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AnHOTaMs

MeToapl MAIIMHHOIO OOy4YeHUsl ObLIM MPUMEHEHBI K PsiIy 3alad IOCTPOEHUS
KOMITBIOTEPHBIX acCUCTEHTOB Tpejickasanus cuare3a( CAST). Banaua npenckazanust
IIPOJLYKTOB XUMHUYECKUX PeakIuili ObLIa chOopMyIUpPOBaHa B TEPMHUHAX KJIACCUPUKA-
MU BEPIIUH HECBSI3aHHOTO rpada MCXOHBIX BEIIECTB XUMHUYecKOil peakiuu. [Ipe-
JIOYKeHO 00001eHne rpadoBOii CBEPTOUIHON ceTn It pabOThI ¢ HECBSI3aHHBIMU I'pa-
damu. IIpogemoncTpupoBano, 4TO IPEIJIOXKEHHDIN [TOAX0 YCIIEIIHO IPEICKA3LIBACT
HpOﬂyKT peakKnmumn n OTO6pa)KeHI/Ie aTOMOB HMCXO/HbBIX BEIIIeCTB B aTOMBLI OCHOBHOI'O
IPOAYKTa XMMHUYECKOH peakiuu. JBOJIONUOHHOE CEMEHCTBO BLIYUCIUTEIbHBIX IKC-
IIEPUMEHTOB ITOKa3bIBaeT BJINAHNEC BCEX ITPEIJIO?KECHHBIX MO,ZLI/ICbI/IKaJ_[I/H;'I Ha NTOI'OBOE
K&4IeCTBO PACCMATPUBAEMON MOJIE/IN Ha JATCeTe PeaKIil, M3BIeUeHHBIX U3 IaTEHTOB
CHIA(USPTO). HonoaHuTebHbL aHAIA3 MOJIE/IH JIeMOHCTPUPYET €€ MHTEePIPEeTH-
pyeMocThb. BBeJieHHbIE JIaTeHTHBIE BEKTOPHBIE IIPEACTABIEHNAs] PEAKIUil HESBHO 00-
Pa3yoT CKOPPEJUPOBAHHBIE C TUIIOM XUMUYECKOU peakKIIuU KJIaCTEPhl, METPUYECKU
OJIM3KMM BEKTOpPaM B IAHHOM JIATEHTHOM IIPOCTPAHCTBE COOTBETCTBYIOT PeaKIInh
C TIOXOYKUM MEXaHU3MOM TpOoTeKaHus. [IporpamMmHasi peajn3alius Mpe/JIosKeHHbIX
AJITOPUTMOB O(POPMJIEHA B BUAE OUOJUOTEKU C OTKPBHITHIM HUCXOTHBIM KOJOM.

KuroueBsbie ciioBa: epagosas c6epmounas HetporHas cemns, MELAHUSM SHUMA-
HUA, TUMUYECKAA PEAKUUSA, HECBAZAHHBLY 2pad, Kiaccudurayus sepuun 2pada.



BBenenue

AktyanpHOCTh TeMbl. Marucrepckas padoTa MOCBSIIEHA 3aJiavde MPOTHO3UPOBAHUS
[IPOJLYKTOB XUMUYECKUX peakiuii. B obiem Bujie 3a/1aua MOKeT ObITh PAacCMOTPEHa Kak
IIOUCK OTOOpaKeHus MHOXKeCTBa rpadoB BO MHOKeCcTBO rpados. [1e ncxopunsivu rpada-
MU SABJISTFOTCS MOJIEKYJIIPHBIE Tpadbl UCXOIHBIX BEIIECTB B XMMHUYIECKON pPeakInm, a pe-
3yJbTAT OTOOpayKeHUs — MHOYKECTBO MOJIEKYJIAPHBIX I'padoB IpoayKToB. [lo nmerormmeiics
baze XUMUYIECKUX pPeaKIuit 60JIbIIOro oobeMa TpedyeTcsi OCTPOUTh MOJIEIb, KOTOpast 110
MOJIEKYJIAPHBIM I'padaM UCXOJIHBIX BEIEeCTB IIPEJICKA3bIBAET MOJIEKYJIApHbIEe Tpadbl ITPo-
JIyKTOB. Bakueitmmm TpeboBaHIEM K MOJIENH ABJIsIeTCsT €€ 0000Imaast cliocOOHOCTh —
BO3MOKHOCTB MOJIe/In pabOTaTh C JAHHBIMUA HE MPEJICTABICHHBIMU B IIPOIIECCEe €€ MTOCTPO-
eHsI.

