0.220 ± 0.012
GCN LSTM: r _{ij}	0.914 ± 0.011	0.183 ± 0.009
GCN LSTM: γ_{ij}	0.898 ± 0.010	0.214 ± 0.013
GCN LSTM: π_{ij}	0.898 ± 0.007	0.213 ± 0.012
GCN LSTM: p_{ij}	0.925 ± 0.008	0.173 ± 0.014

Разница наилучшей матрицы связности с базовой и соответствующие электроды, синим выделены целевые области ответственные за эмоциональные состояния:

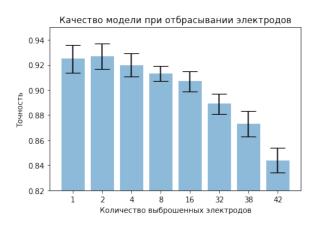


Нейробиологическая интерпретация



Zheng W. L. et al. Identifying stable patterns over time for emotion recognition from EEG Saarimaki H. et al. Discrete neural signatures of basic emotion

Применение к определению эффективного набора электродов



Видна избыточность исходного набора электродов, можно сделать вывод о возможности искючения $\sim 25\%$ электродов при небольшой петере в качестве декодирования.

Выносится на защиту

- Исследовано графовое представление сигнала, построена динамическая графовая структура.
- Проведено сравнение различных методов оценки карты связности.
- Предложена графово рекуррентная модель для решения задачи декодирования.
- Показана целесообразность использования информации о пространственной и функциональной структуре сигнала.
- Проведена нейробиологическая интерпретация.
- Рассмотрено применение графовой структуры к отбору эффективного набора электродов.