

Методы погружения произвольных объектов реального мира в линейное пространство для реализации обобщенного линейного подхода к восстановлению зависимостей

Середин Олег Сергеевич

Тульский государственный университет

Моттль Вадим Вячеславович

Вычислительный центр РАН

Типовая задача восстановления зависимостей в множествах объектов реального мира

Некоторое множество реально существующих объектов $\omega \in \Omega$.

Некоторое множество значений скрытой характеристики объектов $y \in \mathbb{Y}$.

Объективно существующая скрытая функция $y(\omega): \Omega \to \mathbb{Y}$.

Желание наблюдателя:

Иметь инструмент оценивания скрытой характеристики для реальных объектов $\hat{y}(\omega): \Omega \to \mathbb{Y}; \quad \hat{y}(\omega) \neq y(\omega) - \text{ошибка}.$

Обобщенный линейный подход

Наблюдатель (его компьютер) воспринимает объекты реального мира как точки в некотором линейном пространстве: $x(\omega): \Omega \to \mathbb{X}$ – линейное пространство.

- сложение коммутативно x' + x'' = x'' + x' и ассоциативно (x' + x'') + x''' = x' + (x'' + x''');
- существует нулевой элемент $x + \phi = x$, $c\phi = \phi$;
- для каждого элемента существует обратный ему элемент $(-x) + x = \phi$;
- умножение ассоциативно c'(c''x) = (c'c'')x;
- умножение на единицу оставляет элемент без изменения 1x = x;
- сложение и умножение дистрибутивны (c'+c'')x = c'x + c''x, c(x'+x'') = cx' + cx''.

Обобщенный линейный подход

Линейное пространство восприятия объектов реального мира

Наблюдатель (его компьютер) воспринимает объекты реального мира как точки в некотором линейном пространстве: $x(\omega): \Omega \to \mathbb{X}$ – линейное пространство.

$$-x'+x''=x''+x', (x'+x'')+x'''=x'+(x''+x''');$$

- нулевой элемент $x + \phi = x$, $c\phi = \phi$, $(-x) + x = \phi$;
- -c'(c''x) = (c'c'')x, 1x = x, $0x = \phi$;

$$-(c'+c'')x = c'x + c''x, c(x'+x'') = cx' + cx''.$$

Индефинитное скалярное произведение

 $x,v \in \mathbb{X}$ – две произвольные точки в линейном пространстве,

 $K(x,v): \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ – двухместая скалярная функция:

- (1) K(x,v) = K(v,x) симметричность,
- (2) K(x, c'v' + c''v'') = c'K(x,v') + c''K(x,v'') билинейность.

Если еще добавить предположение

(3) $K(x,x) \ge 0$, то это будет обычное скалярное произведение, тогда $\sqrt{K(x,x)} = ||x||$ — норма.

Но нам будет достаточно свойств (1) и (2).

Это индефинитное скалярное произведение. Псевдоевклидово линейное пространство. Нормы нет.

Обобщенная линейная модель восстановления зависимости

Образ объекта в линейном пространстве $x(\omega) \in \mathbb{X}$ — фантазия наблюдателя

Скалярное произведение (индефинитное) $K(x,v): \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ – фантазия наблюдателя

Параметры модели зависимости (v,b) $v \in \mathbb{X}$ — направляющая точка (вектор) в том же пространстве $b \in \mathbb{R}$ — сдвиг модели

Обобщенный линейный признак объекта $z(x,v,b) = K(x,v) + b : \mathbb{X} \xrightarrow{(v,b)} \mathbb{R}$ Целевая характеристика объекта $y(\omega) \in \mathbb{Y}$ – задана природой

Функция связи (link function), обычно выпуклая по z q(

 $q(y,z): \mathbb{Y} \times \mathbb{R} \to \mathbb{R}^+$ — фантазия наблюдателя

Параметрическая функция потерь $q(y, x, v, b) = q(y, z(x, v, b)): \mathbb{Y} \times \mathbb{X} \xrightarrow{(a,b)} \mathbb{R}^+$

