xgBoost - Victor Kitov

xgBoost

Victor Kitov

1/10

xgBoost - Victor Kitov

Introduction

@ xgBoost - one of many open source realizations of gradient
boosting.

@ Very successful:

e among 29 kaggle competitions on Kaggle in 2015 17 winning
solutions used xgBoost and among these 8 used only xgBoost.

@ Success reasons:

© optimization criteria is flexible enough to fit any loss function
@ optimization criteria has regularization.

© optimized for big data

@ optimized for sparse data

@ We will consider only optimization criteria here.

2/10

xgBoost - Victor Kitov

Boosting reminder

@ Boosting prediction is performed with sum of M predictor

functions:
M
}//\i = Z fm(Xi)>
m=1

where each f,, is a regression tree:

o fn € {F(x) = Wy},
e g:RP - T, weRT
e T is the number of trees.

o Each tree £

e has independent tree structure g(x) and weights w
e is built greedily after optimizing fi, f3, ...f,,_1 to achieve
greatest score improvement.

3/10

xgBoost - Victor Kitov

Optimization score

At step m we optimize:

N
L (f) = 37 L(ym 78" + Fonl(x0)) + R(fn) (1)

n=1

Here:
o L(yn 75™) is the loss induced by predicting y, with 7,
o R(fm)=~T +3X |w||? is the regularization term, penalizing
fm for complexity.
e T penalizes the number of leaves
o |w|® = ZtT w? penalizes the magnitude of leaf predictions.

4/10

xgBoost - Victor Kitov

Taylor expansion

@ Using Taylor expansion expand E(y,,,?,(,m)) into

~(m ~(m— 1
‘C(}/m}/r(r)) ~ E()’na)’rg 1)) + gnfm(xn) + Ehnfri(xn) (2)

where

o= gt (A7) = gt ()

e Plugging (2) into (1), obtain:

N
~(m— 1
L) % 3 [Lm0 4 bl + 5 hof200) | +R ()

n=1
(3)

5/10

xgBoost - Victor Kitov

Taylor expansion

@ Removing constant terms from (3), we obtain the following
approximation to initial loss:

N

-~ ~m— 1
L(m)(fm) = Z [ﬁ()’m)/r(: 1)) + &nfm(xn) + 2h,,fn2,(x,,)] (4)
n=1
1 T
- 2
7T + 52 ; w; (5)

@ Define Iy = {n: q(x,) = t}. Then (4) can be rewritten as:

;

-~ 1

L) =3[D e we+ 5 S ha+A|wR| +4T
t=1 nel; nel;

6/10

xgBoost - Victor Kitov

Optimized loss

e Optimizing (6) with respect to w;, we obtain:

wr = — ZnEIz &n
‘ Znelt hn + >\

e Plugging w; into (6) gives

T 2
L* = _1 Z (Znelt g”) _‘_,_YT

2 t=1 Znelt hn + A

7/10

xgBoost - Victor Kitov

Split finding

@ In optimized loss we have fixed optimal weight w;

@ Optimized loss can also be used as impurity function in greedy
one-step-ahead tree building.

@ define | - indexes of objects in the node, being split into left
and right node

o define I, Ig - indexes of objects inside left and right node
e using L* the split is found to maximize the gain:
ain= L.+ L L*.. — max
8 left right — Sinitial threshold

which is equal to

% g< nEILgn))\—i—Z(neIRg") ZM

> nel, hn + > nelp fn + A - lznelh”+/\

t=1

8/10

xgBoost - Victor Kitov

Additional extensions of xgBoost

@ Shrinkage in xgBoost is the same as in usual boosting
@ Subsampling is possible:

e over objects
e over features

@ Approximate split finding possible

o suppose N (number of objects) is large.

e for continuous feature there may be up to N unique feature
values.

o instead of looking through all unique values, it is possible to
look through fixed number of percentiles:

e found once and for all nodes
@ or recalculated at each node

9/10

xgBoost - Victor Kitov

Conclusion

@ xgBoost is very successful gradient boosting open source
implementation

@ tree construction is not tied to specific criteria (entropy, gini)
but is adapted to final user loss function

@ optimized loss function has regularization, penalizing complex
base learner trees.

@ it is possible to optimize through a representative subset of
feature values instead of all feature values by looping through
percentiles.

10/10