Pemrenve 3asiaum akTyajJbHO B 0OJIACTH aBTOMATHU3AINHA CUHTE3a XUMUYECKUX Be-
[IECTB U OTKPBITHU MOTEHIUAILHBIX JIeKAPCTBEHHbIX Hpernaparos [1-4]. B onucanubx
paboTrax 0OOCHOBAH MOTEHIIUAJ METOIO0B MAIIMHHOIO O0YUeHUs JjIst PEIICHUS 3a/Ia91 110~
CTPOEHUsST KOMITBIOTEPHBIX acCHCTeHTOB mpejckasanus cuaTe3a(CAST) n akTyaabHOCTH
COBEpPIIIEHCTBOBAHUSI METOJIOB B COBPEMEHHOI BBIUUC/INTEHHON XIMUH.

B nocename HeCKOJIBKO JIeT OBLIO TPeICTaBJIEHO s/l padoT, HAIPABJIEHHBIX HA pe-
menne 3a7aan CAST. Yacrs U3 HUX ONEPUPYET CO CTPOKOBBIMU IPEJICTABJICHUSIMU I'Da-
dbos [5-7]. Hecmorpst Ha TO, 9TO IpeCTAB/ICHHBIE METOJIbI JEMOHCTPUPYIOT HAMIIYYIIIee
Ka4IeCTBO, NMEETCsI PsiJl CEPhE3HBIX MPODOJIEM, OIPAHMIUBAIONINX X TOTEHINA 1 00J1aCTh
pUMEHNMOCTH. MeTo bl HCITOIB3YIOT TOIXO0/IbI, IPEIOKEHHBIE PaHee JJisi PADOTHI C 0-
CJIeI0BATEIbHOCTSAMI CHMBOJIOB U MAITMHHOTO TepeBojia. JlaHHble MeTObI He SBJISIOTCS
UHTEPIPETUPYEMBIMU, BXOJ U BBIXO/I MOJIEIH MIPEJICTABUM TOJLKO B BUJIE ITOCJIEI0BATEb-
HOCTH KaTeroprasbHBIX IPU3HAKOB. DTO 3aTPY/IHIET UCIOIb30BAHIE JJOKAJIbHBIX TPU3HA-
KOB aTOMOB U XHUMHUYECKMX CBsA3eil B Mosieky/aspHoMm rpade. ['padoBoe mpejcrasienne
MOJIEKYJTbI UMEET PsiJi IIPENMYIIECTB: B HEM sIBHO 3a/Ial0TCsl BEPIITUHBI U pedpa, MPU3HAKN
7 CBOHMCTBA KOTOPBIX U3YYAIOTCS SKCIIEPTAMEI, MOTYT OBITH BHIUUCIIEHBI M UCIIOJIb30BAHBI B
MoJiesin. Bbliia mpejijiozkeHa MoJiesTb, UCIOIb3YIolas rpadoByI0 CBEPTOYHYIO HEHPOHHYIO
CeThb U BBIYUCJIAIONIAs MOTAPHDbIE BEPOSATHOCTH OOPA30BAHUS XUMUYIECKON CBSI3U MEXKITY
BeprmHamu [8|. JJaHHBI MeTO MMeeT MHTEPIPETHPYEMYTO aPXUTEKTYPY, OJHAKO HE sIBJIsI-
eTCsl YHUBEPCAJIBHBIM METOJIOM PabOThI ¢ HeCBsI3aHHbIMU Tpadamu. JIpyroe nampasienne
MCCTIeIOBaHUI COCPEIOTOUEHO Ha MTOCTPOeHne cucteM (hOPMaIbHBIX TTPABHUI, COTJIACHO KO-
TOPBIM OIIpeJIegeTcs IPeodPa30BAHNE UCXOIHBIX MOJIEKYISPHBIX I'PadOB B TPOIYKT XH-
mMudeckoil peakiuu [9-13|. HecMoTpsi Ha MOJIHYIO HHTEPIPETUPYEMOCTD JIAHHBIX MO/IEJIeN,
OHM He 00JIaJIAI0T HEeOOXOIUMOIT 0000IIAIIEil CIIOCOOHOCTHIO U HE MOTYT ObITh IIPUMEHEe-
HBI K XUMUYIECKUM PEAKIIUSIM, MEXaHU3M KOTOPBIX He onucaH. C PoCTOM YHCIa OTKPBITHIX
XUMUYIECKUX COeJIMHEeHN T, BOSHUK/IA TPYAHOCTH C OMUCAHIEM (hOPMATBHBIX ITPABUII, TAK
KaK UX KOJIMYEeCTBO CUJIBLHO POCJIO M He 00JIaJIaJI0 TIOJTHOTOM.

Takum 0b6pa3oM cpejiun CYIIEeCTBYOMNUX METOJIOB MPEJICKA3AHNUS MTPOYKTOB XUMUe-
CKUX PEAKINI HeT MHTEPIPETUPYEMbIX, YHUBEPCAJbHBIX METOJOB € JOCTATOYHON 00600-
maomeil crocodbHocTh0. OTCYyTCTBYIOT MOIXO/BI MAITUHHOTO OOYYEHUsI, TO3BOJISIONINE
3 HEKTUBHO OMEPUPOBATH C JAHHBIMHE, [TPEICTABUMBIMI B BUJI€ HECBSI3aHHBIX I'PAOB.

