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Internet of things

IoT is the networking of devices (portables, vehicles, buildings)
embedded with sensors and software.

I Environment and energy monitoring
I Medical and health monitoring
I Consumer support, sales monitoring
I Urban management and manufactiring



Example of a multiscale dataset
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Example of a spatio temporal dataset

Monthly Ecosystem Respiration by M. Reichstein, GHG-Europe.



Example of a spatio temporal dataset

Electric field measurement, the Van Allen probes by I. Zhelavskaya, Skoltech.



Example of a spatio temporal dataset



Example of a spatio temporal dataset





The periodic components of the multivariate time series

The time series:

I energy price,
I consumption,
I daytime,
I temperature,
I humidity,
I wind force,
I holiday schedule.

Periods:

I one year seasons
(temperature,
daytime),

I one week,
I one day (working

day, week-end),
I a holiday,
I aperiodic events.



Energy consumption one-week forecast for each hour



The autoregressive matrix, five week-ends
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Daily similarity
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The autoregressive matrix and the linear model
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Model generation

Introduce a set of the primitive functions G = {g1, . . . , gr},
for example g1 = 1, g2 =

p
x , g3 = x , g4 = x

p
x , etc.

The generated set of features X =
0
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Kolmogorov-Gabor polynomial as a variant for model generation
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where the coefficients
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The one-day forecast (an example)
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History
Forecast

The function y = f (x,w) could be a linear model, neural network,
deep NN, SVN, ...



Ill-conditioned matrix, or curse of dimensionality

Assume we have hourly data on price/consumption for three years.
Then the matrix X

⇤
(m+1)⇥(n+1)

is

156⇥ 168, in details: 52w · 3y ⇥ 24h · 7d;

I for 6 time series the matrix X is 156⇥ 1008,
I for 4 primitive functions it is 156⇥ 4032,

m << n.

The autoregressive matrix could be considered as ill-conditioned
and multi-correlated. The model selection procedure is required.



Similarity of daily consumption
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One-hour line, day-by-day during a year: autoregressive analysis

Vadim Strijov Model selection in the time series forecasting 56



Sunrise bias: one-year daytime and consumption

Vadim Strijov Model selection in the time series forecasting 54



Biased and original daytime to fit consumption over years
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Structure of energy consumption
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Selection of a stable set of features of restricted size

The sample contains multicollinear �1,�2 and noisy �5,�6 features,

columns of the design matrix X. We want to select two features from six.

Stability and accuracy for a fixed complexity
The solution: �3,�4is an orthogonal set of features minimizing the

error function.
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How many parameters must be used to forecast?

The color shows the value of a parameter for each hour.
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X)�1

X
T
y, then calculate the

sample s(⌧) = w
T(⌧)xm+1 for each ⌧ of the next (m+1-th) period.
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Selection of a stable set of features of restricted size

The sample contains multicollinear �1,�2 and noisy �5,�6 features,
columns of the design matrix X. We want to select two features from six.

Stability and accuracy for a fixed complexity
The solution: �3,�4is an orthogonal set of features minimizing the
error function.
Algorithms: Add/Del, GMDH, Stepwise, Ridge, Lasso, Stagewise, FOS, LARS, Genetics, ...



Гипотезы и аксиоматика не противоречат измеряемым данным.



Multicollinear features to forecast: possible configurations

Inadequate and correlated Adequate and random

Adequate and redundant Adequate and correlated

Katrutsa A.M., Strijov V.V. Stresstest procedure for feature selection
algorithms // Chemometrics and Intelligent Laboratory Systems, 2015, 142 :
172-183.
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Time series with a bubble, example 1
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The World Bank. Global Economic Monitor 2010.
http://data.worldbank.org/data-catalog/global-economic-monitor.
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Time series with a bubble, example 2
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The World Bank. Global Economic Monitor 2010.
http://data.worldbank.org/data-catalog/global-economic-monitor.
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Time series with no bubble, example 3
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The World Bank. Global Economic Monitor 2010.
http://data.worldbank.org/data-catalog/global-economic-monitor.

