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Abstract. This paper presents a probabilistic mixture modeling framework for the hierarchic
organisation of document collections. It is demonstrated that the probabilistic corpus model which
emerges from the automatic or unsupervised hierarchical organisation of a document collection can
be further exploited to create a kernel which boosts the performance of state-of-the-art Support
Vector Machine document classifiers. It is shown that the performance of such a classifier is further
enhanced when employing the kernel derived from an appropriate hierarchic mixture model used
for partitioning a document corpus rather than the kernel associated with a flat non-hierarchic
mixture model. This has important implications for document classification when a hierarchic
ordering of topics exists. This can be considered as the effective combination of documents with no
topic or class labels (unlabeled data), labeled documents, and prior domain knowledge (in the form
of the known hierarchic structure), in providing enhanced document classification performance.
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1. Introduction

The notion of hierarchy is of great importance in areas such as, for example Pattern
Recognition, Machine Learning, Artificial Intelligence and of course Information Re-
trieval (IR). Hierarchy embodies the principle of divide-and-conquer which takes a
complex problem and breaks it up into a number of simpler sub-problems whose
solutions, when combined, provide a solution to the original complex problem. A
tree structured mixture of simple experts was developed in [16] to perform clas-
sification on complex problems and its performance provided enhanced results on
particularly challenging pattern recognition problems [16]. A similar mizture of
experts architecture was employed in [26] for text classification with consistently
improved results reported on the particular test corpora utilized. Somewhat more
recently a hierarchic structure composed of state-of-the-art Support Vector Ma-
chines (SVM) [23] [8] was employed for the classification of a large collection of web
page summaries in [9)].

Complex classification tasks, in many cases, benefit from the adoption of a hier-
archic approach to the problem. It is then natural to consider the benefit that the



task of unsupervised classification or clustering can derive when set within a hier-
archic framework. Indeed agglomerative approaches to the clustering of data are
inherently hierarchical and agglomerative clustering has a long tradition in IR re-
search [22]. The clustering of a document collection using a mixture model provides
certain advantages over non-probabilistic clustering methods for example providing
a soft rather than a hard clustering. In addition, a statistical model of the document
generation process is provided and, as will be shown in this paper, the generative
model can be further exploited in substantially boosting the performance of a re-
lated document classifier. Therefore this paper will focus on probabilistic methods
of soft partitioning or clustering based on generative probabilistic methods of data
modeling [2].

Probabilistic generative models are emerging to be particularly elegant and po-
tentially powerful data analytic methods in a diverse number of areas [3]. The
well known statistical method of principal component analysis (PCA) has also been
shown to have a probabilistic basis and the principal directions of multi-variate data
emerge as the maximum likelihood solutions of the associated generative model [2].
Indeed a probabilistic generative model of Latent Semantic Analysis [7] has recently
been introduced in [11].

Many generative models take the form of a mixture-model such as that found
in probability density estimation [1] [3]. In this case the notion of a structural
hierarchy of classes (or mixture components) has not been considered in great
detail, chiefly as the expressive power of a flat mixture model and a hierarchic
mixture model are statistically equivalent. In other words the mixture of a mixture
is a mixture. Therefore the data modeling capability of flat and hierarchic mixture
models, it can be argued, are both the same. However despite this hierarchic
generative models, can and have been shown to be more powerful than their flat
equivalents in a number of significant cases [10] [25].

In [2] a hierarchic mixture of probabilistic principal component analysers was de-
veloped for the visualisation of structure in complex data. The ensuing method
allowed for the hierarchy to be interactively built to aid exploratory data visuali-
sation and analysis. Autoclass [3] the classic Bayesian mixture modeling software
provides for the creation of a class hierarchy to allow parameter inheritance, and
whereas algebraicly, both flat and hierarchic are equivalent an appropriate hierar-
chic model will provide a better fit to the data [10].

The automated hierarchic organisation of a collection of documents is an impor-
tant and timely subject of study in IR [9], for example the automatic hierarchic
organisation of web search results [4].