Ilenp paborel. llenbio paboTh! gB/IsIeTCs Pa3pabOTKa MeTO/1a IIPeIcKa3aHnsa OCHOBHOIO
POAYKTa XUMUIECKUX PEaKInii 110 MOJIEKY/ISIPHBIM I'padaM UCXOIHBIX BEIIEeCTB

e IIpUMEHUM K JAHHBIM B BHJE HECBSI3aHHOI'O MOJIEKYJIAPHOrO rpada;
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® JIOIIYCKAET HCIOJIb30BAHU:A IKCIEPTHBIX 3HAHUN O JIOKAJBHONH CTPYKTYypE MOJEKY-
JIAPHOTO rpada;

® JIEMOHCTPUPYET aJIeKBATHBIE PEe3y/IbTaThl Ha BLIOOPKE peakIinii 0OJILIIOro 0bbeMa;

TeopeTuIecKoe 00OCHOBaHUE CBOMCTB pa3pabOTAHHOI'O METO/la, & TaKKe ITOCTPOeHue Ipa-
MOTHOI'O U OObEKTUBHOTO BBIUYUC/IUTETHHOIO IKCIIEPUMEHTA.

Meronapl nucciemoBanus. /Jljis qocTuzKeHuUs 1es1eii UCIoJIb3yeTcs alrapaT TeOPUH Oll-
TUMHU3AIUN, MAITUHHOIO 00yYeHusl, TUIyOMHHOTO 00yueHus, JTuHeiiHOoi ayreOpbl. s mpo-
IPaMMHOI peau3aliiil UCIOIb30BaJICA A3bIK IMporpaMMupoBanusg Python 3.7, Berauciu-
TeJIbHbIE SKCIIEPUMEHTBI ITPOBOJIMJINCH Ha KJIacTepe.

OcuHoBHBIE IIOJIO2KE€HUs, BbIHOCUMbIE€ Ha 3allluTy.

1. CdopmynupoBana 3aja4a MpeCKa3aHus TPOyKTOB XUMUIECKON PEAKIINH B Tep-
MHHAX KJIACCHUMUKAIIIN BEPIINH HECBA3aHHOTO I'pada.

2. Ilpensoxkeno obobIeHne rpadOBbIX HEUPOHHBIX CeTell /st pabOThI C HECBABZAHHBIME
rpadamu.

3. Ilpenoxkena mocie0BaTe IbHOCTD BEIYUCIUTETbHBIX SKCIIEPUMEHTOB, IEMOHCTPUPY IO

HEOOXOIMMOCTh KaXKJI0# 1pe/IJI0YKEHHON MOINMUKAIIAH.

4. Tlpoanam3mpoBana MoTydeHHAS MO/IE/b, NCCIETOBAHBI CBOMCTBA BEKTOPHBIX COCTO-
SHUM XUMUYECKON peakiy, (GOpMUPYEMBIX B MOJIEJIH.

Hayunasa voBu3ua. CdopmyimpoBaHa 3a1ada IpeICKa3saHns IPOLYKTOB XUMIIECKIX
peaxiuii B TepMuHaxX OMHAPHON KJIaccupUKAIUA BePITHH HecBs3aHHoro rpada. [pemio-
»KEHO JIBa aJIropuTMa 0000IIeHusT rpad0Boil CBEPTOYHON HEMPOHHON CeTH /IS HECBA3aH-
HBIX T'padoOB.

Teoperndeckass 3HaUUMOCTb. JlanHoe ucciieoBanue siBisgeTcs 6a30BbIM B 00001IIe-
HIEe MEeTOJIOB MAIIMHHOTO OOydYeHus i IpadOBBIX IPEJICTABICHUH JTaHHbI Ha Crydail
HECBA3aHHBIX I'PAdOB.

HpaKTquCKaH SHAYMMOCTbD. PeBy.HbTaTbI 9KCIIEPUMEHTOB IIOKa3bIBalOT CPaBHUMOE
C CyLIeCTBYIOIIUMU MOJEJIAMU Kade€CTBO, MHTEPIIPETUPYEMOCTD Hpe,ZLJIO}KeHHOﬁ MOJeJI
ABJIAETCA CYIIECTBEHHBIM ITPEUMYIIECTBOM JIJIA ITPAKTHUYECKOI'O IIPDUMEHEHNA B CUCTEMaXx
aBTOMATHUYECKOI'O CUHTE3a XUMUIECKIX 3JIEeMEHTOB. Bhuruncmre/ rbHbII IKCIICpPUMEHT IIPO-
BOAMJICA Ha 0OJIBIIION BbI60pKe XUMHNYIECKUX peaKHI/IfI 3 IMIaTEHTHBIX 3adBOK.