Решающее правило $\hat{y}(\boldsymbol{x} \mid \boldsymbol{v}, b) = \underset{\boldsymbol{x}, \boldsymbol{y}}{\operatorname{argmin}} q(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{v}, b) \colon \mathbb{X} \xrightarrow{(\boldsymbol{v}, b)} \mathbb{Y}$

Обучающая совокупность $(\boldsymbol{X}, \boldsymbol{Y}) = \{ (\boldsymbol{x}(\omega_j), y(\omega_j)) = (\boldsymbol{x}_j, y_j), j = 1, ..., N \}$

Семейство выпуклых регуляризующих функций

 $V(v \mid \mu) \colon \mathbb{X} \xrightarrow{\mu} \mathbb{R}^+$ – еще одна фантазия наблюдателя

Обучение – выбор $(v \in X, b \in \mathbb{R})$: Минимизация регуляризованного эмпирического риска

$$V(\boldsymbol{v} \mid \boldsymbol{\mu}) + c \sum_{j=1}^{N} q(\boldsymbol{y}_{j}, \boldsymbol{z}(\boldsymbol{x}_{j}, \boldsymbol{v}, b)) \rightarrow \min(\boldsymbol{v}, b),$$

$$\boldsymbol{z}(\boldsymbol{x}_{j}, \boldsymbol{v}, b) = K(\boldsymbol{x}_{j}, \boldsymbol{v}) + b$$

Критерий выпуклый, если регуляризующая функция $V(v \mid \mu)$ й функция связи q(y, z) выпуклы по $v \in \mathbb{X}$ и $z \in \mathbb{R}$.

1. Произвольная функция парного сравнения объектов

Множество объектов реального мира $\omega \in \Omega$

Симметричная функция парного сравнения $S(\omega', \omega'') = S(\omega'', \omega')$: $\Omega \times \Omega \to \mathbb{R}$

Центральный элемент $\phi \in \Omega$

Симметричная функция общности для центра $\phi \in \Omega$:

$$K_{\phi}(\omega', \omega'') = \frac{1}{2} \big[S(\omega', \phi) + S(\omega'', \phi) - S(\omega', \omega'') \big] \colon \Omega \times \Omega \to \mathbb{R}$$

Пусть множество объектов конечно $|\Omega| = M$ — скорее всего, O Y E H D большое число!

Симметрическая матрица общности объектов для центра $\phi \in \Omega$:

$$\mathbf{K}_{\phi} = \begin{pmatrix} K_{\phi}(\omega_{1}, \omega_{1}) & \cdots & K_{\phi}(\omega_{1}, \omega_{M}) \\ \vdots & \ddots & \vdots \\ K_{\phi}(\omega_{M}, \omega_{1}) & \cdots & K_{\phi}(\omega_{M}, \omega_{M}) \end{pmatrix}, \begin{array}{c} \text{собственные числа} \\ \text{действительны} \\ \text{собственные векторы} \\ \text{собственные векторы} \\ \text{ортонормированы} \end{array} \mathbf{z}_{\phi,i} \in \mathbb{R}, i = 1, \dots, M,$$

$$\text{действительны} \\ \text{собственные векторы} \\ \text{ортонормированы} \end{aligned} \mathbf{z}_{\phi,i} \in \mathbb{R}^{M}, \mathbf{z}_{\phi,i}^{T} \mathbf{z}_{\phi,j} = \begin{cases} 1, i = j, \\ 0, i \neq j. \end{cases}$$

Собственные числа в порядке убывания
$$\xi_{\phi,1} \ge 0,...,\xi_{\phi,p_{\phi}} \ge 0$$
, $\xi_{\phi,p_{\phi}+1} < 0,...,\xi_{\phi,M} < 0$

Пара целых чисел $p_{\phi}+q_{\phi}=M$ — сигнатура матрицы

Теорема: Сигнатура матрицы \mathbf{K}_{ϕ} не зависит от выбора центра $\phi \in \Omega$.