This paper presents a probabilistic mixture model with hierarchic structure for
the unsupervised organisation of a collection of documents. The mixtures are based
on both standard multinomial event models [18] and probabilistic latent semantic
analysers (PLSA) [11] [25]. In addition to providing a hierarchic partitioned or-
ganization of a document collection the associated generative model allows the
derivation of the Fisher kernel for the hierarchy. The Fisher kernel [14] engenders
a similarity measure between documents based on the metric space induced by the
probabilistic representation of the document class hierarchy.



Preliminary experimental results with SVM classifiers employing the derived ker-
nels indicate that the classification performance is enhanced when a kernel - derived
from an appropriate hierarchic class representation - is employed. This further ex-
tends the results originally reported in [12].

The remainder of the paper is structured as follows Section (2) describes the
probabilistic mixture models employed whilst Section (3) presents the associated
Fisher kernel for a hierarchic multinomial mixture model. Section (4) provides some
experimental results and the final section concludes with some closing remarks.

2. The family of hierarchical probabilistic mixture models

Formally, text collections are represented by a bag-of-words model where a word
w € W, with dictionary cardinality |W| = M occurs ng, times in a part of a sample
S representing a document d € D, |D| = N. The sample S relates to the observed
part of the data. It is known that one of the effective techniques to reduce the
dimensionality of input space is to introduce unobserved variables and apply the
Expectation Maximization (EM) algorithm [19] in the estimation of the associated
parameters (a generative model). Usually in latent variable models hidden variables
represent classes which generate documents or document / word pairs.

2.1. Basic framework

Hierarchical mixtures of probabilistic principal component analysers have been ex-
ploited recently in a number of works [2][24]. We develop the general framework for
the multivariate, and conditionally independent, multinomial distribution which is
the most appropriate for a vector space representation of text documents.

Let 7 be a network structure which we assume here to be a tree although all
derivations in the sequel can be rewritten for any acyclic graphs. Each node of T
from a layer m — 1 represents a cluster c¢,,—1 and if the cluster has children we
assume that all data assigned to ¢,,—1 are generated by a mixture of its children
¢m With mixture weights p(cm|cm—1). The parameters p(cp|cm—1) = 0 if cluster
¢m is not a child of ¢, 1 in T (Fig. 1). The marginal probability of a cluster
c; = (¢1,¢2,---,¢) where ¢, 1 = Pa(cy,) (parent of ¢;,), m =2,...,1 , will be

ple) =[] plemlen),  plerleo) = pler) (1)

Let {25} be a set of latent variables for a sample element e that can be either a
document d or a document-word pair (d, w). These variables indicate whether the
sample element e belongs to the child ¢, given the fact that it belongs to its parent
Cm—1. In other words, Z$' = 251282...28" = 1 if and only if e belongs to ¢;. As this
kind of information is not contained in the sample these variables are sometimes
called latent variables. The problem is then to restore the hidden or latent infor-
mation from the sample. Approaches to the solution or estimations (expectations)
of the latent variables are denoted as p(cp,|cm—1,€) and are also called posteriors .



Figure 1. An example of a hierarchy (boundaries between clusters are relative as posterior prob-
abilities form soft clustering.)



By definition the latent variables are independent and the expectation of Z$' can
be decomposed as a mere product of expectations of all components:

plede) = [T _ pemlem 1.¢) )

where p(c1cg, €) = p(ci|e) for convenience.
Let us consider a sample to be a number of document-word pairs generated by a
mixture

p(dyw) =3 ple)p(d,wler) 3)

It should be noted that for the case where there is only one layer in the hierarchy
the model reduces to Probabilistic Latent Semantic Analysis (PLSA) [11]. Now
in contrast to PLSA we may be interested in organising documents rather than
modeling document-word pairs. If we restrict all pairs of the same document to the

same cluster it would be equivalent to assuming a document d = (w1, w2, ..., wy,)
to be generated by a mixture:
p(d) = Y plep(dlcr) @)

Referring to the symmetry of appearance of d and w variables in equations (3)-(4)
the models defined by them are termed symmetrical and asymmetrical accordingly.
To complete this section we cite the following statement that we will refer to later
and that we leave here without proof (it follows trivially from Bayes and the inde-
pendence of the tree structure).

