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Abstract

The development and proliferation of various portable sensors poses new challenges
for analyzing and finding meaning in this data. In our work we investigate classifica-
tion of complex structured objects. One of the main problems in this task is to generate
meaningful and relatively small set of features. We compare several approaches for
feature extraction such as expertly defined features, autoregression model and SSA.
We propose a new feature generation algorithm, based on local spline approximation.
The experiment is conducted on two datasets for human activity recognition using

accelerometer.

Introduction

This project is dedicated to multiclass classification of complex structured
objects (with features of different scale, length and/or type). The problems in
this area include human activity recognition from accelerometer time series [1-3|,
multimedia indexing [4] and recognition of people activity in smart homes [5].

We investigate classification of accelerometer time series. New methods in
this field range from topological data analysis [6] to using convolutional neural
networks [7]. The extensive survey of methods and datasets for this problem can
be found in [8]. In our work the data is time series of acceleration from three axis,
which is sensed by mobile phone or other portable device with accelerometer. The
problem is to predict the activity a person is performing. List of activities includes
walking, running, sitting or walking up/down stairs. In this setup time series are
regarded as complex structured objects without explicit feature description. This
is reasonable because we can’t operate with original features as time series might

be of different size, not aligned or even multiscaled [9].
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The problem of classifying complex structured objects is split in two distinc-
tive procedures. First, we need to extract informative features, and then we use
those features as input to some classifier to obtain final model. For simplicity,
we assume that these two procedures can be built and analyzed separately. In
our project we focused mainly on comparing different methods of feature genera-
tion [10,11].

The first approach for feature generation is calculating expertly defined func-
tions of time series [12]. These functions include average value, standard deviation,
mean absolute deviation and distribution for each component. We consider this
approach a baseline, as it is the simplest method we use.

We compare baseline with more sophisticated parametric feature generation
methods, in which we build approximation models and use their parameters as our
final features for classification. In this paper we propose using local spline approx-
imation for feature extraction. In this setup features are knots and parameters
of optimal cubic splines approximating our data. We compare this method with
other well-known methods for extracting features from time series. One of them
is autoregressive model [13]. For each time series we build parametric model and
use those parameters as features for classification. Another approach is the model
of singular spectrum analysis of time series [14]. We use eigenvalues of trajectory
matrix as features for building classifier.

The experiment was conducted on two real accelerometer datasets [15, 16].
We compared the performance of stated feature extraction methods, as well as

different classification algorithms. The latter include logistic regression, random
forest and SVM.

Problem Statement

Let S be a space of complex structured objects (i.e. we don’t have feature
representation suitable for direct classification), Y is a finite set of class labels.
Denote by ® = {(s;, y;) }i", a given sample, where s; € S and y; € Y. We consider
the problem of recovering the function f: S — Y

y = f(s).



Let L(f,®) be an error function which expresses the classification error of the
function f over the sample ®. The goal is to determine function f* which mini-

mizes the error

fr= arg;ninL(f,@). (1)

We assume that the target function f* belongs to the class of function com-

positions f = g o h, where
e h: S — H is a map from the original space S to the feature space H C R";

e g: Hx0O — Y is a parametric map from the feature space H to the space of

class labels Y. The function ¢ is parametrized by a vector parameter 8 € ©.

The determining of the function f* is equivalent to determining the functions
h* and g*.

In this paper we consider the following ways of generating feature space H:

e expert functions based on prior knowledge of the original objects. These func-
tions can be expressed as a set of statistics {h;}? ;, where h; : S — R. Thus,
the description h*(s) of the object s is the value of these statistics on the
object

h*(s) = (hi(s), ..., hu(s)).

e Local approximation models. In this case the features are the estimated pa-
rameters the model, approximating our data. Let S(s, h, X) be the error func-
tion of approximation, e.g. one could define the function S as negative log-

likelihood function [17]. The optimal feature map h*(s) is obtained by
h*(s) = argmin S(s, h, A). (2)
h
The parameter A is external structural parameter for the function S. The
equation (2) determines the feature map h* for each object s € S.

Given appropriate feature space H and feature map h we transform our
original sample © = {s;, y;}/, with complex structured objects to the new sample
Dy = {h;,y;}", where h; = h(s;) € H. The function g(h, @) is defined by its



parameter vector @ € ©. The optimal parameters 8* are given by

0" = argmin L(0, Dy, u), (3)
0

where L(-,-,+) is an analogue of the function (1). Here the vector w is a external
parameters of the particular classification model.