Vadim Strijov Problem Statements in Time Series Forecasting 43 / 47



Time series with no bubble, example 4
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The World Bank. Global Economic Monitor 2010.
http://data.worldbank.org/data-catalog/global-economic-monitor.
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Data and Model Classification Forecasting Decision making Application

Time series trends/events forecasting, example
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Event forecasting; One must forecast a1,T+1 ∈ M.

There are N time series of length T (denote the element an,t ∈ M)
as the matrix

A =

a1,1 a1,2 . . . a1,T−1 a1,T a1,T+1

a2,1 a2,2 . . . a2,T−1 a2,T a2,T+1
...

...
. . .

...
...

...
aN,1 aN,2 . . . aN,T−1 aN,T aN,T+1

Denote ∆ the time-lag and for the time series
[a1,t ], t ∈ {∆+ 1, . . . ,T} form the matrix

At =

a1,t−∆ a1,t−∆+1 . . . a1,t−2 a1,t−1

a2,t−∆ a2,t−∆+1 . . . a2,t−2 a2,t−1
...

...
. . .

...
...

aN,t−∆ aN,t−∆+1 . . . aN,t−2 aN,t−1

and vectorize it to obtain the sample xt

xt = [a1,t−∆, a2,t−∆, . . . , aN,t−∆, a1,t−∆+1, . . . , aN,t−1]
T
.

Set yt ≡ a1,t .
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Event forecasting is a classification problem

Introduce the data set D = (X , y), where

X =


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and y =
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
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
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.

Treat this classification problem as the logistic regression

f(w,X ) =
1

1 + exp(−Xw)
→ y

or as another classification problem.
The error function

S(w) =
∑

i∈I

yi ln f (w, xi ) + (1− yi ) ln (1− f (w, xi ).
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The Brain-Computer interface project
aims to develop compensating systems that will help people with a severe
motor control disability recover mobility.

www.clinatec.fr
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Implant WIMAGINE to measure ECoG

detects the electrical activity in the motor cortex with “minimally-invasive
implantation in the cranium and, over the long term, to measure
electrocorticograms thanks to an array of electrodes in contact with the
dura mater.”

Eliseyev, A., and Aksenova, T. Stable and artifact-resistant decoding of 3D hand
trajectories from ECoG signals using the generalized additive model // J. Neural Eng.
2014.

3 / 27



Clinatec, Centre de recherche Edmond J. Safra
“The subject placed inside the exoskeleton can drive it by imagining
movements as if they were making the movement themself.”

www.clinatec.fr
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Neurotycho data, foodtracking task

A monkey is tracking food rewards with the
hand contralateral to the implant side. The
experimenter demonstrated foods at random
locations at a distance of 20 cm for the
monkey at random time intervals 3-4 times per
minute, and the monkey grasped the foods

I Subdural (32 electrodes): 2 monkeys, 3 and 5 records, taken within 7 months.

I Each record measures about 1000 seconds with ECoG and motion data (wrists,
elbows and shouders) sampled at 1KHz and 120Hz, respectively.

2 / 25



Демонстрация изменения физической активности

Neurotycho, RIKEN Brain Science Institute, Saitama, Japan
Э. Э. Гасанов Порождение пространства признаков 9 / 16



Electroencephalogram-based BCI
“consists of an electrode cap with electrodes, cables that transmit the
signals from the electrodes to the biosignal amplifier, a device that converts
the brain signals from analog to digital format. . . ”

Graimann B. et al. (eds.) Brain–Computer Interfaces, a gentle introduction.
Springer, 2010.
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Examples of BCI applications
P300 synchronous, blinking stimulus, imagination

Graimann B. et al. (eds.) Brain–Computer Interfaces, a gentle introduction. Springer, 2010.

