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K-means algorithm

Suppose we want to cluster our data into g clusters.

Cluster i has a center µi , i=1,2,...g.

Consider the task of minimizing

N∑
n=1

ρ(xn, µzn)
2 → min

z1,...zN ,µ1,...µg
(1)

where zi ∈ {1, 2, ...g} is cluster assignment for xi and µ1, ...µg
are cluster centers.

Direct optimization requires full search and is impractical.

K-means is a suboptimal algorithm for optimizing (1).
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K-means algorithm

Initialize µj, j = 1, 2, ...g.

repeat while stop condition not satisfied:
for i = 1, 2, ...N:

find cluster number of xi:
zi = argminj∈{1,2,...g} ||xi − µj ||

for j = 1, 2, ...g:

µj =
1∑N

n=1 I[zn=j]

∑N
n=1 I[zn = j ]xi

Possible stop conditions:

cluster assignments z1, ...zN stop to change (typical)

maximum number of iterations reached

cluster means {µi , i = 1, 2, ...g} stop changing

signi�cantly
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Dynamic K-means algorithm

Initialize µj, j = 1, 2, ...g, zi = 0, i = 1, 2, ...N

repeat while stop condition not satisfied:
for i = 1, 2, ...N:

find cluster number of xi:
z ′i = argminj∈{1,2,...g} ||xi − µj ||
if z ′i ! = zi:

recalculate cluster means µzi and µz′i
:

µzi =
1∑N

n=1 I[z′n=zi ]

∑N
n=1 I[z

′
n = zi ]xi

µz′i
= 1∑N

n=1 I[z′n=z′i ]

∑N
n=1 I[z

′
n = z ′i ]xi

zi = z ′i

Converges in less iterations, situation when no objects correspond

to some cluster is impossible.
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Initialization of cluster centers

1 We can initialize {µi , i = 1, 2, ...g} with g randomly chosen

measurements without replacement (typical)

2 Alternatively we can initialize {µi , i = 1, 2, ...g} with most

distant set of points:

Estimate µ = 1
N

∑N
i=1 xi.

set µ1 = argmaxx∈x1,...xN ρ(µ, x)

set µ2 = argmaxx∈{x1,...xN}{ρ(µ1, x)}
set µ3 = argmaxx∈{x1,...xN}{ρ(µ1, x) + ρ(µ2, x)}
......................

set µg = argmaxx∈{x1,...xN}{
∑g−1

i=1 ρ(µi , x)}
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K-means properties

Only local optimum is found

Results depends on initialization

It is common to run algorithm multiple times with di�erent
initializations and then select the result minimizing criterion
in (1).

Complexity: O(NDgI ), where g is the number of clusters and

I is the number of iterations. Why?

If clusters exist, algorithm converges with few iterations and
complexity is O(NDg)
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Example of K-means
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Example of K-means

9/35



Clustering - Victor Kitov

K-means

Example of K-means
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Example of K-means
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Gotchas

K-means assumes that clusters are convex:

It always �nds clusters even if none actually exist

need to control cluster quality metrics
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K-means for non-convex clusters
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K-means for data without clusters
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K-means and EM algorithm

Initialize µj, j = 1, 2, ...g.

repeat while stop condition not satisfied:
for i = 1, 2, ...N:

find cluster number of xi:
zi = argminj∈{1,2,...g} ||xi − µj ||

for j = 1, 2, ...g:

µj =
1∑N

n=1 I[zn=j]

∑N
n=1 I[zn = j ]xi

K-means is EM-algorithm when:

applied to Gaussians
with equal priors
with unity covariance matrices
with hard clustering
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Hierarchical clustering

Hierarchical clustering may be:

top-down

hierarchical K-means

bottom-up

agglomerative clustering
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Agglomerative clustering
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Agglomerative clustering - distances

Consider clusters A = {xi1 , xi2 , ...} and B = {xj1 , xj2 , ...}.
We can de�ne the following natural distances

nearest neighbour (or single link)

ρ(A,B) = min
a∈A,b∈B

ρ(a, b)

furthest neighbour (or complete-link)

ρ(A,B) = max
a∈A,b∈B

ρ(a, b)

group average link

ρ(A,B) = mean a∈A,b∈Bρ(a, b)

centroid distance (µU = 1

|U|
∑

x∈U x)

ρ(A,B) = ρ(µA, µB)

median distance (mU = medianx∈U{x})
ρ(A,B) = ρ(ma,mb)
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Agglomerative clustering - distance properties

Suppose we modify distance ρ(x , x ′) with monotone

transformation F : ρ′(x , x ′) = F (ρ(x , x ′)). Which of the

cluster distances will not be a�ected by this change?