We consider the accuracy score to be the negative of main quality measure
function L. This choice is based on our wish to compare our results with previous
articles [10,11] and this measure is easy to interpret. Accuracy score is a relation

correctly labeled objects and the total amount of objects in dataset:

accuracy(y, J) Z[yz = 9,

where g); is a prediction of the classifier.
In our project we consider accelerometer time series as complex structured

objects. Time series is represented in the following way:
s=(x1,...,27) €S,

where T" denotes the length of time series.

Feature generation

The main focus of this paper is to compare different approaches for feature
generation. In this section we provide analysis and motivation behind each of the
methods.

Expert functions

Given a set of complex objects {s; }I | we extract features in a non-parametric
way with a set of expert functions {h;}7_;. We list commonly used expert func-
tions for time series in table (1). The main drawback of this approach is that we
are restricted by our choice of the expert functions and these functions might be

impossible to derive for some types of data.



Function description Formula
Mean X =7 Sx
Standard deviation \/ + Zle(xt — X)?
Mean absolute deviation = S % — x|
Distribution Number of points in each histogram bin

Table 1: Expert functions

Autoregressive model

In this method we assume autoregressive model [13] of the order n as a
hypothesis for generation of time series s. Fach component of the object s is

assumed as a linear combination of the previous n components

n
Ty = Wy + g W;Ty—j + €ty
J=1

where ¢; is a random noise. Prediction of the autoregressive model is defined by

Ty = wy + Z Wiy ;. (4)

J=1

For this method n is a structural parameter and A = n.
Feature map h(s) is given by optimal parameters of autoregressive model
w* = {wj}_, for time series s. The hypothesis error function (2) in this case is

the squared error between the original object s and its prediction of the model (4).

T
h(s) = w* = argmin S(s,w,A) = arg min ( Z || — it|2> : (5)

W€R7L+l WER"’+1 t:n+1

The problem (5) could be easily converted to the linear regression problem. Hence,
for each initial time series s we have to solve linear regression problem with n
predictors. The example of approximation using autoregressive model is demon-

strated on the Figure 1.



25 — Time selries | — Piutoregressive Imodel (n=20) 1
: f | F f | | ]

10} ! | \'\ 1
5 I\ I \
o j”‘/\' - W \J/ [y

0 2 6 8 10
Tlmestamp (s)

Acceleration

Figure 1: Time series approximation using autoregressive model with n = 20

Singular spectrum decomposition

Alternative hypothesis for generation of time series is SSA (Singular Spec-

trum Analysis) model [14]. We construct trajectory matrix for each time series

S = (1'1,...1'T)2

I i) . Tn
9 T3 oo Tptl
X =
LT—n+1 TT—n+2 --- XT

Here n, called the window width, is an external structural parameter. Let find the

singular decomposition [18| of the matrix XTX:
X'X =UAU",

where U is a unitary matrix and A = diag(\y, ..., A,) whose entries \; are eigen-
values of X"X. In this case we use the spectrum of the matrix X'X as feature

description of the object s
h(S) = ()\1, ceey >\n)

Splines

Approximate of time series can be done by splines [19]. The spline is defined

by its parameters:

o {&}E ) — the set of knots. Knots can uniform or nonuniform. To get the

adequate result we normalized the knots for each time series.
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o {w/}L | — parameters of the models are built on the interval [¢_1;&]. The

dimension of the each parameter vector w; depends on the spline order.

In order to find optimal spline parameters w, one need to solve system of
equations with additional constraints of equality of derivatives up to second order
on the edges of intervals. If we denote each spline segment as p;(t) and spline as

a whole as S(t), we can write these equations in a following way:

2

t € [£o, &1
t € [&, &)

P1 (33) = W10 + wllt + wlth + w13t3,

D2 (I) = Wy + w21t -+ w22t2 + w23t3,

S(z) = |

| pL(x) = wro + wrat + wrot? +wist?, t € € 1,&L)
S(t):.fUt t:].,,T

The feature description of the time series could be assumed as a union of these

parameters.

,fL,Wl,...,WL).

h(s) = (&, ..

This approach gives another approximation of the time series. In the Figure 2
one could find the result of time series approximation given by splines. Compared
to the autoregressive model, the splines method gives smoother approximation

using almost the same number of parameters.
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Figure 2: Time series approximation using splines
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Classification

Multiclass classification

As we had numerous labels in our datasets we had to choose one of the multi-
class approaches to classification. We decided to use one-vs-rest classification as a
simple, yet effective approach. The main idea is that we train binary classifiers for
each class label and then, on the prediction step, we classify new object according
to the most confident classifier. In this section we will describe our approach to
classification of time series using newly generated features. We use three different

classification models: logistic regression, SVM and random forest.