Cattan G., Andreev A., Visinoni E. Recommendations for integrating a P300-based brain–computer interface in

virtual reality environments for gaming: An Update // Computers, 2020 6 / 27



Control problem for game2 activities

Game with opponent Game with nature

Proportional integral derivative PID controller

u(t) = Cp"(t) + Ci

Z t

0

"(⌧) d⌧ + Cd

d"(t)

dt

with reinforcement1 learning "(t) = f (t)� y(t).
1over space and time to say nothing of a player
2repeating actions with goal 7 / 27



Multi-modal signals of brain-computer interfaces

Stimulus
Video 30Hz ⇥ 1280 ⇥ 1024

Sound 48KHz ⇥ 2

Environment ⇠ 10Hz

Control
ECoG 1000Hz ⇥ 64

EEG 1000Hz ⇥ 64

fMRI 5Hz ⇥ 1024
3

Action
Eye track 30Hz ⇥ 3

IMU Limb 200Hz ⇥ 6

MEG 100Hz ⇥ 12
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Types of Machine Learning problems to model BCI

Inputs Classification Regression Decoding Clustering
Video xnew

Sound X
ECoG X P300 x
EEG X x?
fMRI X
IMU X X y , ynew X
MEG X

Why decoding can not be replaced for serial classification?
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Ensemble of models for brain computer interface

Isachenko R.V., Strijov V.V. Quadratic programming feature selection for
multicorrelated signal decoding with partial least squares // Expert Systems with
Applications. Volume 207, 30 November 2022.
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Time series and phase space3

Transform from time domain to frequency domain is essential trick.
3Thanks to Ed. Vladimirov
Isachenko R.V., Strijov V.V. Quadratic Programming Optimization with Feature

Selection for Non-linear Models // Lobachevskii Journal of Mathematics, 2018, 39(9) :
1179-1187.
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Phase trajectory of the accelerometer time series

dim(s) ⇡ 1000 dim(x) = 4
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Before the next week 

Check what the heck is
1. Covariance and contravariance of vectors
2. Covector, one-form
3. Low-rank approximation
4. PCA, SVD

For fun
What is the difference between 
kernel function and covariance function (and kernel of a linear map)

See also
ICLR 2021 Keynote - "Geometric Deep Learning: The Erlangen Programme of ML" - 
M. Bronstein
https://www.youtube.com/watch?v=w6Pw4MOzMuo



Michael Bronstein made this necessary, 
important, but obvious topic fashionable.

Titles:
Geometric deep learning
Functional data analysis
Physics-informed machine learning

MIPT is intrinsically ready to fulfill this topic.



Testbench for decoding models

August 16, 2022

Test examples. The most common BCI decoding problem is the Neurotycho experiment
“Chimpanzee catches banana” to forecast limb positions by ECoG. The second is the prob-
lem of labour moitoring, human motion recognition “Smoking workers”, to forecast hand
acceleration by recorded video. The third one is the Open iEEG-fMRI data “Participants
watching film”. This set connects several data sources: videofilm, audiovisual labels, iEEG,
fMRI. This three decoding problems are unified in table 1. To start with, the “Basic” data
set serves to test a trivial model, which forecasts IMU of one hand motion by IMU of the
other one.

Table 1: Three decoding problem for BCI data. All data are the time series with synchro-
nised timeline. Some time series have spatial information.

Project Source Target Suppl. Field source Field target
Chimpanzee
catcing banana

ECoG xyz 2d cortex layout 3d hand motion

Smoking workers video acc
(xyz)

pose 2d image space 3d hand motion

Participants
watching film

iEEG fMRI video,
audio,
labels

2d cortex layout 3d brain space

ditto video,
audio,
labels

iEEG,
fMRI

2d image space 2d cortex layout,
3d brain space

Basic acc(xyz) acc’(xyz) 3d motion space 3d motion space

Forecasting model. The forecasting model maps the source time series to target time
series minimising the forecasting error. Since dimensionality of the source series is supposed
to exceed dimensionality of the target, the dimensionality reduction models are needed.
This model consists of three parts. The first one is the source reconstruction model.
It reconstructs dependencies in the source space and maps the source space to the low-
dimensional latent space. The second one of the target reconstruction model. It maps

1



the target space to the latent space. The third one is the alignment model. It aligns the
time series in the latent space. The forecasting model is the superposition, the consequent
application of source reconstruction, latent alignment, and target reconstruction models.

