Исследование пространства признаков в задаче обучения с подкреплением

студент: **Гринчук Алексей Валерьевич**¹ научный руководитель: проф. **Оселедец Иван Валерьевич**² в сотрудничестве с: prof. **Ronald Edward Parr**³

¹Кафедра "Интеллектуальные системы" Московский физико-технический институт

²Институт вычислительной математики РАН

³Computer Science Department Duke University

15 июня 2017 г.

Марковский решающий процесс

- ullet $s_t \in \mathcal{S}$ состояние среды
- ullet $a_t \in \mathcal{A}$ выбранное действие
- ullet $r_t \in \mathcal{R}$ полученная награда

Задача обучения с подкреплением

Целью агента в задаче обучения с подкреплением является нахождение стратегии, действуя согласно которой он может получить максимальную суммарную награду.

Более формально: найти отображение $\pi(a|s) = \mathbb{P}(a_t = a|s_t = s)$ из множества состояний в множество вероятностных распределений выбора действий (так называемая *стратегия* агента), которая максимизирует суммарную ожидаемую дисконтируемую награду.

$$\mathbb{E}_{\pi}(r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots) \to \max_{\pi}$$

Изображение на слайде было взято из книги Sutton & Barto, Reinforcement Learning: An Introduction (1998).

Q-функция и уравнение Беллмана

- ullet Стратегия агента $\pi(a|s) = \mathbb{P}(a_t = a|s_t = s)$
- ullet Матрица вероятностей переходов $P(s,a,s')=\mathbb{P}(s_{t+1}=s'|s_t=s,a_t=a)$
- ullet Q-функция $Q^\pi(s,a)=\mathbb{E}_\pi(r_t+\gamma r_{t+1}+\ldots|s_t=s,a_t=a)$
- Уравнение Беллмана:

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s,a,s') \sum_{a'} \pi(a'|s') Q^{\pi}(s',a')$$

ullet ВП для пар состояние-действие $P^\pi(s',a'|s,a) = P(s,a,s')\pi(a'|s')$

Неподвижная точка

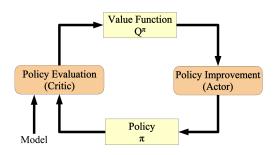
• Оператор Беллмана:

$$(TQ^{\pi})(s,a) = R(s,a) + \gamma \sum_{s',a'} P^{\pi}(s,a|s',a') Q^{\pi}(s',a')$$

ullet Q^π является неподвижной точкой оператора Беллмана: $TQ^\pi=Q^\pi$

Гринчук Алексей Москва, 2017 Стр. 3 / 16

Как решать задачи обучения с подкреплением?



• Улучшение стратегии — найти стратегию по Q-функции:

$$\pi_{i+1}(s) = \arg\max_{a \in \mathcal{A}} Q^{\pi_i}(s, a).$$

• Оценка стратегии — найти Q-функцию по стратегии:

$$TQ^{\pi_i} = Q^{\pi_i}$$
.

Стр. 4 / 16

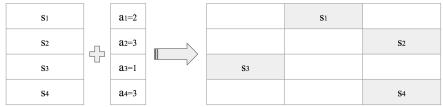
Изображение на слайде было взято из статьи Lagoudakis & Parr. Least-Squares Policy Iteration (2003).

Принчук Алексей Москва, 2017

Обучение по истории агента

На практике у нас обычно нет доступа к P(s,a,s'), однако у нас имеется доступ к истории взаимодействий агента со средой: $\{(s,a,r,s')\}$, сгенерированные исходя из стратегии $\pi(a|s)$ (например, случайной). В данной работе мы используем следующие матричные обозначения:

- $A \in \mathbb{R}^{n imes lm}$ матрица пар состояние-действие (s,a)
- ullet $P^\pi A = A' \in \mathbb{R}^{n imes lm}$ матрица следующих пар состояние-действие (s',a')
- ullet $R\in\mathbb{R}^n$ вектор наград



состояния и соответствующие действия

матрица пар состояние-действие А

 Гринчук Алексей
 Москва, 2017
 Стр. 5 / 16

Аппроксимация Q-функции

В некоторых случаях Q-функция может быть получена в виде точного решения уравнения Беллмана, однако в общем случае это невозможно.

Линейная аппроксимация Q-функции

• Мы аппроксимируем Q-функцию линейной комбинацией признаков:

$$\hat{Q}^{\pi} = A\mathbf{w}_{A}^{\pi},$$

где $\mathbf{w}^\pi_{{\scriptscriptstyle A}} \in \mathbb{R}^{ml}$ — вектор весов.