Classification methods

Logistic regression

The first approach to classification we played with was regularized logistic
regression model. The optimal model parameters (3) is determined by minimising

the following error function

L(8,Du,p) = Y log (1 + exp(—p:(6. b)) + £[0]
=1

0" = argmin L(0, Dy, 1)
0

The classification rule g(h, ) is given by sign of the linear combination for

the object description h and parameters 6*
gy = g(h,0%) =sgn(6* h)

SVM

We also used binary SVM model. The problem in this case can be formulated

in a following way:



w*

1 m
0" =1 0v | = in —||lw|?*+ C g i
b ars};inmszH + £

E,* ) 76 =1
subject to  y;((w,h;) +b) > 1 —¢;
§>0, 1<i<m.

For new objects we can make a prediction
L ~ T
g =sgn(Ww h+b)

Random Forest

Random forest is an algorithm which exploits the idea of bagging. This is an
approach of building many random weak classifiers and aggregating their predic-
tions. This method works especially well if as base models we select models with
low bias and high variance (due to aggregating variance is reduced). In case of
random forest decision trees take the role of base models, also not only objects
are used for bagging, but also features. In this case we make the prediction for

each new object as the mean of the predictions of single trees:

1 B

where B is an amount of trees used for bagging.

Experiment

In this paper we consider two different smart phone based datasets: WISDM [15]
and USC-HAD [16]. Data from smart phone accelerometer consists of information
about acceleration along each of three axis. Time difference between measurements
equals 50 ms. The WISDM dataset consists of 4321 objects and each time series
belongs to one of the six activities : Standing, Walking, Upstairs, Sitting, Jogging,
Downstairs. The USC-HAD dataset contains 13620 objects with one of the twelve



class labels: Standing, Elevator-up, Walking-forward, Sitting, Walking-downstairs,
Sleeping, Elevator-down, Walking-upstairs, Jumping, Walking-right, Walking-left,
Running. The distributions of time series activities for each datasets are presented
in Table 2. The length of each time series equals 200 which accounts 10 second. In

the Figure 3 the example of the time series for one activity of the specific person

Is given.
Table 2: Activities distributions
(a) WISDM (b) USC-HAD

Activity | # objects Activity 7# objects
1 | Standing 229  5.30 % 1 | Standing 1167 857 %
2 | Walking 1917 44.36 % 2 | Elevator-up 764 5.61 %
3 | Upstairs 466 10.78 % 3 | Walking-forward 1874 13.76 %
4 | Sitting 277 6.41 % 4 | Sitting 1294 9.50 %
5 | Jogging 1075 24.88 % 5 | Walking-downstairs | 951  6.98 %
6 | Downstairs | 357 8.26 % 6 | Sleeping 1860 13.66 %
Total 4321 7 | Elevator-down 763 5.60 %
8 | Walking-upstairs 1018  7.47 %
9 | Jumping 495  3.63 %
10 | Walking-right 1305  9.58 %
11 | Walking-left 1280  9.40 %
12 | Running 849  6.23 %

Total 13620

For each dataset we applied the feature generation approaches described
above: expert functions, autoregressive model, SSA, splines. We used three differ-
ent widely used classification model for each generated feature description: logistic
regression, support vector machine and random forest. The external structural pa-
rameters A for feature generation procedures, such as the length n for autoregres-
sion, the window width n for SSA and the number of splines knots L, were tuned
using 3-fold cross validation procedure. The hyperparameters p for classification
models were also tuned using the same cross validation procedure.

In paper [12] the authors proposed to use the following expert functions for

time series classification:

e (3) average acceleration for each axis;

e (3) standard deviation for each axis;
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Figure 3: Time series example

e (3) average absolute difference for each axis;
e (1) average resultant acceleration;
e (30) values of histogram with 10 bins for each axis.

Hence feature extraction procedure gives us the feature description of time series
h(s) € R%0.

Autoregressive model were tuned to find the optimal length n. Cross valida-
tion procedure gives optimal value n = 20 for both dataset.

Singular spectrum analysis were tuned in the same way to find the optimal
window width n. Analogously to autoregressive model the cross validation proce-
dure gives the same value n = 20. Authors assume that it means that time series
has memory of this size.

We fit splines for time series using scipy python library. This software fits
3-order B-splines [19]. The knots {& 1}, for splines were distributed uniformly.
The number L were chosen implicitly by choosing the proper smoothing param-
eter s. The less the value of s, the larger the number of knots L. The fitting

was constructed as follows. Firstly, there was the initialization step to find appro-
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priate bounds for smoothing parameter. The next step is finding the smoothing
parameter in this interval using bi-search approach.

