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How	to	solve	MDP

1. Start	from	some	policy	𝜋
2. Evaluate	it	to	obtain	𝑄4
3. Improve	𝜋 to	𝜋G ∶
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Policy	gradients
§ Consider	a	parametric	policy	𝜋 𝑎 𝑠; 𝜃

§ Our	goal	is	to	maximize	the	expected	return:

§ Policy	gradient	can	be	written	as	follows:

R⇡
= Es0:T ,a0:T [

TX

t=0

�trt] ! max

✓
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Stochastic	approximation
§ Full	gradient:

§ Stochastic	estimate:		

§ Ψ" may	have	very	different	form:
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C?0 − 𝑏(𝑠"),	where	𝑏(𝑠") is	a	baseline,	often	𝑏 𝑠" = 𝑉4(𝑠")
§ 𝑄4 𝑠", 𝑎" − 𝑉4(𝑠") – advantage	function,	 usually	intractable
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§ Trajectory	𝑠0, 𝑜0, 𝑎0, 𝑠&, 𝑟0, 𝑜&,𝑎&,𝑠1, 𝑟&, 𝑜1…
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§Memory	assumption:
§ there	exists	a	memory
§ such	that st ⇡ f(ot,mt)

mt = mem(mt�1, ot�1)
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Recurrent	policy	gradients
§ Stochastic	gradient	estimate:

§ Ψ" = ∑ 𝛾C𝑟"%C>M"
C?0

§ Backpropagation through	time:

er✓R
⇡
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PT
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t
 tr✓ log ⇡(at|mt; ✓A), mt = mem(mt�1, ot; ✓M )
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=

TX

t=0

�t
 t
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@mt
Gt
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@mt

@✓M
+

@mt
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§ High	variance	of	gradients
§ Usual	problems	with	

backpropagation through	 time
§ Exploding	/	vanishing	

gradients
§ Cannot	work	in	a	continuous	

settings



Variance	reduction
§ Stochastic	gradient	estimate:

§ Ψ" = ∑ 𝛾C𝑟"%C>M"
C?0 - easy	to	compute,	high	variance

§ Ψ" = ∑ 𝛾C𝑟"%C>M"
C?0 − 𝑏 𝑠" - baselined estimate

§ The	optimal	baseline	is	
𝔼[(∑ RSTBES9UB

SVW )(XYZ [\]4(:B| B̂))_]

𝔼[(∇YZ [\]4(:B|^B))_]

§ Another	important	case:𝑏 𝑠" = 𝑉4(𝑠")
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Learning	the	Value	function

𝑜& 𝑜1 𝑜a
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Final(?)	learning	algorithm
Repeat	until	convergence:
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2. Update	policy	parameters	using	

3. Update	recurrent	parameters	using	BPTT
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Final(?)	learning	algorithm
Repeat	until	convergence:

1. Collect	trajectory	{(𝑜", 𝑎", 𝑟")}"?0>

2. Update	policy	parameters	using	

3. Update	recurrent	parameters	using	BPTT

4. Update	baseline	parameters	using

Actual	(wrong)	 objective:

𝔼 d𝛾"
>

"?0

𝑟" − 𝔼 dd 𝑟"%C − 𝑉(𝑚"; 𝜃e) 1
>M"
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>

"?0
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Learning	LSTM	policies
§ Gradients	wrt recurrent	parameters	are	bad	after	K	steps
§ For	LSTM	K	is	larger	than	for	RNN,	but	still	a	finite	number

§ Continous setting	will	require	large	amount	of	memory

§ An	obvious	solution	is	to	truncate	BPTT	after	K	steps
§ This	limits	the	range	of	 learned	dependencies

§ Gradient	estimate:

§ Consider	our	advantage	estimator:

er✓R =

PT
t=0 tr✓ log ⇡(at|m⇡

t ; ✓A)

 t =
PT

l=0 �
lrt+l � V ⇡(st)



Eligibility	traces
§Gradient	estimate:
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Eligibility	traces
§Gradient	estimate:

§ Let’s	analyze	our	advantage	estimator
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Eligibility	traces
§Gradient	estimate:

§ Let’s	analyze	our	advantage	estimator

§Without	changing	the	expectation	of	gradient	we	can	use

 t =
PK

l=0 �
lrt+l + �K V ⇡(st+K+1)| {z }

⇡V (mV
t+K+1;✓V )

�V (mV
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=
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Bootstrapping	the	Baseline
§ New	error	function	for	the	Baseline	network

§Memory	dynamics	is	controlled	by	a	second	LSTM:

m

V
t = mem(mV

t�1, ot; ✓V )

TX

t=0

 
KX

l=0

�lrt+l + �KV (mV
t+K+1; ✓M )� V (mV

t ; ✓M )

!2

! min
✓V



Empirical	results
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Latch	task
§ Sequences	of	length	100	are	already	hard	to	learn

§ Eliglibility traces	work	sometimes,	but	not	very	stable

§ Curriculum	learning:
§ Train	on	shorter	sequences
§ Increase	sequence	 length	over	time
§ Works	well	even	with	truncated	BPTT,	but	no	guarantees	
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EAT	game

Rewards
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Eat	game
§ Given	enough	time	LSTM	can	learn	the	optimal	strategy

§ Variance	reduction	techniques	and	advances	optimization	methods	
dramatically	improve	convergence
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§ Eligibility	traces	do	work,	but	achieve	80-90%	of	the	optimal	score
§ Couldn’t	approximate	the	Value	function	well

§ The	number	of	contexts	is	the	main	bottleneck
§ Cannot	be	handled	by	curriculum	 learning	directly

§ Dirty	trick	with	setting	Ψ" = 𝑟"	worked

§ Since	our	strategy	is	recurrent	future	rewards	influence	 gradients	at	time	t

§ Prone	to	bad	value	function