Statement. (Bayes formula for hierarchical mizture models). The following
holds

p(e)p(dler) = p(ei|d)p(d) ()
2.2.  Multinomial Asymmetric Hierarchical Analysis (MASHA)

Consider now the asymmetric model and let us instantiate the generic model (4)
by the multinomial distribution

p(dler) o pr(w|cl)"d’”, Zw p(wle;) =1 (6)

This yields the following EM-algorithm (Detailed derivation can be found in [25])

p(ci|ci—1)p(d|ci)
_ p(cleim1)p(dle))
1

pnew(cl|cl—17d) =

_ 1+Zd nawp(ce|d)
Prew (U)|Cl) - M+Zd Ew Nawp(ct|d)

Prew(Cla—1) = % X gplale-1,d)

In the equation for updating the class means p(w|c;) we used Laplace smoothing [18]
due to the sparseness of the data. The above equations define the EM [-step for layer



[ and this depends on the previous [ — 1 steps. This determines the following order
of calculations: first the parameters for the [ = 1 layer are estimated using EM,
the parameters are frozen, and inherited by the children as initial estimates. This
reduces the number of parameters which require to be estimated by the children.
For example there may be two expert nodes at the first layer corresponding to
the topics ¢;1 = MEDICINE and ¢12 = ART; clearly p(w = Hockey | ¢11 =
MEDICINE) — 0 and so the children of this expert do not require to estimate
this particular parameter value. The subsequent layers [ = 2 and so on up to the last
layer I = L are then parameterised in the same fashion. It is worthwhile stressing
the difference between plain and hierarchical mixtures. Due to the conveyor-like
computations in the hierarchical models they really are different from the flat ones
although any hierarchical mixture is a mixture of mixtures and mathematically it is
equivalent to a flat mixture. However the non-convex optimisation of the likelihood
which is required will benefit from the combination of estimation of parameters for
a number of smaller and simpler models. Indeed, for lower level mixtures some work
is done by the upper level mixtures i.e. some subset of input data is chosen by the
appropriate upper posteriors and more relevant (compact in terms of input space)
data is left to be processed or inherited by the children nodes. This is why results
of the hierarchical models are substantially different and, moreover, are usually
somewhat better as our experiments described further confirm.

An example of (a part of) a hierarchy derived by MASHA from the 20 Newsgroups
corpus is shown in Fig. 2. Clusters or nodes of the hierarchy are represented by the
directory labels along with the 10 most probable words estimated by the model.
This collection consisted of 9000 documents drawn from nine Newsgroups with a
dictionary size of 50,000 words being employed for this demonstration.

The authors also have developed an interactive MASHA-based demonstration tool
for analysis of raw text collections. The tool provides several functions with one
main function that runs EM algorithm for children of a chosen node or for subtree.
A user can also manually change the hierarchy adding new randomly initialized
nodes or deleting some nodes. It can be demonstrated that the tool allows to analyze
the content of the collection and to reveal its underlying hierarchical structure.

2.8. Hierarchical Probabilistic Latent Semantic Analysis (HPLSA)

Like virtually most of the latent models hierarchic PLSA explicitly introduces a
conditional independence assumption, namely that d and w are independent condi-
tioned on the state of the associated latent variable. Hence we decompose the joint
probability of a document-term pair as the following

p(d, wler) = p(dle)p(wler) (7)
and then we obtain the following EM updates

p(cl|clf1)p(d; w|cl)
new —Lb d’ =
Prew(ci|ci-1,d, w) > P(cflei—1)p(d, wle)) ¥
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Figure 2. An example of (a part of) a hierarchy derived by MASHA from the 20 Newsgroups
collection.



Zw ndwp(cl |d7 11])

Prew (d|Cl) = Ed Ew Tldwp(cl |d7 11]) )
Do anawp(c|d, w)
Pnew (wlcl) - Ed Ew ndwp((:l |d, w) (10)
Do 2w Nawp(alei—1, d,w)
pnew(cl|Cl—1) = Zd Zw — (11)

We named the method Hierarchical PLSA to stress the connection with Probabilis-
tic Latent Semantic Analysis (PLSA) [11]. As it can be seen the plain or flat PLSA
is a particular case of the more general HPLSA where the hierarchy has only one
layer and therefore no parameter inheritance mechanism.