CrernieHb JOCTOBEPHOCTH U arpodarmsi paboTel. JlocToBepHOCTH PE3yJsIbTaTOB MO/l
TBEPK/IAET N3JI0KEHHAST MATEMATHICCKAs! YaCTh, BEITUCIUTEIbHDII SKCIIEPUMEHT, aHAJII3
mojiesn. Pabora mojiana K ImyO/IMKAINN B PEIeH3UPYyeMblil HayIHbIN »KypHaJl. [Ipomexy-
TOYHBIE PE3YJIbTAThl PAOOTHI JOKJIAIBIBAIMNCH U OOCYZKJIAIUCH HA CJIEIYIONMNUX HAyTHBIX
KOH(EPEHIIUAX



e 19-a Bcepoccuiickag KoHdepeHIHS ¢ MeEXIyHAPOJIHbIM ydacTueM «Maremarnde-
CKHe MeTOJIbl paciio3HaBanus obpazosy [14], 2019;

o Ekeromubprit CaMMHUT MOJIOJIBIX YUCHBIX U WHKEHEPOB «BoJibIlie BBIZOBBI it 00-
IIecTBa, TocyapcTBa U Haykmy, 2019.



Literature review

Drug discovery and development pipelines are time-consuming, resource-intensive, and
sophisticated. The development of a new drug takes several years and costs billions
of dollars [15, 16]. Therefore, automation of the process is an actual and important
problem [17|. Early drug development consists of two processes: drug discovery and
retrosynthetic analysis [16]. In the first process, molecules, which possess suitable
characteristics to make acceptable drugs, are identified. The second process is target-
oriented syntheses of these molecules. The synthesis can be planned effectively with
retrosynthetic analysis [18]. The goal of the analysis is to construct a synthesis path
from buyable compounds to the small molecules. The path should be short in order to
obtain a valuable amount of the target substance.

Drug discovery can be viewed as a challenging multi-dimensional problem in which
various characteristics of compounds need to be optimized together to provide drug
candidates. The idea for a target can come from a variety of sources, including academic
and clinical research. Recently, advances in computer science have changed the drug
discovery process [1,19]. There are several works aimed at the prediction of new chemical
compounds with given characteristics, including efficacy, pharmacokinetics, and safety.
Concepts of using recent advances in computer science are proposed to generate new
targets automatically [20]. Drug discovery is a computationally hard problem because the
space of available molecules is huge [21].

Recent trends in data science demonstrate the potential of machine learning and deep
learning technique to solve a wide range of different problems in a variety of fields such
as natural language processing, computer vision, and signal processing [22-24|. Moreover,
the influence of the methods in computational chemistry and biology was displayed in
the paper [1-4]. Models for a generation of drug candidates were built with a recurrent
neural network that generates SMILES [25] representation of target compound character
by character [26,27|. Variational autoencoders and graph neural networks was successfully
applied to the problem [28-30].

The synthesis research carried out in universities and applied in laboratories has
changed the drug development industry [1,31]. For example, the reactions are asymmetric
synthesis and metal-catalyzed cross-coupling reactions [32,33]. Today outcomes prediction
is particularly routine for medical chemists. Organic chemists recognized the potential of
computational methods in practice and developed the first rule-based method (OCSS) 50
years ago [9]. There were other attempts to develop methods to automate retrosynthetic
analysis: CAMEO [10], EROS [11], IGOR [12], SOPHIA [13]. Medical chemists use a huge
set of unstructured rules to predict products in the reaction (see Fig. 1). Computer-aided
retrosynthesis would be a valuable tool, but at present, it is slow and provides results of
unsatisfactory quality [5].

Modern approaches to the problem rely on deep learning methods [5-8]. Architecture
of Neural Machine Translation is adapted to the forward synthesis problem. The
architecture initially solves natural language translation problem [34]. The methods
use SMILES representation of the reagents, reactants, and products. It translates the
source string to the product string character by character. Recurrent and Transformer
architectures for NMT demonstrate the excellent performance of the task. The last
architecture is now the state of the art solution. However, fully data-driven approaches
have several weaknesses. The methods do not use any expert knowledge about graph
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structure, SMILES language construction. A graph convolution neural network was
proposed to evaluate the probability of a bond between two nodes. To sum up, deep
learning methods have the potential to solve the problem acceptable at industry.

The sequence-to-sequence models can be learned with SMILES of reagents and
products [35]. However, more sophisticated methods require the atom mapping [36].
The atom mapping of a chemical reaction is a bijection of the reactant atoms to the
product atoms that specifies the terminus of each reactant atom. Finding the atom
mapping in reactions is essential in classifying reactions in large databases, facilitating
substructure searches, identifying metabolic pathways [37-39]. One of the problems with
existed databases is the inconsistent quality of the data entered into these databases
over the years. Most of the reactions are not balanced and not atom-mapped. It alone
creates significant problems for automated machine understanding of chemical reactions
and reactivity [40].



