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The task of dependences estimation
on the sets of real-world objects

A set of real-world objects w € Q.
A set of hidden characteristic values y € Y.
Real existing hidden function y(w): Q — Y.
Observer desire:
To have a tool for estimating the hidden characteristic for the real objects
V():Q—->Y; Y(w)=y(w)—error.

Generalized linear approach

Observer (his/her computer) interpret a real-world objects as points in some linear space:
X(w): Q2 — X — linear space.

- addition is commutative X'+ x" = x"+ X'

and associative (X'+Xx")+x"=x"+(x"+x");

- identity element of addition X+ ¢ = X, Cp =¢;

- Inverse element of addition (—x) + X = ¢;

- compatibility of scalar multiplication with field multiplication c¢'(c"x) = (c'c") x;

- Identity element of scalar multiplication 1x = X

- distributivity of multiplication and addition (¢’ +c")x =c¢’x+c¢"x, ¢(x'+ x") =cx’+cx".



Generalized Linear Approach

Linear space of real-world object perception

Observer (his/her computer) interpret a real-world objects as points in some linear space:
X(m): 2 — X — linear space.

— X' +X"=X"+x", (X+X")+X"=x"+(X"+X");

—zero element X+op=X,cd=¢, (—X)+XxX=6;

—c'(c"X)=(cc")x, Ix=x, Ox=¢;

—(c"+c")x=c'x+c"x, (X' +x")=cx"+cx".

Indefinite scalar product

X,v € X — two arbitrary points in linear space,
K(X,7):XxX — R - scalar function of two arguments,
(1) K(x,7)=K(v, x) —symmetry,

(2) K(x, c'v'+c"0") =c'K(x,0") +c"K(x,v") — bilinearity.

If suggest
(3) K(x,%) =0, then it will be common inner product, so \/K(x, x) =|/x|| — is a norm.

For our approach it is enough just (1) and (2).
It is so-called indefinite scalar product in the pseudo-Euclidean space. There is no norm.



General Linear Model of Dependency
The object in linear space | X(®) € X — just observer imagination
Inner product (indefinite) | K(x,v): XxX— R — just observer imagination

Parameters of model v e X — directional point (vector) in the same space
of dependency (v,b) b € R — model shift (intercept)
@) , g

Generalized linear feature of object z(x,v,b) =K(x, v) +b: X
Goal characteristic of object y(®) € Y — given by nature.

Link function,
Usually convex on z

q(y,z): Y xR — R™ — just observer imagination

Parametric Loss function q(y, x,v,b) =q(y,z(x,v,b)): Y xX (@b) g
Decision rule y(x|wv,b) = argmlnq(y,x 0v,b): X (v.b) > Y

Training set (X,Y)_{(x(oo ) y(oo D)=0x.;), J=1,...,N}

Family of | d

Pty o convex Tegu arize V(v|u): X—E 5 R* — just observer imagination

Training process — find (v e X,b e R):

N
Minimization of regularized empirical Y (@) + e a(y;.z(x, 0,b)) = min(w,b),
risk = z(x;,0,b) = K(X;,0) +b

The criterion is convex if regularized function V (v | 1) and link function q(y, z) are convex
onveXand zelR.



Objects Embedding into a Linear Space

1. Arbitrary pairwise function of objects comparing
Set of real-world objects ® e Q
The pairwise comparing function in symmetric S(®',®") =S(®",®): OAxQ >R
Let us choose an arbitrary element as its “center” ¢ € QQ
Two-argument commonality symmetric function for the center ¢ € Q:

K, (@, o) :%[S(w’,d))+S(a)”,¢)—S(0)’,m”)]: OxQ R

Let us assume, for simplicity sake, that the set of real-world objects finite |Q| =M
(probably, a VERY huge number!)

The symmetric commonality matrix for some center ¢ € Q2.

K. = K¢(o?1,(01) K"’((D%’(DM) (réégalerrl]a/ranlgg;ssare &ueR, 1=1... M,
. ' gigen vectors are Li=],

= : . : y o
Kooy, 0) - Koy, 0y) ) orthonormal Zgi €R ’Z¢"Z¢’j:{0,i¢j.

Eigen values in decrease order &, >0,...,&,, 20,&,, ., <0,..,&,,, <0

Vo Vo

positive negative

The pair of integers p, +q, =M - signature of commonality matrix
Theorem: The signature of matrix K, does not depend on the choice of the center ¢ € €2.

. M =
Matrix K, =>"" &,2,:24, = > &,:2,:Zy; (MxM) - VERY huge!




Objects Embedding into a Linear Space

1. Arbitrary pairwise function of objects comparing
Set of real-world objects ® e Q

The pairwise comparing function in symmetric S(®',®") =S(®",®): OAxQ >R
Let us choose an arbitrary element as its “center” ¢ € QQ
Two-argument commonality symmetric function for the center ¢ € Q2.

K, (o, ") = %[S((z)’,d)) S, 0)~S(@,0)]: AxQ >R
Let the set of real-world objects finite |Q| =M (probably, a VERY huge number!)