3. Model selection

In contrast to other methods that could be applied for model selection we derive
here a criterion specific for hierarchical models considered in this paper. Let a
discrete variable 7 encode all possible true model configurations i.e. hierarchies.
Then we compute the posterior probability of a model given sample S by Bayes rule
p(T|S) x p(T)p(S|T) and select the model with the highest p(7|S). We will refer
to p(S|T) as the marginal likelihood (ML). Suppose all models are equal a priori
then we are interested only in maximizing p(S|T) that is obtained after choosing
an a priori distribution of parameters p(87|7T) and integrating them out:

p(S|T) = / (8167, T)p(67(T) b7 (12)

where L = p(S|67,T) is the likelihood. For a Dirichlet prior distribution conjugate
to multinomial families the integral in (12) cannot be computed in closed form and
has to be approximated.

Assumption 1. The Cheeseman-Stutz approximation [5] is sufficient for our case.

Assumption 2. Moreover, we can disregard all terms except the marginal complete
likelihood term in the Cheeseman-Stutz approximation or in other words we assume
that

log p(S|T) ~ log p(S'|T) (13)

So we approximate the marginal log-likelihood log p(S|T) through the marginal
complete log-likelihood log p(S’|T) which can be computed analytically. The above
two claims are supported by extensive experiments. The first assumption is also
supported by experimental results in [5].

Assumption. Instead of complete data in S’ that we do not have we can take
its expectation estimation that we do have after running the EM algorithm.



To give the result of the derivation of logp(S’|T) full version of which is given
in Appendix A.1 we need some additional notations. Let 7; be the lth layer of
TVl=1,2,...,L; Ch(cy,) be the set of children of ¢,,; (7' C T) be the set of all
paths starting at the root and ending at a some node in 77, Ds(c,,) be {cp, € p(TL) :
¢m € cr} (descendants of ¢,) and [z]Y be (z +y)!/z!l = (z+ 1)(z+2)...(z +y)
for convenience. Then if we assume here that mixture weights (marginal cluster
probabilities) p(¢m|cm—1) are distributed uniformly and integrate them out in the
expected likelihood (for the sake of brevity we consider only HPLSA model here)
we obtain a Dirichlet integral so the 8cp-term in the expression for the marginal
likelihood is

IL...echiem-1) (Zd 2w Mdw XceDs(en) PlEld, w)) !
€T [[Ch(epop)[]2 e " Do M)

Ch(em—1)#0

(14)

In case of multinomial sampling the natural conjugate prior distribution of parame-
ters p(w|cy) is defined by a Dirichlet distribution Dir({p(w|cL) }wew | {Qw)c, Jwew)
where hyperparameters of the Dirichlet distribution are Yw ayc, > 0. Integrating
out the parameters p(w|cy) in the expected likelihood we obtain the y c-term of

p(S'T):

Qeyp — 1)! (NUJCL + Qylep — 1)!
| ! ' (15)

_ — 1)
cLep(TL) (NCL + ac,, (awltm 1)

Here we denoted the equivalent sample size ), y|c, a5 Qcp, Y_gNawp(cL|d, w)
as Nyc, and Y, Nyc, as Nc,. In experiments we set all hyperparameters to 1
although one could obtain a more theoretically justified choice from the expression
of the individual means and variances for each random variable of the distribution
[20]. For the parameters p(d|cy,) the derivation and result is the same up to sub-
stitutions of w by d. One should notice that (15) is similar to the result from the
Bayesian networks theory (cf. [5]).

In Section 5 we will demonstrate the performance of the derived Stochastic Com-
plexity Criterion (SCC) for model selection when applied to various document cor-
pora.