Problem statement

Reagents Main product
cl__ Q9 TN

O:%
/CZ\ /C4\ \ /C:G

Br:1 C3 OH:5 7% N /C:2 R /C:4 g
08 C:6 Br:1 c:3 05 \
/\ 08
N

Atoms of the main product ) Centers of the reaction

Puc. 1: A chemical reaction maps reagents into products. On the molecules of reagents,
two types of atoms are labeled: atoms of the main product and centers of the chemical
reaction. Centers are the atoms that change their characteristics.

The authors propose a method that is capable of predicting outcomes and finding
atom mapping at the same time. Two specific tasks are solved in parallel (see Fig. 1).
Atoms of the main product and centers of the reaction are found. Centers of the reaction
are atoms of the main product, which change the configuration in the reaction. The
configuration of an atom is a superposition of characteristics of the atom and adjacent
bonds. In terms of graph theory, both tasks are node-classification in a disconnected graph
of source molecules. The novel neural network MolsNet solves the node-classification tasks.
Atoms of the main product and centers of the reaction determine the outcome in the
majority of reactions because they have less than three centers.

The method structure (see Fig. 2) consists of several blocks. Firstly, each atom is
mapped to a real vector according to its characteristics in the molecule. The model is
capable of using any known numerical characteristics of atoms. Secondly, the vectors
are updated with Relational Graph Convolution Neural Network (RGCNN) [17]. The
RGCNN generalizes Graph Convolution Neural Network [41] for graphs with different edge
types that correspond to chemical bonds. The authors offer to use extended molecular
graphs with molecule’s and reaction’s level nodes to enable passing information across
different molecules. Then, the Transformer encoder processes the vectors. The block
simulates intermolecular interaction, which is a mechanism of chemical reactions. Finally,
the Fully-connected neural network (FCNN) gives probabilities for each atom in the node
classification problems.

Compared with other recent studies, MolsNet has several novel aspects in terms of
architecture of neural network. MolsNet generalizes the graph convolution neural network
for the disconnected graph of molecules. The natural structure of the MolsNet is suitable
to add information about molecules and atoms: characteristics of atoms, types of chemical
bonds.

Experiments are conducted on the dataset of reactions which was extracted from
the US patents (see Tab. 1) [42|. The results demonstrate excellent performance. The
proposed methods of generalization RGCNN architecture work with disconnected graphs.
Additional expert knowledge about the structure of the molecular graph results in increase
of model quality. After that, a comprehensive analysis of the best model illustrates that
the model learns chemical insights from the given reactions.



Dataset

Field Description Example
Source SMILES of source molecules CS(=0) (=0)C1.0CCCBr>CCN (CC)CC.Cccocc
Target SMILES of the main product CS(=0) (=0) 0CCCBr

Canonicalized Reaction | SMILES of the chemical reaction (S (=0) (=0) 0CCCBr

CS(=0) (=0)C1.0CcCCBr>CCN(CC)CC. ccoce>

[Br:1] [CH2:2] [CH2:3] [CH2:4] [0H:5].
[CH3:6][S:7](C1) (=[0:9])=[0:8].

Original Reaction SMARTS of the chemical reaction ccace>c(n(ceyce)e>

[CH3:6] [S:7] ([0:5] [CH2:4] [CH2:3]
[CH2:2] [Br:1]) (=[0:9])=[0:8]

Patent Number Unique number of the patent US03930836
Paragraph Number Paragraph number in the patent 2
Year Year of publication 1976

Tabmuma 1: The USPTO STEREO dataset of chemical reactions. The dataset consists
of one million chemical reactions extracted from the US patents, which was registered
between 1976 and 2015.

Most of the publically available datasets are based on a set of reactions that were
extracted from United States patents published between 1976 and September 2016 with
text-mining [42]. The original patent information describes a complex chemical synthesis
process consisting of multiple steps. The information summarised to a SMART'S [43] string
(see Tab. 1), which includes three groups of molecules: the reactants, the reagents, and the
products. Any other information about the synthesis process such as a physical condition
was removed. The original dataset has noise and duplicate examples. In the previous
studies, [6,8| quality of methods is evaluated on subsets. Reactions without duplicates
and with a single product make up the USPTO STEREQO dataset, which contains one
million reactions. The USPTO_ MIT is obtained with more sophisticated filtering. It
consists of 300k reaction. The USPTO 50k contains 50 thousands of reactions which has
one of ten classes.

The SMARTS representation of a reaction is converted to a molecular graph with
open-source library RDKit [44]. The library is used to calculate atom features: degree,
explicit valence, hybridization, implicit valence, aromaticity, implicitness, number of
explicit hydrogenous, number implicit hydrogenous, is a ring, number of radical electrons,
formal charge.
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Method

Output Probabilities
Input graphs . _N‘?de. Nod.e Intermolepular Output_ p

Initialization Updating Interaction Construction = /®

® Stacking Updating vector | |Passing information| | - optaining output ¢
Br ~_ . embeddings of representation | | between molecular | | probabilities with (D)

\C/ c features of the of the node graphs with FCNN = ), Q O
. node with GCNN Transformer Lo 6)
o Vi Encoder é)
N — 00
e} //
7, Model Pipeline
Probability

Puc. 2: The MolsNet architecture. Each step in this pipeline naturally corresponds to the
structure of given molecular graphs. It uses different local features of atoms in molecules
to construct an initial representation of nodes. The final atom representation is given
according to the adjacent node and edges, and other molecular graphs in the reaction.
Each atom and molecules impact the final probabilities with specific weights.