Phase spaces and trajectories. The spatial time series are represented as points in
the phase space. The timeline forms this series as a phase trajectory in this space. This
operation increases dimensionality of the data significantly. There are other ways to form a
phase trajectory, like a Fourier transform to a spectrogram or a scalogram. To run machine
learning methods, which create the desired forecasting model, define an object of sample
set. It is a tensor over a timestamp. An object usually carries its local time history. This
locality defines the dimensionality of the object. The object could carry its spatial layout.

Reconstruction model. The reconstruction model reduces dimensionality to map an
object to the latent space.

Index reduction It is a part of the reconstruction model. The number of ways in the
latent space is given.

Reconstruction error. It estimates quality of either source or target model, so it does
not require synchronization of time stamps. This error delivers the initial value of the
model parameters.

Alignment model. The alignment model maps reduced source and target object within
the same space. By default this model just scales objects from both spaced with some time-
independent factor. Time alignment to match sampling rated or to keep motion phase of
signals is under consideration (but difficult to realise).

Alignment error. There is no error for a single object, since the original alignment
error is covariance of two random variables. This covariance is estimated by either of syn-
chronised pairs from both spaces, or by distance between distributions of unsynchronized
objects.

The model superposition. The parameters of the forecasting model joins the param-
eters of reconstruction and the alignment models. These parameters are fine-tuned by the
forecasting error.

Synchronised and unsynchronised time stamps. The target and the source time
series usually have different sample rates. Table 2 shows various procedures of learning
and testing modes.
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Table 2: Objects of the source and target phase trajectories could have synchronised or
non synchronised timestamps.

Model Procedure Synchronization
Phase trajectory generation no
Reconstruction train and test no
Alignment train and test depends
Forecasting train no if possible
ditto test, validation yes

The computation experiment schedule. The phase trajectories are generated before
the computational experiment starts. These trajectories form the initial data set. It
cannot be changed during the computational experiment. First train the source and target
reconstruction model. This delivers the initial parameters of these two model. Then
estimate the parameters of the alignment model. After these three vectors of parameters
are set estimate the error of the forecasting model. Minimize this error optimizing the
model parameters. During the optimization various types of the error functions could be
used. After the parameters converge, fix them and estimate the test error.

Time-scale synchronization procedure. Denote by xt an object at the time t, the
index xi fixes the synchronised time i = i(t), so it gives the pair (xi,yi). Denote by X the
set of objects for a given time segment, or a time sample set XT = [xT

t , t ∈ T ].

List of functions. Below both the mathematical and the programming notations have
the local visibility for simplicity.

t ∈ T = Tsrc ∪ Ttgt = tB, i = i(t)

Function: timesync
In: time_stamps_src, timestamps_tgt
Out: t_src_reconstruction, t_tgt_reconstruction, t_syn_train, t_syn_test,

t_syn_validation

ut = f(xt,w,γ), x′
t = f ′(ut,w

′,γ ′)

Function: reconstruct_predict
In: model, x, params, hyparams
Out: u

ŵ, γ̂ = argminQ
(
xt, f

′(ut,w
′
0,γ

′
0),w0,γ0, t ∈ T

)
7→ ε
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Function: reconstruct_fit
In: model, X, params, hyparams, model_inv, params_inv, hyparams_inv
Out: fit_err, params, hyparams

Q
(
xt,x

′,w
)
7→ ∇wQ

Function: reconstruct_err
In: X, X_inv, params
Out: err, grad_par

ŵ = C
(
U,V,w0

)
7→ ς

Function: align_fit
In: U, V, params, hyparams
Out: err, params

ŵx, ŵy = argminS
(
xt, fx,yt, f

′
y, fu{w0}, {γ0}, t ∈ T

)
7→ ε

Function: decode_fit
In: X, Y, {params, hyparams}
Out: err, {params}

IDEF0 of the testbench. This scheme assumes interchangeability of models and model
parameters optimisation algorithms. It requires an automatic differentiation library.
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