The feature extraction methods gives the following number of features for
both datasets:

e expert features: 40;

e autoregressive model: 63;

e singular spectrum analysis: 60;
e splines: 33.

The results of the experiments for the both datasets is presented in Figure 4.
For WISDM dataset the worst result is obtained by splines parameters. The results
for expert functions, autoregressive model and SSA is roughly identical. For USC-
HAD dataset the results highly depend on the classification model. For both
datasets logistic regression shows the worst quality, while the accuracy for support

vector machine and random forest are strongly correlated.
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Figure 4: Multiclass accuracy score

All results with classification accuracy scores for each class are represented
in Table 3 and Table 4. The first row of these tables introduces the multiclass
accuracy score for each classification model and each feature extraction procedure.

Next rows are related to binary accuracy scores for each class. For WISDM dataset
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the best scores have the least active classes such as Standing and Sitting. For

USC-HAD dataset all classes have the similar accuracy scores.

Table 3: Binary accuracy scores for WISDM using different feature generation
methods: EX — Expert, AR — Auto-Reg, SSA and SPL for Splines

Logistic Regression Random Forest SVM
EX AR SSA SPL | EX AR SSA SPL | EX AR §SSA SPL
All | 0.85 091 0.84 058|093 093 092 0.79 | 093 095 0.95 0.77
Standing | 0.99 098 1.00 0.95 | 1.00 0.99 1.00 0.99 | 0.99 098 1.00 0.96
Walking | 0.91 0.96 0.86 0.61 | 096 0.97 095 0.86 | 0.96 098 0.98 0.84
Upstairs | 0.91 0.95 091 0.89 | 0.96 096 0.96 090 | 096 098 0.97 0.89
Sitting | 0.99 098 1.00 0.99 | 1.00 0.99 1.00 1.00 | 0.99 0.98 1.00 1.00
Jogging | 0.98 0.99 099 080|099 099 099 092099 099 0.99 0.93
Downstairs | 0.93 0.96 094 0.92 | 096 097 096 092|096 0.98 097 0.92

Table 4: Binary accuracy scores for USC-HAD using different feature generation
methods: EX — Expert, AR — Auto-Reg, SSA and SPL for Splines

Logistic Regression Random Forest SVM
EX AR SSA SPL | EX AR SSA SPL | EX AR §SSA SPL
All | 0.67 0.65 0.64 041 | 0.87 070 084 0.74 | 0.80 0.65 0.82 0.74
Standing | 0.94 094 092 0.89 | 098 094 097 098 | 095 094 097 0.96
Elevator-up | 0.94 094 093 092|095 095 095 095|093 094 094 0.93
Walking-forward | 0.87 0.87 0.89 0.70 | 0.97 0.89 096 0.88 | 0.95 0.87 0.97 0.91
Sitting | 0.98 095 0.94 096 | 099 096 098 0.99 | 098 0.96 0.99 0.99
Walking-downstairs | 0.95 093 0.93 090 | 099 096 098 0.95| 098 093 0.98 0.96
Sleeping | 1.00 0.98 0.99 1.00 | 1.00 0.98 1.00 1.00 | 1.00 0.98 1.00 1.00
Elevator-down | 0.94 094 094 091 | 095 095 095 095|093 094 094 0.93
Walking-upstairs | 0.94 0.95 0.93 0.92 | 098 095 0.98 0.96 | 0.98 0.95 0.98 0.96
Jumping | 0.99 0.99 1.00 0.97 | 1.00 0.99 1.00 0.99 | 1.00 0.99 0.97 0.99
Walking-right | 0.91 090 091 0.86 | 097 0.92 096 0.92 | 096 090 097 0.93
Walking-left | 0.89 091 0.90 0.88 | 0.97 0.93 0.97 093|095 091 097 0.93
Running | 0.99 099 099 092|100 099 1.00 097 | 1.00 1.00 0.95 0.98

We also carried out the experiment for union of all 196 generated features.
The results are demonstrated on the Figure 5. In the Table 2 one can see class
labels, that are represented on the corresponding histograms. As expected, the
accuracy scores in this case are higher in all cases. All binary accuracy scores for
WISDM datasets is larger than 97% for each classification model. These numbers
for USC-HAD dataset is larger than 93%.

Conclusion

The problem of complex structured objects classification were considered.

We investigated the different approaches of feature extraction, particularly the
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expert functions and data generation hypothesis. The experiment on the real data
from smart phone accelerometer were carried out. We compared different feature
descriptions and different classification models. The results show that obtained

features allows to recover the class label with the high quality.
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