Deep
Reinforcement
Learning with
Memory

SERGEY BARTUNOV, HSE, MOSCOW

RL basics

Markov Decision Process

Environment

Markov Decision Process

Environment

Markov Decision Process

Agent

Environment

Markov Decision Process

Agent

Environment

Markov Decision Process

state s;

Agent

Environment

Markov Decision Process

state s; :
action a;

Agent

Environment “

Markov Decision Process

state s; :
action a;

Agent

reward 1}

Environment “

Markov Decision Process

State Sevn | action a,
. Agent
reward 1}
Environment <

Markov Decision Process

policy
Apyq~T0(Ary1]Se)

action a; 4

state s, ;

reward 7;

Environment “

Markov Decision Process

|

state dynamics
St+1 ~ P(Sex1lS¢e)

state s, ;

SHYNBEeT

uuuuuuuuu BASED ARTIFICIAL INTELLIGENCE

policy
Apyq~T0(Ary1]Se)

1

action a; 4

reward 7;

Environment “

Markov Decision Process

state dynamics
St+1 ~ P(Sex1lS¢e)

state s, ;

SHYNBEeT

uuuuuuuuu BASED ARTIFICIAL INTELLIGENCE

policy
Apyq~T0(Ary1]Se)

1

action a; 4

reward 7;

|

reward structure
1 = 1(S¢, Q¢ Ser1)

Environment “

Markov Decision Process

= Trajectory sy, g, S1,79, A1,S2,71, ---
" Ser1 ~ P(SesalSe)
= a; ~ m(ag|se)

= 1p =1(St, gy Se41)

Markov Decision Process

= Trajectory sy, g, S1,79, A1,S2,71, ---
" Ser1 ~ P(SesalSe)
= a; ~ m(ag|se)

= 1p =1(St, gy Se41)

= Expected return:R™ = Eg 4. [Di—o¥ 7¢]

Markov Decision Process

= Trajectory sy, g, S1,79, A1,S2,71, ---
" Ser1 ~ P(SesalSe)
= a; ~ m(ag|se)

= 1p =1(St, gy Se41)

= Expected return:R™ = Eg 4. [Di—o¥ 7¢]

= Value function: V™(s;) = E, .. 4, [ovtin]

Markov Decision Process

= Trajectory sy, g, S1,79, A1,S2,71, ---
" Ser1 ~ P(SesalSe)
= a; ~ m(ag|se)

= 1p =1(St, gy Se41)

= Expected return:R™ = Eg 4. [Di—o¥ 7¢]
= Value function: V*(s;) = Eg, .. 4,.. 0¥ e

= Action-state function: Q™(s¢, a;) = Eg, . q,., .7 > oy ires]
= V™(sy) = Ea; Q" (s¢,a¢)

Bellman equation and Value iteration

= VT(sy) =1+ YEspyq [Vn(5t+1) |

" Q™(s¢,a¢) = 1+ VEst 11,0041 [QT(Sp41, Ap 1) |

Bellman equation and Value iteration

= VT(sy) =1+ YEspyq [V7(s¢t+1)]

" Q™(s¢,a¢) = 1+ VEst 11,0041 [QT(Sp41, Ap 1) |

How to solve MDP

1. Start from some policy T

Bellman equation and Value iteration

= VT(sy) =1+ YEspyq [V7(s¢t+1)]

" Q™(s¢,a¢) = 1+ VEst 11,0041 [QT(Sp41, Ap 1) |

How to solve MDP

1. Start from some policy T
2. Evaluate it to obtain Q"

Bellman equation and Value iteration

= VT(sy) =1+ YEspyq [V7(s¢t+1)]

" Q™(s¢,a¢) = 1+ VEst 11,0041 [QT(Sp41, Ap 1) |

How to solve MDP

min E ||Q(s¢, ar) — e — vQ(St41, at+1)||2

Q
1. Start from some policy T
2. Evaluate it to obtain Q”/

Bellman equation and Value iteration

= VT(sy) =1+ YEspyq [V7(s¢t+1)]