Матрица
$$\mathbf{K}_{\phi} = \sum_{i=1}^{p} \xi_{\phi,i} \mathbf{z}_{\phi,i} \mathbf{z}_{\phi,i}^{T} - \sum_{i=p+1}^{M} \overline{\xi}_{\phi,i} \mathbf{z}_{\phi,i} \mathbf{z}_{\phi,i}^{T} (M \times M) - \mathbf{OYEHb}$$
 большая

Погружение в линейное пространство:

1. Произвольная функция парного сравнения объектов

Множество объектов реального мира $\omega \in \Omega$

Симметричная функция парного сравнения $S(\omega', \omega'') = S(\omega'', \omega')$: $\Omega \times \Omega \to \mathbb{R}$

Центральный элемент $\phi \in \Omega$

Симметричная функция общности для центра $\phi \in \Omega$:

$$K_{\phi}(\omega', \omega'') = \frac{1}{2} \big[S(\omega', \phi) + S(\omega'', \phi) - S(\omega', \omega'') \big] \colon \Omega \times \Omega \to \mathbb{R}$$

Пусть множество объектов конечно $|\Omega|$ =M — скорее всего, $\textbf{\textit{OYEHb}}$ большое число!

Пара целых чисел $p_{\phi} + q_{\phi} = M$ — сигнатура матрицы не зависит от центра $\phi \in \Omega$.

Матрица
$$\mathbf{K}_{\phi} = \sum_{i=1}^{p} \xi_{\phi,i} \mathbf{z}_{\phi,i} \mathbf{z}_{\phi,i}^{T} - \sum_{i=p+1}^{M} \overline{\xi}_{\phi,i} \mathbf{z}_{\phi,i} \mathbf{z}_{\phi,i}^{T} (M \times M) - \mathbf{OYEHb}$$
 большая

Представим матрицу $\mathbf{K}_{_{\phi}}$ как совокупность скалярных произведений

$$\mathbf{K}_{\phi} = \begin{pmatrix} \mathbf{x}_{\phi,1}^T \mathbf{J}_p \mathbf{x}_{\phi,1} & \cdots & \mathbf{x}_{\phi,1}^T \mathbf{J}_p \mathbf{x}_{\phi,M} \\ \vdots & \ddots & \vdots \\ \mathbf{x}_{\phi,M}^T \mathbf{J}_p \mathbf{x}_{\phi,1} & \cdots & \mathbf{x}_{\phi,M}^T \mathbf{J}_p \mathbf{x}_{\phi,M} \end{pmatrix}, \mathbf{J}_p = \begin{pmatrix} \mathbf{I}_{p \times p} & \mathbf{0}_{p \times (M-p)} \\ \mathbf{0}_{(M-p) \times p} & -\mathbf{I}_{(M-p) \times (M-p)} \end{pmatrix} - \frac{\text{единичная матрица}}{\text{сигнатуры } p}$$

Мы связали элементы произвольного конечного множества $\Omega = \{\omega_1,...,\omega_M\}$, $\phi \in \Omega$ — центр, с M -мерными векторами действительных признаков объектов $x_{\phi,1} = x_{\phi,\omega_1} \in \mathbb{R}^M$,..., $x_{\phi,M} = x_{\phi,\omega_M} \in \mathbb{R}^M$. Центральный объект — вектор $x_{\phi} \in \mathbb{R}^M$.

1. Произвольная функция парного сравнения объектов

Множество объектов реального мира $\omega \in \Omega$

Симметричная функция парного сравнения $S(\omega', \omega'') = S(\omega'', \omega')$: $\Omega \times \Omega \to \mathbb{R}$

Центральный элемент $\phi \in \Omega$

Симметричная функция общности для центра $\phi \in \Omega$:

$$K_{\phi}(\omega', \omega'') = \frac{1}{2} \big[S(\omega', \phi) + S(\omega'', \phi) - S(\omega', \omega'') \big] \colon \Omega \times \Omega \to \mathbb{R}$$

Пусть множество объектов конечно $|\Omega|$ =M — скорее всего, OYEHb большое число!