Lance-Williams recurrence formula:

ρ(A ∪ B,C ) can be computed in O(1) time using
ρ(A,C ), ρ(B,C ) and ρ(A,B)
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Agglomerative clustering - distance properties

nearest neighbour may create stretched clusters

furtherst neighbour creates very compact clusters.

group average link, centroid and median distance give the

compromise.

however centroid and median distance may lead to

non-monotonous joining distance sequences in agglomerative

algorithm.

in short - group average link is preferred.
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Spectral clustering - example
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Description

Spectral clustering reiles upon similarity matrix W between

objects.

Similarity matrix <-> weighted connection graph

Examples:

nodes represent people, edge weights - how much they
communicate
nodes represent web-pages, edge weights - scalar products of
TF − IDF
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Similarity matrix calculation

‖xi − xj‖ < threshold

RBF

based on nearest neighbours
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Graph with disjoint components
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Graph Laplacian

W = W T , wij ≥ 0 - the similarity between object i and
object j .

De�ne D = diag{d1, ...dN}, where di =
∑N

j=1
wij -weighted

degree of node i .

De�ne graph Laplacian

L = D −W

Properties of graph Laplacian:

it is symmetric
It has eigenvector 1 ∈ RN consisting of ones with eigenvalue 0.

Why?

it is positive semi-de�nite: ∀f ∈ RN : f TLf ≥ 0.
L has eigenvalues λ1 ≥ λ2 ≥ ... ≥ λN = 0
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Positive semi-de�niteness of Laplacian

Consider arbitrary f ∈ RN :

f TLf = f TDf − f TWf =
∑
i

di f
2

i −
∑
i ,j ,

fi fjwij =

1

2

∑
i

di f
2

i − 2
∑
i ,j

wij fi fj +
∑
j

dj f
2

j

 =

1

2

∑
i ,j

wij f
2

i − 2
∑
i ,j

wij fi fj +
∑
j ,i

wji f
2

j

 =

1

2

∑
i ,j

wij f
2

i − 2
∑
i ,j

wij fi fj +
∑
i ,j

wij f
2

j

 =

1

2

∑
i ,j

wij(fi − fj)
2 ≥ 0

(2)
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Eigenvectors of Laplacian

Consider eigenvector f corresponding to eigenvalue λ = 0.

f TLf = λf T f = 0

Using (2) we have that

0 = f TLf =
1

2

∑
i ,j

wi ,j (fi − fj)
2 (3)

If objects i and j are connected on the graph, there exists a

path with wuv > 0 along the path and from (3) it should be

that fi = fj .

So the set of eigenvectors of L is spanned by indicator vectors

IA1 , IA2 , ...IAK
where Ai is i-th isolated region on the graph.

Order of λ = 0 gives the number of isolated components.

29/35



Clustering - Victor Kitov

Spectral clustering

Spectral clustering algorithm:

1 Find order K of λ = 0

2 Find set of eigenvectors v1, ...vK corresponding to λ = 0

3 Cluster rows of V = [v1, ...vK ]

4 Each row corresponds to object with the same index. Found

clustering is the �nal clustering of initial objects.
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Spectral clustering (unnormalized)
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Practical application

L′ = D−1L is considered instead of L (�Normalized� Laplacian)

to account for di�erent connectivity levels of di�erent nodes

1 Most often singular values of L′ are not exactly zero, but close

to zero. So we select K smallest eigenvalues and

corresponding K smallest eigenvectors.

2 Cluster rows of [v1, ...vK ]

3 Found clustering is applied to objects with the same indexes.

32/35



Clustering - Victor Kitov

Spectral clustering

Normalized spectral clustering
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Example
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