" Q™(s¢,a¢) = 1+ VEst 11,0041 [QT(Sp41, Ap 1) |

How to solve MDP

ngnE 1Q(54, as) — 7 — YQ(541, at41) ||
1. Start from some policy77

2. Evaluate it to obtain Q™

3. Improve wto '’

Bellman equation and Value iteration

= VT(sy) =1+ YEspyq [V7(s¢t+1)]

" Q™(s¢,a¢) = 1+ VEst 11,0041 [QT(Sp41, Ap 1) |

How to solve MDP

HSHE 1Q(st,at) — re — yQ(St+41, at+1)||2
1. Start from some policy77

2. Evaluate it to obtain Q"

3. Improverton’ : 7'(als) = arg max Q" (s,a)

Bellman equation and Value iteration

= VT(sy) =1+ YEspyq [V7(s¢t+1)]

" Q™(s¢,a¢) = 1+ VEst 11,0041 [QT(Sp41, Ap 1) |

How to solve MDP

min E ||Q(s¢, ar) — e — vQ(St41, at+1)||2

1. Start from some policy7y i

2. Evaluate it to obtain Q™

3. Improverton’ : 7'(a|s) = argmax Q" (s, a)
4. Repeat until convergence ¢

Policy gradients

= Considera parametricpolicyw(als; 6)

Policy gradients

= Considera parametricpolicyw(als; 6)

= Qur goal is to maximize the expected return:
T

R" = ESO:T,QO:T [Z /Vtrt] — max
t=0

0

Policy gradients

= Considera parametricpolicyw(als; 6)

= Qur goal is to maximize the expected return:
T

t
R™ = ESO:T,QO:T [Z Y Tt] — mGaX
t=0

= Policy gradient can be written as follows:

ST Tt 7
VoR™ =Egraor | Y VY V'ririVelogm(as;)
=0 1=0 i

Stochastic approximation

= Full gradient:
VoR™ = Eoypa0r |Simo 7 WiVo log m(ai]si; 0)

Stochastic approximation

= Full gradient:
VoR™ = Eoypa0r |Simo 7 WiVo log m(ai]si; 0)

= Stochasticestimate:

VoR™ = Zf:o ViU, Vg logm(asls:; 0), E [69}2”] = VoR"

Stochastic approximation

= Full gradient:
VoR™ = Eoypa0r |Simo 7 WiVo log m(ai]si; 0)

= Stochasticestimate:

VoR™ = ZZ:O ViU, Vg logm(asls:; 0), E [69}27’] = VoR"

= Y. may have very different form:

Stochastic approximation

= Full gradient:
VoR™ = Eoypa0r |Simo 7 WiVo log m(ai]si; 0)

= Stochasticestimate:

VoR™ = ZZ:O ViU, Vg logm(asls:; 0), E [69}27’] = VoR"

= Y. may have very different form:

T k-t
" Lk=oV" Tk

Stochastic approximation

= Full gradient:
VoR™ = Eoypa0r |Simo 7 WiVo log m(ai]si; 0)

= Stochasticestimate:

VoR™ = ZZ:O ViU, Vg logm(asls:; 0), E [69}27’] = VoR"

= Y. may have very different form:
- Zi:o Vk_trk

T—t . 1
" Li=0V Tt+1

Stochastic approximation

= Full gradient:
VoR™ = Eoypa0r |Simo 7 WiVo log m(ai]si; 0)

= Stochasticestimate:

VoR™ = ZZ:O ViU, Vg logm(asls:; 0), E [69}27’] = VoR"

= Y. may have very different form:

T k—t
T—t. 1
" Li=0V Tt+1

= Yty — b(s,), where b(s,) is a baseline, often b(s,) = V™(s,)

Stochastic approximation

= Full gradient:
VoR™ = Eoypa0r |Simo 7 WiVo log m(ai]si; 0)

= Stochasticestimate:

VoR™ = ZZ:O ViU, Vg logm(asls:; 0), E [69}27’] = VoR"

= Y. may have very different form:
= Yk=o Yt
8 T:_Ot ylrt+l
= Yty — b(s,), where b(s,) is a baseline, often b(s,) = V™(s,)
= Q™ (s, a,) — V™ (s,) — advantage function, usually intractable