Мы связали элементы произвольного конечного множества $\Omega = \{\omega_1, ..., \omega_M\}$,

 $\varphi \in \Omega$ — центр, с M -мерными векторами действительных признаков объектов

$$m{x}_{\phi,1} = m{x}_{\phi,\omega_1} \in \mathbb{R}^M$$
,..., $m{x}_{\phi,M} = m{x}_{\phi,\omega_M} \in \mathbb{R}^M$. Центральный объект – вектор $m{x}_{\phi} \in \mathbb{R}^M$.

Погружение в линейное пространство, с двухместной функцией

$$K(\mathbf{x}',\mathbf{x}'') = \mathbf{x}'^T \mathbf{J}_p \mathbf{x}'' : \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}$$
. Ее свойства:

Симметричность K(x', x'') = K(x'', x'),

билинейность K(c'x'+c''x'',x''')=c'K(x',x''')+c''K(x'',x''').

Нет свойства $K(x,x) \ge 0$.

Это индефинитное скалярное произведение.

Псевдоевклидово линейное пространство \mathbb{R}^{M} , натянутое на метрическое пространство $\Omega = \{\omega_{1},...,\omega_{M}\}$. Нормы нет.

1. Произвольная функция парного сравнения объектов

Множество объектов реального мира $\omega \in \Omega$

Симметричная функция парного сравнения $S(\omega', \omega'') = S(\omega'', \omega')$: $\Omega \times \Omega \to \mathbb{R}$

Центральный элемент $\phi \in \Omega$

Симметричная функция общности для центра $\phi \in \Omega$:

$$K_{\phi}(\omega', \omega'') = \frac{1}{2} \big[S(\omega', \phi) + S(\omega'', \phi) - S(\omega', \omega'') \big] \colon \Omega \times \Omega \to \mathbb{R}$$

Пусть множество объектов конечно $|\Omega| = M$ — скорее всего, **ОЧЕНЬ** большое число!

Скалярное произведение (индефинитное) $K(x,v): \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ – фантазия наблюдателя

Параметры модели зависимости (v,b) $v \in \mathbb{X}$ — направляющая точка (вектор) в том же пространстве $b \in \mathbb{R}$ — сдвиг модели

Обобщенный линейный признак объекта $z(x,v,b) = K(x,v) + b: \mathbb{X} \xrightarrow{(v,b)} \mathbb{R}$

Как варьировать направляющий вектор в необозримом пространстве $v \in X$?

Базисная совокупность объектов $\{\omega_1^0,...,\omega_n^0\}\subset \Omega$, их образы $\{x_{_{\phi}}(\omega_1^0),...,x_{_{\phi}}(\omega_n^0)\}$.

Направляющий вектор – линейная комбинация образов базисных объектов

$$\boldsymbol{v}(\boldsymbol{a}) = \sum_{i=1}^{n} a_i \boldsymbol{x}_{\phi}(\omega_i^0), \ \sum_{i=1}^{n} a_i = 0$$

Теорема: Обобщенный линейный признак объекта

$$v(a) = \sum_{i=1}^{n} a_i x_{\phi}(\omega_i^0), \sum_{i=1}^{n} a_i = 0.$$

$$z(\omega, a, b) = -\frac{1}{2} \sum_{i=1}^{n} a_i S(\omega, \omega_i^0) + b, \sum_{i=1}^{n} a_i = 0.$$

Погружение объектов в линейное пространство является лишь мысленным.

2. Двухместная функция расстояния на множестве объектов

Множество объектов реального мира $\omega \in \Omega$.

По-прежнему симметричная функция сравнения $S(\omega', \omega'') = S(\omega'', \omega')$: $\Omega \times \Omega \to \mathbb{R}$. Дополнительные требования:

нулевое отношение с самим собой $S(\omega, \omega) = 0$, неотрицательность $S(\omega', \omega'') \ge 0$.

Расстояние будем понимать как $d(\omega', \omega'') = \sqrt{S(\omega', \omega'')}$.