Unlike a standard clustering of the document collection the methods presented
provide a probabilistic model of the collection of documents. This model can then be
employed in assessing the likelihood that a new or unseen document was generated
from the hierarchy and therefore what part of the hierarchy it is most likely to fit.
Another use of this emerging generative model of the document collection is the
creation of a natural distance measure which can then be employed in building a
subsequent classifier for new documents. The following section introduces what has
been termed the Fisher kernel for the specific hierarchic models presented in the
previous sections.
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4. Fisher kernel
4.1.  Theory

In our previous work [25] we have shown that hierarchic multinomial and asymmet-
ric models can produce a superior clustering to that of flat models (also see [10]).
This fact itself may not seem of great import in connection with end-user infor-
mation retrieval applications but it has a number implications that might be quite
utilitarian from this point of view. One of these implications is the possibility to
build a Support Vector Machine SVM-classifier [23] based on the statistical models
which have been discussed. The outcome of this can not be overestimated as it has
been established that SVM classifiers are the best known classifiers in many areas
including text classification [15] [9] [24]. To bridge a gap between unsupervised
probabilistic hierarchic organisation and classification we now employ the so-called
Fisher kernel [14].

First let us consider the average expected log-probability of a document normal-
ized by its length. For brevity we will take only the MASHA model and for this
model it is given by

d) =3 pleld) 3 pwld) log plwle) (16)

where an empirical distribution of words in the document p(w|d) = naw/ Y, Ndw-
For the moment we omitted a p(c;)-term as it carries no essential information about
the document compared with the other term. The Fisher score Vyl(d), where Vg
is the gradient operator with respect to the parameters 8§ = {p(w|c;),p(c;)} then
determines the direction of the steepest ascent in the average log-likelihood func-
tion whenever the Fisher information matrix I = E{Vl(d)V}1(d)} maps natural
gradients in the parameter space to ordinary (Euclidean) ones [14]. The Fisher
kernel defined as

K(dy,dy) = VIl(di)I 1Vyl(dy) (17)

engenders a measure of similarity between any two documents d; and ds. The
derivation of the kernel is quite straightforward and follows [12]. Let us set p(w|c;) =

2y/p(w|c;), then

old) _  9ld) Op(wla) _ p(ei|d)p(w|d) fowler) = p(ci|d)p(w|d)
dp(wle;) — Ap(wler) Bp(wler) — plwler) p(w|e;)

(18)

Similarly, p(c;) = 24/p(c;). By Bayes rule (5) we have p(d|c¢;) = p(ci|d)p(d)/p(ci)
that yields

S = TS e /pler) = VplerTdip(en) (19)
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Thus finally we have the result: K(di,d2) = K1(d1,d2) + K2(d1,ds) where

Ky (di,ds) = chl|d1 (c1]d2)/p(c1) (20)

Ky(dy,ds) = prul (wlda) ch,ul (ci|d2) /p(wlc;) (21)

In the derivation we have used a common assumption, namely that the Fisher
matrix I can be approximated by an identity matrix. This result looks quite similar
to [12] but in contrast to that work it is derived for asymmetric and a more general
hierarchical model here.

The first part of the kernel (20) accounts for topic similarity of documents. In-
deed, each document d can be represented by a vector of posteriors {p(c;|d)}¢,
where ¢; runs through all the clusters. This representation has a number of ad-
vantages over the vector-space model. It can be shown that topic representation
can resolve polysems i.e. words with multiple meanings and account for synonyms.
For example, a word ”president” can be used in different contexts: ”president of a
company” and ”president of U.S.”. Indeed, if both documents relate to a rare topic,
they should be regarded as being much more alike. The second part of the kernel
(21) without the sum over clusters is a simple dot-product of term-frequency vec-
tors, a rather straightforward method of determining documents similarity called
cos-tf. The sum over clusters, that is a dot-product of topic vectors weighed by the
inverse word-conditional probabilities p~!(w|c;) adjusts cos-tf so that it becomes
possible to distinguish between polysems. Indeed, suppose both documents have
the term ”president” but relate to different topics: ”company” and ”U.S.”. Then a
contribution of the term to the dot-product of topic vectors will be low. It would be
much higher if the term were rare and the documents related to the same topic, e.g.
”company” that would suggest that the documents concern a head of a company.