Memory problems

Markov Decision Process

State Sevn | action a,
. Agent
reward 1}
Environment <

Partially-observable
Markov Decision Process

observation o, ;

‘ Agent
reward 1}
state Sy q Environment <

action a;

Partially-observable
Markov Decision Process

observation o, ; action a
t

Agent

reward 1}

Environment “

Partially-observable
Markov Decision Process

observation o, ; action a
t

Agent

reward 1}

Environment “

PO-MDP and Memory

= Trajectory sy, 09, Qg,S1,7o, 01,A1,52,71, 09 ...
" Ser1 ~ D(Se411S¢)
= 0 ~ p(0¢s¢)
= a, ~m(a;|o;)

=12 =71(Se, Ap, Sp41)

PO-MDP and Memory

= Trajectory sy, 09, Qg,S1,7o, 01,A1,52,71, 09 ...
" Ser1 ~ D(Se411S¢)
= 0 ~ p(0¢s¢)
= a, ~m(a;|o;)

=12 =71(Se, Ap, Sp41)

= Memory assumption:
= there existsa memory m; = mem (MmM;_1,0;_1)
= such that s; = f(o¢, my)

LSTM Agent

at ~ T at|mt (9A

— My m

! ! m; = mem(my_1,0¢;0p)

Recurrent policy gradients

= Stochasticgradient estimate:

ﬁeR7T — Z;}TZO Vt‘I’tVH log 7T(Cbt|mt; QA), my = mem("nt—la Ot 9M)

_ \'T-t_,1
"W =2 =0 Y Te4

Recurrent policy gradients

= Stochasticgradient estimate:

ﬁeR7T — Zfzo Vt‘I’tve log 7T(Cbt|mt; QA), my = mem<mt—17 Ot 9M)

_ \'T-t_,1
"W =2 =0 Y Te4

= Backpropagationthrough time:

~ 1
Vo BT — ZWt\I’ta og T at\mt,HA)Gt

8mt

Gt = 500 T By O

Will this work out of box?

Will this work out of box?

NO

o
b)

Will this work out of box?

NO.

High variance of gradients

Usual problems with

backpropagation through time
Exploding / vanishing
gradients

Cannot work in a continuous
settings

Variance reduction

= Stochasticgradient estimate:

69}2“ = Zfzo ViU, Vg log m(as|mye; 0), my = mem(my_1,04;0)

=y, =yt y'r,.; - easyto compute, high variance
=Y, =Y tylr, ., — b(s,) - baselined estimate

lE[(ZzTEOtVlTHz)(Vej log m(at|my))?]
E[(Ve, logm(ac|my))?]

* The optimal baselineis

= Anotherimportant case: b(s;) = V™(s;)

Learning the Value function

at ~ m(at|me; 0a)

my——— my—> My—— .

Learning the Value function

oo ?@v___
o é o

Final(?) learning algorithm

Repeat until convergence:

1. Collecttrajectory {(0s, a:, 1)} -,

2. Updatepolicy parametersusingVyR = ZZ;O YU, Vg logm(aymT;04)
3. Updaterecurrent parametersusing BPTT
4

Update baseline parameters using Vo, S o (V(m);0v) — 31 Y'7riqa)?

Final(?) learning algorithm

Repeat until convergence:

1. Collecttrajectory {(os as, 1)} =g

2. Update policy parameters usingVyR = Zfzo YU, Vg logm(aymT;04)
3. Updaterecurrent parametersusing BPTT
4,

Update baseline parameters using Vo, Sy (V(mY;0v) — 3o V'ress)?