The pair of integers p, +q, =M - signature (does not depend on center)

. M >y .
Matrix K, => " &,2,.24, = >~ &.2,Zy; (MxM) —is very huge.
Let assume K, as a set of inner products

T T
XeJ o Xoo oor o X, d X : : :
K — ¢.1 P 0.1 . ¢.1 P o.M ] _( |ID><IO OpX(M_p) ]_ |dent|ty matrix
¢ ' ' ' U0 | of signature p
T T M—p)x M—p)x(M —
X¢,M‘Jpx¢,1 X¢,M‘Jpx¢,|v| M-p)xp ' (M—p)x(M~p)

So, we associate the elements of arbitrary finite set Q={w,,..., 0, },
d € Q — center, with M -dimensional vectors of real features of objects
Xg1= Xy, ERY oo Xy = X, , €RY. Zero element — vector of x, e R".



Objects Embedding into a Linear Space

1. Arbitrary pairwise function of objects comparing
Set of real-world objects ® e Q
The pairwise comparing function in symmetric S(®',®") =S(®",®): OAxQ >R
Let us choose an arbitrary element as its “center” ¢ € QQ
Two-argument commonality symmetric function for the center ¢ € Q2.

K, (o, ") = %[S((z)’,d)) S, 0)~S(@,0)]: AxQ >R
Let the set of real-world objects finite |Q| =M (probably, a VERY huge number!)

So, we associate the elements of arbitrary finite set Q={w,,..., 0, },
¢ € Q2 — center, with M -dimensional vectors of real features of objects

Xp1= Xy eRM Xom = Xo o, eR™. Zero element — vector of x, eRY,

Embeddlng In to Ilnear space, with two-argument function

K(x',x")=x"J x": R" xR" R  with properties:

symmetry K(x',x")=K(x",x),

bilinearity K(c'x"+c¢"x", x") =c'K(x’, x")+c"K(x",x").

Not holds K(x,x)>0.

So it Is indefinite inner products.

Pseudo-Euclidean linear space R™ based on Q ={a,,...,®,, }. There is no norm.



Objects Embedding into a Linear Space

1. Arbitrary pairwise function of objects comparing
Set of real-world objects ® e Q
The pairwise comparing function in symmetric S(®',®") =S(®",®): OAxQ >R
Let us choose an arbitrary element as its “center” ¢ € QQ
Two-argument commonality symmetric function for the center ¢ € Q:

K, (o, ") = %[S(w’,d)) S, 0)~S(@,0)]: AxQ >R
Let the set of real-world objects finite |Q| =M (probably, a VERY huge number!)

Inner product (indefinite) | K(x,7): XxX— R — just observer imagination

Parameters of model v € X — directional point (vector) in the same space
of dependency (v,b) b € R — model shift (intercept)

Generalized linear characteristic of object z(x,v,b) =K(X,v)+b: X (v.) > R
How we can search the directional vector in imaginary space v € X?
Basic set of the objects {ay,..., ) } = Q, and their mapping image { X, (e{),..., X, (e)}.

Directional vector — linear combination of images N N
(fancies) of basic objects v(a) = Z:;,ai X, (@), Zﬂ:ai =0.

Theorem: Generalized linear _ 1 0 o
characteristic of object z(e,a,b) = 5 éaiS(m, ®;)+D, ;ai =0.

So, the embedding into linear space is just our fantasy!




Objects Embedding into a Linear Space

2. Distance pairwise function of objects comparing
Set of real-world objects o € Q.

Now as before, the comparison function S(®',®") = S(®",®"): QxQ — R symmetric.
Additional requirements:

non-negativity S(o’,®") >0, zero value for the same argument S(w,®)=0.

Let us note the distance as d(o',®") = \/ S(o',®").

Central element ¢ € Q.

Two-argument commonality symmetric function for the center ¢ € Q2:

K, (o, ") = %[dz((o’,d)) +d2(0",9) - 07 (0,0 ] QxQ >R
Let the set of real-world objects finite |Q| =M (probably, a VERY huge number!)

There is no change in theoretical speculations.

Inner product (indefinite) | K(Xx,7): XxX— R — observer fantasy

Parameters of model v € X — directional point (vector) in the same space
of dependency (v,b)  |b eR — model shift (intercept)

Basic set of the objects {ay,..., ) | = Q, and their mapping image { X, (e{),..., X, (e)}.
Theorem: Generalized linear

AN A2 0 S
characteristic of object 2(w,a,b) = zéaid (o, @) +D, ;ai =0.

So, the embedding into linear space is just our fantasy!
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Objects Embedding into a Linear Space

3. Pairwise function of objects comparing is a metric
Set of real-world objects o € Q.

Now as before, the comparison function S(®',®") =S(®",®): OAxQ >R
Additional requirements:

S(w, ) =0, triangle inequality S(o',®") + S(®",®") > S(®',®").

Let us note the distance as d(o',®") = \/ S(o',®").