5. Experiments
5.1.  Clustering

For an assessment of experimental results we need an evaluation measure of cluster-
ing. In all data sets that we experimented with documents were classified manually
i.e. they had class labels. So we had two distributions of class variable, one given
manually and another obtained by automatic clustering. Information theory has a
popular criterion for the assessment of the diversity of two distributions known as
mutual information (MI). This criterion that we will refer to as MIC has been sug-
gested in [21] for unsupervised clustering and we found it rather informative. We
have not chosen another criterion such as predicting occurrences of certain words in
the context of a particular document popular among the natural language process-
ing community because our primary aim is to organize raw document collections in
a hierarchical manner and that is why we did not use a test set.
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The mutual information between cluster and class label variables is given by

pler, kg)
=2, 2pplenke)log e ) 22

where p(cr, kg) is the joint probability of cluster ¢z, at the last layer of hierarchy L
and labeled class 8. The terms p(cr) and p(kg) are the marginal probabilities. As
an estimate of the joint distribution we used an average of posterior over a labeled
class kg.

The summary of experimental results is given in Table 1. Table 1 shows the
performance of the hierarchical models along with plain ones in terms of MIC for
a number of configurations. Configurations are given in the format: [# of experts]
- [# of children] (# of clusters in plain model). For the plain methods the number
of clusters is taken to be the same as the number of nodes at the last layer of the
hierarchy in the hierarchical methods. The best result over 30 iterations for each
method is taken. The (normalized) values of SCC for HPLSA are given in column
’SCC’ in Table 1 besides MIC values so one could easily compare these supervised
and data-driven criteria. As one can see SCC predicted correctly the best models
for all text corpora.

5.2. Assessing Fisher kernel

The reported experiments were run on the ModApt split of the Reuters-21578
text collection for 5 chosen classes: earn, acq, money-fx, grain and crude of all
90 classes that have at least one training and one test example. This subset was
chosen to allow comparison with the results reported in [12]. So in total we had 9603
training and 3299 test documents with a vocabulary size of 9962 distinct terms. We
obtained our results for subsamples with subsampling factors 0,05, 0,1 and 0,2 as
it has been done for the PLSA-Fisher kernel in [12]. Subsamples have been chosen
because it gives a smaller number of labeled documents in the training set. This may
be handy as costs of labeling raw text collections are usually high. In Table 2 we give
classification errors on the 5 chosen classes for SVM classifiers with different kernels
and in Table 3 average classification errors along with percentage of improvements
compared with other methods. The results suggest the following ascending order
of performance amongst methods considered: linear, PLSA, MASA and MASHA
where the last one demonstrates up to about 1.5 times better classification than the
linear model and even with half the number of clusters outperforms flat PLSA. For
all flat methods we have searched for the best configuration varying the number of
clusters K=32,64,128 and for MASHA we tested hierarchies with up to 7 nodes at
the upper level (experts) and up to 8 children of each of these nodes so we have
chosen the best hierarchy which had 6 experts and 8 children of each expert. To
ensure the optimal choice of a parameter C' in SVM regulating a trade-off between
generalization and fitting data a cross-validation with 1/10th of the training data
randomly chosen forming a validation held-out set has been performed for each
method. For all that first we were trying C' = 0.0001,0.001,0.01,...,1000,10000
values and then we were breaking each interval onto 4 parts until the current best



Table 1. The MIC-comparison of the clustering methods.

| MultiAsymm MultiSymm

Conf | MASHA  Plain | HPLSA  SCC PLSA

4 Newsgroups N=4000, M=100

5-2(10) | 0.78 0.66 | 0.58 0.94 0.49
5-3(15) | 0.83 0.67 | 0.42 0.41 0.45
5-4(20) | 0.86 0.68 | 0.58 0.16 0.50
6-2(12) |  0.29 0.66 | 0.32 0.71 0.45
6-3(18) | 0.83 0.66 | 0.38 0.20 0.44
6-4(24) |  0.90 058 | 1.14 1.00 0.49
7-2(14) | 1.61 0.65 | 0.83 0.24 0.51
7-3(21) | 0.81 0.57 | 0.67 0.58 0.48
7-4(28) | 0.82 0.60 | 0.59 0.14 0.53