• Линейные методы ищут решение \mathbf{w}_A^π как решение следующего уравнения неподвижной точки:

$$A\mathbf{w}_A^{\pi} = \Pi(R + \gamma A' \mathbf{w}_A^{\pi}),$$

где $\Pi = A(A^TA)^{-1}A^T$ — это ортогональный I_2 проектор на span(A).

• Решая приведённое выше уравнение получаем:

$$\mathbf{w}_{A}^{\pi} = (A^{T}A - \gamma A^{T}A')^{-1}A^{T}R.$$

 Гринчук Алексей
 Москва, 2017
 Стр. 6 / 16

Линейное сжатие признаков

Проблема

Сложность подсчёта вектора весов есть $\mathcal{O}([\mathit{Im}]^3)$, что делает невозможным решение современных практических задач с $\mathit{ml} \approx 10^4 - 10^5$.

Идея решения

Состояния, представленные в виде картинок, имеют слишком много признаков (пикселей). Будем искать линейное преобразование (кодировщик) $E^{\pi} \in \mathbb{R}^{lm \times k}$ из исходного пространства высокой размерности в пространство низкой размерности.

Гринчук Алексей Москва, 2017 Cтр. 7 / 16

Предсказание признаков следующих состояний

- $\Phi = AE^\pi \in \mathbb{R}^{n \times k}$ матрица пар состояние-действие в пространстве низкой размерности
- $oldsymbol{\hat{Q}}^{\pi} = oldsymbol{\Phi} oldsymbol{\Psi}^{\pi}$ аппроксимация Q-функции
- $\mathbf{w}_{\Phi}^{\pi} = (\Phi^T \Phi \gamma \Phi^T \Phi')^{-1} \Phi^T R$ вектор весов

Теорема

Если существуют две матрицы E^π и D^π такие что:

$$AE^{\pi}D^{\pi} = [R, A'E^{\pi}],$$

то существует вектор весов \mathbf{w} такой что $\hat{Q}^{\pi} = AE^{\pi}\mathbf{w} = \Phi \mathbf{w}$ является неподвижной точкой оператора Беллмана $TQ^{\pi} = Q^{\pi}$.

На практике мы минимизируем норму Фробениуса разности:

$$||AE^{\pi}D^{\pi} - [R, A'E^{\pi}]||_{F} \to \min_{E^{\pi}, D^{\pi}}$$
 (1)

Гринчук Алексей Москва, 2017 Стр. 8 / 16

Compressed Value Iteration

lacktriangle Минимизировать (1) для k=1 (научиться предсказывать вектор наград):

$$AE_0D_0=R\Rightarrow E_0D_0=A^\dagger R\Rightarrow E_0=A^\dagger R,\ D_0=1.$$

② Минимизировать (1) для произвольного k, если оно было минимизировано для всех p < k (научиться предсказывать вектор наград и признаки следующих состояний):

$$AE_kD_k = [R, A'E_{k-1}] \Rightarrow X_k = E_kD_k = A^{\dagger}[R, A'E_{k-1}],$$

 $E_k, D_k = QR(X_k).$

ullet Найти вектор весов $oldsymbol{w}$, аппроксимацию Q-функции $\hat{Q}=AE_koldsymbol{w}$, и стратегию $\pi(a|s)=egin{cases} 1,\ a=\arg\max_{a\in\mathcal{A}}\,\hat{Q}(s,a),\ 0,\$ иначе.

Гринчук Алексей Москва, 2017 Стр. 9 /

Подпространство Крылова

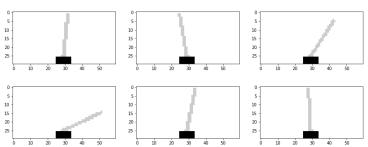
Лемма

Для любой матрицы $E^{\pi} \in \mathbb{R}^{ml \times k}$ и невырожденной матрицы Y, линейные аппроксимации Q-функции для двух различных наборов признаков $\Phi = AE^{\pi}$ и $\Phi_Y = \Phi Y = A E^\pi Y$ в точности совпадают: $\hat{Q}^\pi_\Phi \equiv \hat{Q}^\pi_{\Phi}$..