Central element ¢ € Q.
Two-argument commonality symmetric function for the center ¢ € Q2:

K, (o, ") = %[dz((o’,d)) +d2(0",9) - 07 (0,0 ] QxQ >R
Let the set of real-world objects finite |Q| =M (probably, a VERY huge number!)

There is no change in theoretical speculations.

Inner product (indefinite) | K(Xx,7): XxX— R — observer fantasy

Parameters of model v € X — directional point (vector) in the same space
of dependency (v,b)  |b eR — model shift (intercept)

Basic set of the objects {ay,..., ) | = Q, and their mapping image { X, (e{),..., X, (e)}.

Theorem: Generalized linear R S T 0 o
characteristic of object 2(w,a,b) = 5 ;aid (o, @) +D, ;ai =0.

So, the embedding into linear space is just our fantasy!
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Training Criterion: Minimum of Empirical Regularized Risk
Set of objects o e Q3, pairwise comparison function S(o',®"): OxQ — R.

Basic set There is no information about goal characteristic. Just
{mio,i =1,..., n} cQ matrix of pairwise comparisons | S(w;, ®,), I,k =1,..., n]
Training set (a part of basic set) | The known values of goal characteristic y(w;) € Y, and
{OJ,- =1, N} cQ matrix of pairwise comparisons _S((oj o), j,1=1.., N]

Embedding (just mental) of objects into linear imaginary space

with inner product, in general with indefinite inner product:

X(®): Q- X, K(x',x"): XxX— R —directly following from S(o',®»").
Generalized linear characteristic of object z(x;,v,b) = K(x;,v) +b,

v € X —sought for directional vector, b € R — sought for shift.

Link function defines by observer g(y,z): YxR —R", convex on z.

Regularized function defines by observer V(v |n): X > R”

Training — finding (v € X,b e R) by the N |
criterion of minimum regularized empirical |V (1) + CZCI(Y,- ,2(X;,,b)) — min(o,b)
risk =

Parametric representations of directional vector v(a) = Zai X, (), Zai =0.
i=1 i=1
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Training Criterion: Minimum of Empirical Regularized Risk
Set of objects o e Q3, pairwise comparison function S(o',®"): OxQ — R.

Basic set There is no information about goal characteristic. Just
{mio,i =1,..., n} cQ matrix of pairwise comparisons | S(w;, ®,), I,k =1,..., n]
Training set (a part of basic set) | The known values of goal characteristic y(w;) € Y, and
{OJ,- =1, N} cQ matrix of pairwise comparisons _S((oj o), j,1=1.., N]

Link function defines by observer g(y,z): YxR —R", convex on z.
Regularized function defines by observer V(v |n): X > R”

Training — finding (v € X,b e R) by the |
criterion of minimum regularized empirical |V (2 1) + CZCI(YJ- 2(X;,0, b)) — min(v,b)
risk )

Parametric representations of directional vector v(a) = Za (coio), Zai =0.
i=1

Convex parametric regularized function V(a lp): R" —> IR%*

Parametric training: V(alu) +CZOI(YJ 2(0;,a, b))+b — min(a,b),

Search (acR",b<R), z(w;,a, b) Z(S(m ®))a; +b, convex criterion.

=1
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Selection of subset of basic objects:
L, and L, regularization combining

Elastic Net regularization:  V(a|p)=> a’+p> |a|, u>0 — selectivity parameter.
i=1 i=1

Training criterion: Zn:ai2+pzn:|ai|+iq(yj,z(ooj,a,b)), Z((oj,a,b)zzn:(S((oj,w?))ai+b.
i=1 i=1 j=1 i=1

Theorem. Let’s values of (,,...,A, ) are decision of dual task of convex programming:

%i%min{“/z_'_ikixii’ 0, M/Z_iijij}} _Zmln(q(ypz)_'_}\‘ Z)_)mln(kl’ )

N concave onA
Z}“j =0.
j=1

Then

N\

(Z?zlijS(oaj,m?)+u/2)<o,Z?zlijS(mj,@?)<—u/2 —Z(Z 5 g e
8=40, —p/2<Y " A S(w;,0f) <p/2, 8%
\(Z,—N=1ijs(®,-,®?)—u/2)>0,ZL?ZJ.S(@J.,@?)M/; Z) —argefgm(q(y, 2)+1.,2).

As larger u >0, then more the selectivity degree of basic objects.

N
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Link Functions for Some Particular Types of Goal Characteristic
Link function q(y,z): YxR — R"™ — observer fantasy

a(y,z)

1) Regression analysis.
Goal characteristic y e Y =R — real number.

q(y.z) =(y-z)".

2) Two class pattern recognition task.
Goal characteristic y e Y ={-1,1} — class index.

Logistic regression:
q(y,z) =In[1+exp(-yz)].

3) Two class pattern recognition task.
Goal characteristic y e Y ={-1,1} — class index.
Support vector machine:

1-vyz, 1-yz >0,

0, 1-yz<0.

q(y,z)=max|0, 1-yz|=
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Thank you for your attention!