Actual (wrong) objective:

T i s
E [Z vt Tt] —E [Z Z(Ttﬂ — V(mg; HV))ZI
t=0

t=0 (=0

Learning LSTM policies

= Gradientswrt recurrent parameters are bad after K steps
= For LSTM K is larger than for RNN, but still a finite number

= Continous setting will require large amount of memory

= An obvious solutionistotruncate BPTT after K steps
= This limits the range of learned dependencies

= Gradient estimate:
= T
VoR=>,_oV:Vylogm(asm[;04)
= Consider our advantage estimator:

U =S e — V7 (st)

Eligibility traces

"Gradient estimate:

VoR = Z;‘;O YU, Vg logm(asmT;04)

Eligibility traces
"Gradient estimate:

VoR = Z;‘;O YU, Vg logm(asmT;04)

= Let’s analyze our advantage estimator

E :’Y T+l — St

Vre + Z V1 — V7 (se)
1=0 I=K+1

[
ER

Eligibility traces
"Gradient estimate:

VoR = Z;‘;O YU, Vg logm(asmT;04)

= Let’s analyze our advantage estimator

Z’Y repr — V7 (st)

K T
Z’Y Tt41 + Z Ve — V7 (sy)
1=0

I=K+1

= Without changingthe expectation of gradient we can use

U = Zfio 7l7“t+l + VK YW(SHKHZ _V(mt ;0v)

%V(my+K+130V)

Bootstrapping the Baseline

= New error function for the Baseline network

T K 2
t=0 (=0 1%

= Memory dynamicsis controlled by a second LSTM:

m, = mem(m,_,,os;0y)

Empirical results

Latch task

class + noise noise class query reward

0.24 -0.92 1.2 1.123 -0.05 ?

v

time

Latch task

class + noise noise class query reward

0.24 -0.92 1.2 1.123 -0.05 ?

class = +1 reward = +1

»

time

Latch task

class + noise noise class query reward

0.24 -0.92 1.2 1.123 -0.05 ?

class =-1 reward = -1

»

time

Latch task

= Sequences of length 100 are already hard to learn

Latch task

= Sequences of length 100 are already hard to learn

= Eliglibility traces work sometimes, but not very stable

Latch task

= Sequences of length 100 are already hard to learn

= Eliglibility traces work sometimes, but not very stable

= Curriculumlearning:
= Train on shorter sequences

= Increase sequence length over time

= Works well even with truncated BPTT, but no guarantees

EAT game

Fruit 1 Fruit 2 Fruit 3

=
=

Rewards

EAT game

Fruit 1 Fruit 2 Fruit 3

=
<)

Rewards

EAT game

Fruit 1 Fruit 2 Fruit 3

=
<)

Rewards - 1

EAT game

Fruit 1 Fruit 2 Fruit 3

<)
<)

Rewards - 1

EAT game

Fruit 1 Fruit 2 Fruit 3

< @
)

Rewards +1

EAT game

Fruit 1 Fruit 2 Fruit 3

Rewards +1

EAT game

Fruit 1 Fruit 2 Fruit 3

Rewards +1

EAT game

Fruit 1 Fruit 2 Fruit 3

EAT game

Fruit 1 Fruit 2 Fruit 3

Rewards

PASS

Eat game

= Given enough time LSTM can learn the optimal strategy

= Variance reduction techniques and advances optimization methods
dramatically improve convergence

Big episode EAT

F ruit 2 Fruit 3

Big episode EAT

=
<

s +1

Big episode EAT

F ruit 2

-n
I

'y @ c

—

%’ Y w

Big episode EAT

= Thisenvironmentappearedto be very tough for the LSTM agent

Big episode EAT

= Thisenvironmentappearedto be very tough for the LSTM agent

= Eligibility traces do work, but achieve 80-90% of the optimal score
= Couldn’t approximate the Value function well

Big episode EAT

= Thisenvironmentappearedto be very tough for the LSTM agent

= Eligibility traces do work, but achieve 80-90% of the optimal score
= Couldn’t approximate the Value function well

= The number of contexts is the main bottleneck
= Cannot be handled by curriculum learning directly

Big episode EAT

= Thisenvironmentappearedto be very tough for the LSTM agent

= Eligibility traces do work, but achieve 80-90% of the optimal score
= Couldn’t approximate the Value function well

= The number of contexts is the main bottleneck
= Cannot be handled by curriculum learning directly

= Dirty trick with setting W, = 7, worked

= Since our strategyis recurrent future rewards influence gradients attime t

= Prone to bad value function