The core of the proposed method is Graph Neural Network [45]. Therefore, the
pipeline consists of the next stages (see Fig. 2): initialization of vector representations
of nodes in graphs, updating the representation according to structure of the graphs,
aggregation information from different components of the disconnected graph, construction
of output, and evaluation loss function.

Initialization of vector representation of nodes. Description of the atom consists
of several categorical features such as type of atom, valency, formal charge. For each
feature, vector embedding is constructed,

0

Where fF is a value of feature k of atom i, W* is an embedding matrix for categorical
feature k.
The final vector representation is a concatenation of embeddings of all features,

hgo) = concat[hgg), h§‘f), hES), . 7h£(1)<)]-

Updating of vector representation. In graph convolutional neural network, vector
representation of nodes is updated according to equation,

()

h{"*) = ReLU (W(”h(-l) +2 lW(Z)h@) :
(2 (2 C; ]
JEN;
Where ReLU is a rectified linear unit, /NV; is a set of atoms which is adjacent with i,
¢; is a normalising factor.
One disadvantage of the model is the assumption that edges in the graph are

the same. As we discussed, the type of chemical bond is an important feature in the
investigated problem. In Relational Graph Convolution Neural network (RGCNN [17]), a
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vector representation of node is updated according to the equation,

1
Ot (WO Y Lwin ).

reR jGN,'

Where for each type of edge, there is a unique weight matrix.

Passing information between graph components. The output of the model
should depend on all atom’s representation in source molecules. Therefore, the updating
mechanism of RGCNN should be improved to work with disconnected graphs. The authors
offer two methods of generalization of vanilla GCNN for disconnected graphs.

The main idea of the first method is constructing additional vector representations of
molecules h,(q?i and reaction h". Vector representations of atoms in molecule is connected
with corresponding molecule representation and the molecule representation connected
with the reaction representation (see Fig. 3a). Constructing a new node in a molecular
graph is not a novel approach. A similar mechanism was successfully applied to different
tasks in computational drug development [46]. New updating rules are displayed in
equations,

1
h{"Y = ReLU [ WOh{" + W)h{) +>° Z —wOn! >
r€R jEN; Cir
h('+D) = ReLU  WOR{) + Wn{® + Z h(l))
JEME |
h{*Y = ReLU | WL + Z wn
m; EM

Where new bonds have a different type on different levels of vector representation.

The second proposed approach uses attention-mechanism to aggregate information
across nodes in a disconnected graph of source molecules. Attention-mechanism was
originally proposed for the improvement of sequence-to-sequence models for the machine
translation problem [47]. After that, the method was successfully applied to a variety of
problems and was integrated into different neural architectures [48-50]. The output of the
method depends on all inputs with trainable coefficients.

The authors offer using encoder of Transformer [51| (see Fig. 3b) for aggregation
information across nodes. The core feature of the model is a multi-head attention.
In particular, one-head attention is a self-attention. The mapping is mathematically
formulated in equation,

Attention(Q, K, V) = softma < KQ )V
y X = X .
Vv dmodel

Where Q, K,V are queries, keys, values; dy,oq40 18 @ dimension of key. A generalization
of the formula for several heads is represented in equations,

Y = concat[head;, heads, . .., head,] W,

mha

head; — Attention (HU)W?, HOWK HOWY ) .
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(a) Extended molecular graph with introduced reaction and (b)  Architecture of the
molecular level pseudo-nodes. The structure is suitable for Transformer Encoder layer.
applying GCNNs for disconnected graphs.

Puc. 3: Two techniques that generalize GCNN on disconnected graphs. The figure 3a
demonstrates the extended molecular graph, which unites source molecules. The figure 3b
illustrates the encoder block of the Transformer architecture. Outputs of GCNN is
processed with the Transformer to exchange information between graph components.

The model consists of several technical features which make the training process
easier and more efficient: residual connections, norm layers, feed-forward layers [52,53].

Construction of output and Loss function. The final vector representations are
passed to a fully-connected neural network to get the probability of the node’s class,

hf-lH) = ReLU (hnear(hﬁ”)) :

~

P(y; = 1) = sigmoid (linear(hgn))) .

Where the final non-linearity is sigmoid function.
Value of loss function for a reaction is an average cross-entropy,

n

L= —% > (y@- log P(y; = 1) + (1 — y;) log(1 — P(y; = 1))) :

i=1

General loss is an average of losses on each reaction.