- $E_1^{\pi} = A^{\dagger} R$
- $E_2^{\pi} = A^{\dagger}[R, A'E_1^{\pi}] = [A^{\dagger}R, A^{\dagger}A'A^{\dagger}R]$
- ...
- $E^{\pi}_{\nu} = [A^{\dagger}R, A^{\dagger}A'A^{\dagger}R, \dots, (A^{\dagger}A')^{k-1}A^{\dagger}R]$

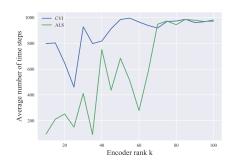
Эксперимент: Перевёрнутый Маятник

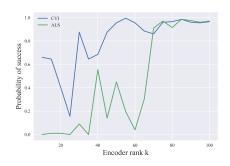
- Каждый кадр является картинкой разрешения 30×60 пикселей, каждое состояние состоит из двух последовательных кадров, вытянутых в строку (вектор размерности 3600), каждая пара состояние-действие является вектором размерности 10800.
- Среднее количество временных шагов прежде чем маятник падает для случайной стратегии равно ≈ 11 , максимальное количество равно ≈ 32 .
- Во время тестирования стратегии, если маятник не упал после 1000 временных шагов, мы провозглашаем это успехом и прерываем тестовую симуляцию.



Гринчук Алексей Москва, 2017 Cтр. 11 / 16

Эксперимент: Перевёрнутый Маятник

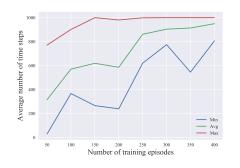


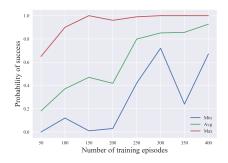


Количество балансирующих временных шагов и вероятность успеха в зависимости от количества признаков.

Гринчук Алексей Москва, 2017 Cтр. 12 / 16

Эксперимент: Перевёрнутый Маятник



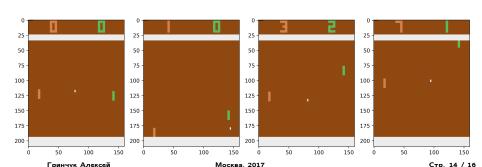


Количество балансирующих временных шагов и вероятность успеха в зависимости от размера обучающей выборки для CVI усреднённое для 6 различных обучающих выборок.

Гринчук Алексей Москва, 2017 Cтр. 13 / 16

Эксперимент: Атари 2600 Пинг-Понг

- Каждый кадр является картинкой разрешения 80×80 пикселей, каждое состояние состоит из четырёх последовательных кадров, вытянутых в строку (вектор размерности 25600), каждая пара состояние-действие является вектором размерности 76800.
- Для каждого временного шага симуляции предусмотрена нагада 0. Наш агент получает награду 1, если он выигрывает очко и -1, если он его проигрывает.
- Мы формируем обучающую выборку посредством запуска симуляции для нужного количества временных шагов, выбирая действия случайно.



Эксперимент: Атари 2600 Пинг-Понг

Разреженность состояний

- Большая часть всех кадров фон.
- После бинаризации кадров (ракетки и мячик единички, фон нолики) и добавления действий, мы получаем матрицы состояний-действий A and A', разреженные на 99.5%.
- Пакет Питона *scipy.sparse* позволяет работать с разреженными матрицами, что даёт 30-кратный выигрыш в скорости и 100-кратный выигрыш в памяти.

игра до 1 очка		игра до 2 очков		игра до 3 очков	
Random	CVI, $k = 50$	Random	CVI, $k = 35$	Random	CVI, $k = 50$
< 3.5%	46%	< 2.5%	37%	< 1.5%	11%

Сравнение стратегий, полученных в результате работы CVI и случайной стратегии в смысле процента выигранных очков.

Гринчук Алексей Москва, 2017 Cтр. 15 / 16

- Доказано, что достаточно уметь предсказывать признаковые описания следующих состояний в пространстве низкой размерности и вектор наград, чтобы гарантировать оптимальность линейной аппроксимации Q-функции.
- Предложен compressed value iteration алгоритм, который итеративно наращивает пространство признаков и решает оптимизационную задачу, порождённую идеей предсказания признаков следующих состояний.
- Предложена модификация алгоритма CVI, которая использует методы Крылова для генерации признаков. Также предложена другая модификация, завязанная на специфике состояний некоторых задач обучения с подкреплением и позволяющая получить выигрыш в скорости и памяти, если состояния сильно разрежены.
- Проведена серия вычислительных экспериментов на двух популярных задачах обучения с подкреплением "Перевёрнутый Маятник" и Атари 2600 "Пинг-Понг", результаты которой подтверждают тот факт, что предложенный метод работает и эффективен.

Гринчук Алексей Москва, 2017 Cтр. 16 / 16