Reuters (grain,wheat,corn,ship,trade,crude) N=1977, M=100

5-2(10) | 0.52 0.44 | 017  0.40 0.26
5-3(15) | 0.58 0.55 | 0.31 0.55 0.29
5-4(20) | 1.22 0.64 | 048 1.00 0.33
6-2(12) | 0.67 0.49 | 0.31 0.75 0.27
6-3(18) | 0.85 0.60 | 0.24 0.30 0.33
6-4(24) | 1.03 0.44 | 0.32 0.67 0.36
7-2(14) | 0.92 0.53 | 0.24 0.00 0.30
7-3(21) | 0.75 0.66 | 0.28 0.49 0.34
7-4(28) | 0.81 0.49 | 0.31 0.40 0.37
WebKB N=8277, M=100

5-2(10) | 0.58 0.62 | 0.44 1.00 0.26
5-3(15) | 0.76 0.74 | 0.34 0.78 0.30
5-4(20) | 0.88 0.79 | 0.29 0.58 0.32
6-2(12) | 0.50 0.71 | 0.33 0.53 0.27
6-3(18) | 0.84 0.78 | 0.16 0.00 0.28
6-4(24) | 0.60 0.81 | 0.26 0.70 0.29
7-2(14) | 0.99 0.69 | 0.34 0.85 0.29
7-3(21) | 0.54 0.82 | 0.29 0.69 0.30
7-4(28) | 0.89 0.88 | 0.29 0.27 0.34
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value stopped changing its magnitude by more than 1%. We should note that our
figures for PLSA are somewhat different than those reported in [12], although the
trend over the sub-sample splits is the same. This can be explained by the use of
different SVM software or/and different cross-validation optimal parameter value
search strategies.

6. Conclusions

In this paper we have presented a probabilistic hierarchical modeling method that
provides the potential to automate the structuring of document corpora such as
web collections. The results indicate 1) the superiority of the asymmetric methods
over symmetric ones in terms of clustering quality; 2) the enhanced performance of
the hierarchical methods over the plain ones and 3) SCC predicted the best models
in terms of MIC correctly for all corpora tested.

The first conclusion may seem counter-intuitive at first glance. Indeed, as dis-
cussed in Section 2.1 the symmetric models are more complex (have more free
parameters) than the asymmetric ones which can be regarded as constrained ver-
sions of the former. So the question remains why the asymmetric methods have
exhibited a superior clustering performance to that provided by symmetric models?
The explanation may be found in the fact that more complex models may have more
sub-optimal solutions in terms of local maxima of the likelihood function in which
EM can converge to, consequently, they have less probability of EM converging to
the optimal solution when both are initialized from the same point. In other words,
more complex models are more frequently subject to overfitting. This problem may
be overcome by employing an annealed EM [13] for parameter estimation. The
second conclusion may be justified by a consideration that a hierarchical model
may compensate for the lack of flexibility of individual plain models by the overall
flexibility of the complete hierarchy. All the above conclusions were tested and are
consistent for documents defined by a wide range of vocabulary sizes.

One should notice that although we have a criterion for assessing hierarchies we
do not suggest any algorithm for searching for them and this still remains an open
question as full search is exponential in time. The problem has been identified in the
Bayesian networks literature as the induction of networks from data [6]. Although
a number of elegant methods have been suggested [6][17] we found them intractable
in our case or at least requiring some modification and further investigation.

We have also derived a Fisher kernel for this method which when incorporated
in an SVM classifier 1) highlighted the superiority of the hierarchical method over
a previously developed flat model and 2) demonstrated an example of an applica-
tion of information mined from a text corpus by this method in classification and
consequently in improved information retrieval (IR). Both points above grant us
the possibility to build an efficient IR system operating mostly in an automatic
manner that may process large text collections and derive a YAHOO!-like hierarchic
catalogue from it that would help users in navigation through the collection and
can be used for efficient and intelligent execution of user queries.