Multi-task learning. Experiments demonstrate that learning multiple related tasks
from data at the same time increases model performance comped with learning these
tasks independently [54]. The authors focus on two related node classification problems in
a disconnected graph of source molecules in a chemical reaction. Therefore, the multi-task
learning technique was adapted to the classification problems. The proposed architecture
consists of two fully-connected heads that construct output from vector representation of
nodes for either classification problem. The final value of loss function is a sum of losses

on both heads.
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Experiment

The model was carefully selected with a step-by-step procedure(see Tab. 2). The procedure
is an evolution of the model that display the importance of each proposed feature.

Modification\Model BASE | EG | T | EGT | EGTB | EGTBF | MT EGTBF
Extended molecular graph - + | - + + + T
Self-Attention - -+ + + -+ +
Types of bonds - - - - n T+ T
Features of nodes

from RDKit ) T ) ) T +
Multi-task learning - - - - - - ¥+

Tabmuma 2: The set of models which demonstrates importance of each proposed
modifications.

The first experiment shows that the architecture generalizes previously developed
graph convolutional neural networks to disconnected graphs. The next experiments
explain the importance of knowledge about source molecular graphs to achieve a high
score. The last experiment illustrates that multi-task learning is a useful technique in
solving problems. It reduces computational costs and increases quality when a model
learn correlated tasks at the same time. Two atom classification problems are solved on
USPTO_ STEREO dataset (see Tab. 1) with one major constrain, the number of atoms
in source molecules is less than 50.

The simplest model (BASE) consists of RGCNN and FCN parts and takes a
disconnected graph of source molecules. Only types of nodes assume to be known. The
model is unnatural for the atom classification problem in a disconnected graph. It does
not use any problem-specific information and deny passing data between components in
the disconnected graph. A comparison with the model displays that all the proposed
modifications increase the model quality. The model demonstrates weak results (see
Tab. 3) because of the final class of atom in a molecule depends only on atoms in
the molecule. However, intermolecular interaction is the primary mechanism of chemical
reactions. Using the extended molecular graph (EG) as an input of RGCNN prevents
the model from the weakness. A significant increase of the results proves that additional
representation of molecules and whole reaction simulates intermolecular interaction in
the chemical reaction and exchanges information across source molecular graphs. Another
proposed generalization of RGCNN is using Encoder of Transformer (T') architecture after
convolution layers. The modification demonstrates better results than using an extended
molecular graph. A combination of both changes (EGT) increases quality compared with
each one.

Another quality of an excellent method for node classification in molecular graphs is
using additional knowledge about atoms and bonds. The proposed method is suitable
to add the features of edges and nodes naturally. Embeddings of nodes contain
information about a variety of atom properties. Moreover, the relational structure of
graph convolutional layers simulates different types of chemical bonds.

The next model (EGTB) works with different types of chemical bonds: single,
double, triple, aromatic. The information results in a quality increase. The development
corresponds to prior knowledge that type of chemical bonds impact the mechanism of
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the reaction. The most valuable influence on the final result gives usage of different
calculated properties of the atoms while initializing the embeddings of nodes in the
extended molecular graph. The properties are degree, explicit valence, hybridization,
implicit valence, aromaticity, implicitness, number of explicit hydrogenous, number of
implicit hydrogenous, is a ring, number of radical electrons, formal charge. Adding
the properties to the model (EGTBF) significantly improves model quality. The main
product mapping quality rises to 61% full-match accuracy; centers of the reaction is
detected with 60% full-match accuracy. The experiment displays that the model has an
interpretable architecture that can take different properties of atoms and chemical bonds
to show better performance on the dataset.

The considered classification problems are correlated. Prediction only atoms of the
main product determine part of the centers of the reaction. Learning different correlated
problems from data is a popular technique that increases model quality in a variety of
problems. The authors apply the approach to the considered problems (MT EGTBF).
The modification slightly increases model quality in both cases. Moreover, the model
is computationally efficient because it has shared RGCNN and Transformer parts and
task-specific FCNNs.
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Results

The authors construct a set of experiments that demonstrate the power of MolsNet. The
final model achieves 61% (see Tab. 3) full-match accuracy on detection of the main product
and 60% on detection centers in the reaction. Moreover, we demonstrate that all proposed
modifications are significant and result in an increase of the final quality.

Product mapping Center detection

FM F FM F
BASE 0.21£0.01 | 0.92+£0.002 | 0.1540.01 | 0.502 £ 0.002
EG 0.45£0.01 | 0.943 +0.002 | 0.40 £0.01 | 0.714 £ 0.002
T 0.36 = 0.01 | 0.938 £0.002 | 0.29 £ 0.01 | 0.643 + 0.002
EGT 0.47+0.01 | 0.946 £0.002 | 0.43 £0.01 | 0.731 £ 0.002
EGTB 0.53 = 0.01 | 0.950 £ 0.002 | 0.55 4+ 0.01 | 0.809 % 0.002
EGTBF 0.59 +0.01 | 0.959 £ 0.002 | 0.60 4+ 0.01 | 0.838 = 0.002
MT EGTBF | 0.60 + 0.01 | 0.963 4+ 0.002 | 0.61 £ 0.01 | 0.841 4+ 0.002

Tabsuna 3: Results of the experiments. F'M is an average full-match accuracy. F is an
average Fj-measure between ground-truth classes and predicted classes of atoms in a
reaction.

