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policy
Apyq~T0(Ary1]Se)
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action a; 4

reward 7;
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Markov Decision Process

= Trajectory sy, g, S1,79, A1,S2,71, ---
" Ser1 ~ P(SesalSe)
= a; ~ m(ag|se)

= 1p =1(St, gy Se41)

= Expected return:R™ = Eg 4. [Di—o¥ 7¢]
= Value function: V*(s;) = Eg, .. 4,.. 0¥ e

= Action-state function: Q™(s¢, a;) = Eg, . q,., .7 > oy ires]
= V™(sy) = Ea; Q" (s¢,a¢)
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Bellman equation and Value iteration

= VT(sy) =1+ YEspyq [V7(s¢t+1) ]

" Q™(s¢,a¢) = 1+ VEst 11,0041 [QT(Sp41, Ap 1) |

How to solve MDP

min E ||Q(s¢, ar) — e — vQ(St41, at+1)||2

1. Start from some policy7y i

2. Evaluate it to obtain Q™

3. Improverton’ : 7'(a|s) = argmax Q" (s, a)
4. Repeat until convergence ¢
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Policy gradients

= Considera parametricpolicyw(als; 6)

= Qur goal is to maximize the expected return:
T

t
R™ = ESO:T,QO:T [Z Y Tt] — mGaX
t=0

= Policy gradient can be written as follows:

ST Tt 7
VoR™ =Egraor | Y VY V'ririVelogm(as; )
=0  1=0 i
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Stochastic approximation

= Full gradient:
VoR™ = Eoypa0r |Simo 7 WiVo log m(ai]si; 0)

= Stochasticestimate:

VoR™ = ZZ:O ViU, Vg logm(asls:; 0), E [69}27’] = VoR"

= Y. may have very different form:
= Yk=o Yt
8 T:_Ot ylrt+l
= Yty — b(s,), where b(s,) is a baseline, often b(s,) = V™(s,)
= Q™ (s, a,) — V™ (s,) — advantage function, usually intractable
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PO-MDP and Memory

= Trajectory sy, 09, Qg,S1,7o, 01,A1,52,71, 09 ...
" Ser1 ~ D(Se411S¢)
= 0 ~ p(0¢s¢)
= a, ~m(a;|o;)

=12 =71(Se, Ap, Sp41)

= Memory assumption:
= there existsa memory m; = mem (MmM;_1,0;_1)
= such that s; = f(o¢, my)



LSTM Agent

at ~ T at|mt (9A

— My m

! ! m; = mem(my_1,0¢;0p)
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Recurrent policy gradients

= Stochasticgradient estimate:

ﬁeR7T — Zfzo Vt‘I’tve log 7T(Cbt|mt; QA), my = mem<mt—17 Ot 9M)

_ \'T-t_,1
"W =2 =0 Y Te4

= Backpropagationthrough time:

~ 1
Vo BT — ZWt\I’ta og T at\mt,HA)Gt

8mt

Gt = 500 T By O
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Will this work out of box?

NO.

High variance of gradients

Usual problems with

backpropagation through time
Exploding / vanishing
gradients

Cannot work in a continuous
settings




Variance reduction

= Stochasticgradient estimate:

69}2“ = Zfzo ViU, Vg log m(as|mye; 0), my = mem(my_1,04;0)

=y, =yt y'r,.; - easyto compute, high variance
=Y, =Y tylr, ., — b(s,) - baselined estimate

lE[(ZzTEOtVlTHz)(Vej log m(at|my))?]
E[(Ve, logm(ac|my))?]

* The optimal baselineis

= Anotherimportant case: b(s;) = V™(s;)



Learning the Value function

at ~ m(at|me; 0a)

my——— my—> My—— .




Learning the Value function

oo ?@v___
o é o




Final(?) learning algorithm

Repeat until convergence:

1. Collecttrajectory {(0s, a:, 1)} -,

2. Updatepolicy parametersusingVyR = ZZ;O YU, Vg logm(aymT;04)
3. Updaterecurrent parametersusing BPTT
4
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Final(?) learning algorithm

Repeat until convergence:

1. Collecttrajectory {(os as, 1)} =g

2. Update policy parameters usingVyR = Zfzo YU, Vg logm(aymT;04)
3. Updaterecurrent parametersusing BPTT
4,

Update baseline parameters using Vo, Sy (V(mY;0v) — 3o V'ress)?

Actual (wrong) objective:

T i s
E [Z vt Tt] —E [Z Z(Ttﬂ — V(mg; HV))ZI
t=0

t=0 (=0




Learning LSTM policies

= Gradientswrt recurrent parameters are bad after K steps
= For LSTM K is larger than for RNN, but still a finite number

= Continous setting will require large amount of memory

= An obvious solutionistotruncate BPTT after K steps
= This limits the range of learned dependencies

= Gradient estimate:
= T
VoR=>,_oV:Vylogm(asm[;04)
= Consider our advantage estimator:

U =S e — V7 (st)
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Eligibility traces
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[
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Eligibility traces
"Gradient estimate:

VoR = Z;‘;O YU, Vg logm(asmT;04)

= Let’s analyze our advantage estimator

Z’Y repr — V7 (st)

K T
Z’Y Tt41 + Z Ve — V7 (sy)
1=0

I=K+1

= Without changingthe expectation of gradient we can use

U = Zfio 7l7“t+l + VK YW(SHKHZ _V(mt ;0v)

%V(my+K+130V)




Bootstrapping the Baseline

= New error function for the Baseline network

T K 2
t=0 (=0 1%

= Memory dynamicsis controlled by a second LSTM:

m, = mem(m,_,,os;0y)



Empirical results
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Latch task

= Sequences of length 100 are already hard to learn

= Eliglibility traces work sometimes, but not very stable

= Curriculumlearning:
= Train on shorter sequences

= Increase sequence length over time

= Works well even with truncated BPTT, but no guarantees
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EAT game

Fruit 1 Fruit 2 Fruit 3

Rewards

PASS




Eat game

= Given enough time LSTM can learn the optimal strategy

= Variance reduction techniques and advances optimization methods
dramatically improve convergence
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Big episode EAT

= Thisenvironmentappearedto be very tough for the LSTM agent

= Eligibility traces do work, but achieve 80-90% of the optimal score
= Couldn’t approximate the Value function well

= The number of contexts is the main bottleneck
= Cannot be handled by curriculum learning directly

= Dirty trick with setting W, = 7, worked

= Since our strategyis recurrent future rewards influence gradients attime t

= Prone to bad value function