Table 2. Classification errors percentage for SVMs with
different kernels

subsample | earn acq money-fx grain crude

linear

0.05 7.65 8.84 5.83 4.84 5.50
0.1 5.53 7.32 5.47 4.84 5.43
0.2 4.34 6.82 5.27 3.81 4.84
PLSA (K=128)

0.05 4.44 7.78 5.83 4.34 4.54
0.1 4.21 7.45 6.13 4.27 4.80
0.2 3.74 T7.12 5.20 3.38 4.17
MASA (K=64)

0.05 5.03 6.46 4.54 4.67 4.14
0.1 3.31 5.07 4.31 4.01 3.78
0.2 2.88  5.07 4.11 3.35 3.28
MASHA (6,8)

0.05 5.00 7.42 3.94 3.41 3.31
0.1 3.21 5.86 3.64 3.01 2.98
0.2 2.68 5.20 3.61 2.29 2.91

Table 3. Average classification errors percentage for SVMs
with different kernels

subsampl. MASHA MASHA/ MASHA/ MASHA/

factor (6,8) MASA % PLSA % linear %
0.05 4.62 7.63 16.68 41.51
0.1 3.74 9.52 43.64 52.89

0.2 3.34 10.98 41.46 50.27
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Appendix
A.1. Model selection

Using denotations introduced in Section 3 let us write the expected likelihood for
HPLSA model as the following:

pler|d,w)naw
ps'6, ) =111TI 11 {(H p(emlcm-1) )p(dIC)p(wIC)}

d w cEp 71)
(A1)

Summing up the power at p(¢p|cm—1) we can rewrite the product

[T I IIsenleomosyeoms = (a2)

d w c€p(Tp) m=1

[ plemlom )2 2™ Decomen P00 = (a3
em€ET:
Jepy_1=Palem)
11 [T plemlem 1)20 2o e Lucepsiom el (A4)

em—1€T: ¢, €Ch(cm—1)
Ch(em—1)#0

Taking into account the constraint )., p(am|am 1) = 1 we write the a priori
distribution of parameters p(cuy, |om—1)

_ LB+ p2+--)
p(60P|T) B le_l[g: F(IBI)F(IBQ)'”F(IB|Ch(cm—1)|) 8 (A.5)

Ch(ep_1)#0

H p(cm|cm—1)6am71 (A.6)

cm€Ch(cm-1)

where hyperparameters of the Dirichlet distribution are Vm S,,, > 0. Now inte-
grating (A.2) over distribution (A.6) we obtain

L(B1+ B2+ -+ Bichem_1)
. EIET: L(BI)L(B2) - - T(Bicn(em-1))) * (A7)
Ch(em—1)70
Hcm ECh(cm—1) r (Ed Ew Ndw EcEDs(cm) p(c|d; 'IU) + Bm) (A 8)

T (e conens) { Za Ew e Secs(an Pleldw) + )

If we take all hyperparameters equal to 1 and remembering that T'(n + 1) = n! we
obtain a simplified expression for the ¢ p-term in p(S'|T):

Il contemn) (EdZ Ndw ZcEDs(cm)p(c|d w))!
SiEr  [|Ch{epy)[] 2 e " Dcputen-p PEI)

Ch(ep_1)#0

(A.9)
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For the p(w|c) group of parameters the constraint is ), p(w|c) = 1 and conse-
quently we should suppose the density function is as following

al\c +a2|c +aM|c -1
0 wle)*wle A10
( WC"T) CEPH(’T) al‘c)l—‘(aﬂc) R aM‘ Hp | ( )

Integrating the part of (A.1) containing p(w|c) we obtain the by c-term of p(S'|T):

(A.11)

H P(a1|c + Qe +- aM\c) Hw r (aw\c + Ew ’I’dep(c|d, ’UJ))
T(ayje)T(age) - T(anmre) T (34 {wlc + Xy nawp(cld, w)})

cep(TL)

and after expanding I' function as a factorial and some rearrangements we obtain
(15). But if we take unit hyperparameters we get a simplified version of (A.11):

[T, 4 nawp(cld, w))!
11 [M] EddZ nawp(c|d,w) (A.12)

CE@(TL

Finally, the result for p(d|c)-group of parameters is just the same up to substitutions
d by w and M by N.
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