All experiments were designed with PyTorch [55] and DGL [56] frameworks and run
on Nvidia 1080Ti. Five epochs of learning the best architecture take approximately 4
hours.
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Model analysis

As previously mentioned, there is a limitation of the number of source atoms in conducted
experiments. The restriction reduces the used dataset by 25% and makes the model faster
and smaller, which is proper for training multiple models. Learning the best model for
higher limitation shows that model quality decrease slightly. The limit of 150 atoms
reduces the dataset by less than 2%. Quality of the main product detection lowers by
2%, reaction centers by 3%. The model is robust for the length of the molecules.

On the next step, the authors investigate the dependency of the model quality on the
length of source molecules and the number of centers in a reaction (see Fig. 5). Overall,
the quality of the model does not depend on number of atoms in source molecules. The
fact demonstrates that MolsNet has advantage above sequence-to-sequence approaches
which quality often has a drop for long inputs. However, the quality dramatically decrease
with increasing the number of centres. Multiple centers in a reaction mean that chemical
compounds changes in the reaction significantly, and the process is complex(see Fig. 4).
The analysis demonstrates that the model is more flexible for inputs of different lengths
than sequence-to-sequence models.
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Puc. 4: Examples of reactions with different number of centres.
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Puc. 5: The analysis of the dependency of the MT EGTBF model quality on the number
of atoms in source molecules and the number of centers. The color in the heatmaps
illustrates the distribution of reactions in the test part of the USPTO STEREO dataset.
Annotated values are the percent of the right predictions in terms of full-match accuracy.
The left figure demonstrates the quality of the main product mapping, the right figure
displays the quality of detection of the centers

Interpretability of the model

The rest of the experiments are devoted to analyzing the proposed method. Firstly, the
authors investigate vector representations of reactions. The best model (MT EGTBF)
demonstrates that pseudo-nodes in the extended graph of source molecules learn chemical
information about the whole reaction. Similar representation correspond chemical
reactions which have similar mechanism (see Fig. 6). The authors take the USPTO 50k
dataset [35, 57|, which contains 50 thousands of reactions of ten different classes to
investigate the vector representations. The five largest and smallest classes are separately
studied because the reactions in the dataset are very unbalanced. TSNE [58] maps (see.
Fig. 7) show that space of reaction’s representation contains information about class of
reaction. The space is not perfect because the properties of the reaction representation
space are learned unsupervised. However, the result demonstrates that the model has the
potential to create high-quality descriptors of molecules, reactions, sets of molecules.
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Puc. 6: Examples of nearest reactions. The figure shows that a similar vector
representation of chemical reactions corresponds to reactions with the same mechanism.

Discussion

To sum up, the authors propose a novel architecture of neural network MolsNet which
generalizes graph convolution neural network for a disconnected graph. Experiments
demonstrate that the method demonstrates excellent results on the atom mapping
problem. Moreover, the proposed model effectively uses knowledge about the structure of
given molecular graphs. Additional information about chemical bond types between atoms
and properties of these atoms significantly improves the model performance. Solving both
node classification problems at the same time results in a slight increase in the quantity
of the solution. The technique makes the model computationally efficient.

The authors developed an accurate and efficient method for the atom mapping and
the main product prediction in the chemical reaction. The problem is solved with the
MolsNet neural network. The model was analyzed on the large-scale USPTO _STEREO
dataset. The set of experiments demonstrates that the model is capable of process chemical
information about molecular graph structure included numerical characteristics of atoms
and bonds in source molecules. Analysis of the final model display flexibility of the model
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Puc. 7: The TSNE maps of vector representations of reactions are here. Colors correspond
to classes of chemical reactions in the USPTO 50k dataset. The figure 7a displays
reactions from five most frequent classes. The reactions make up 90% of USPTO 50k
dataset. The figure 7b represents five less frequent classes.

to molecule’s size, learning chemical insights from given reactions. However, the model
has several limitations. The proposed architecture is not suitable for multiple mappings
detection. The quality of the solution drops dramatically with increasing reaction number
of centers in the reaction. A large number of centers means the complexity of the reaction.
This paper considers only application on MolsNet to molecular graphs in chemical
reactions, although the approach presented can be applied to disconnected graphs in
general. It expands the GCNNs for various problems in computational chemistry such
as atom classification in molecular graphs, classification of molecular graphs, different
prediction of atom’s properties in reactions and solutions. Using local features of source
molecular graphs increases the value of the method for usage in complex systems. In future
work, the authors plan to create a software pipeline that makes the proposed methodology
applicable in industry.
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