Центральный элемент $\phi \in \Omega$.

Симметричная функция общности для центра $\phi \in \Omega$:

$$K_{\phi}(\omega', \omega'') = \frac{1}{2} \left[d^2(\omega', \phi) + d^2(\omega'', \phi) - d^2(\omega', \omega'') \right] : \quad \Omega \times \Omega \to \mathbb{R}$$

Пусть множество объектов конечно $|\Omega|$ =M — скорее всего, \emph{OYEHb} большое число!

В теоретических построениях ничего не изменяется.

Скалярное произведение (индефинитное) $K(x,v): \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ – фантазия наблюдателя

Параметры модели зависимости (v,b) $v \in \mathbb{X}$ — направляющая точка (вектор) в том же пространстве $b \in \mathbb{R}$ — сдвиг модели

Базисная совокупность объектов $\{\omega_1^0,...,\omega_n^0\} \subset \Omega$, их образы $\{x_{\phi}(\omega_1^0),...,x_{\phi}(\omega_n^0)\}$.

Теорема: Обобщенный линейный $z(\omega, \pmb{a}, b) = -\frac{1}{2} \sum_{i=1}^n a_i d^2(\omega, \omega_i^0) + b \,, \, \sum_{i=1}^n a_i = 0 \,.$

Погружение объектов в линейное пространство является лишь мысленным.

3. Двухместная функция сравнения является метрикой

Множество объектов реального мира $\omega \in \Omega$.

По-прежнему функция сравнения $S(\omega', \omega'') = S(\omega'', \omega')$: $\Omega \times \Omega \to \mathbb{R}$.

Дополнительные требования:

 $S(\omega, \omega) = 0$, неравенство треугольника $S(\omega', \omega'') + S(\omega'', \omega''') \ge S(\omega', \omega''')$

Расстояние будем понимать как $d(\omega', \omega'') = \sqrt{S(\omega', \omega'')}$.

Центральный элемент $\phi \in \Omega$

Симметричная функция общности для центра $\phi \in \Omega$:

$$K_{\phi}(\omega', \omega'') = \frac{1}{2} \left[d^2(\omega', \phi) + d^2(\omega'', \phi) - d^2(\omega', \omega'') \right] : \quad \Omega \times \Omega \to \mathbb{R}$$

Пусть множество объектов конечно $|\Omega|$ =M — скорее всего, \emph{OYEHb} большое число!

В теоретических построениях ничего не изменяется.

Скалярное произведение (индефинитное) $K(x,v): \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ – фантазия наблюдателя

Параметры модели зависимости (v,b) $v \in \mathbb{X}$ — направляющая точка (вектор) в том же пространстве $b \in \mathbb{R}$ — сдвиг модели

Базисная совокупность объектов $\left\{\omega_1^0,...,\omega_n^0\right\} \subset \Omega$, их образы $\left\{\boldsymbol{x}_{\phi}(\omega_1^0),...,\boldsymbol{x}_{\phi}(\omega_n^0)\right\}$.

Теорема: Обобщенный линейный
$$z(\omega, \boldsymbol{a}, b) = -\frac{1}{2} \sum_{i=1}^{n} a_i d^2(\omega, \omega_i^0) + b \,, \, \sum_{i=1}^{n} a_i = 0 \,.$$

Погружение объектов в линейное пространство является лишь мысленным.

Критерий обучения: Минимум регуляризованного эмпирического риска

Множество объектов $\omega \in \Omega$, функция парного сравнения $S(\omega', \omega''): \Omega \times \Omega \to \mathbb{R}$.

Базисная совокупность	Нет значений целевой характеристики, есть только
$\left\{\omega_i^0, i=1,,n\right\} \subset \Omega$	матрица парных сравнений $\left[S(\omega_i,\omega_k),\ i,k=1,,n\right]$
Обучающая совокупность (часть базисной совокупности)	Известны значения целевой характеристики $y(\omega_j) \in \mathbb{Y}$
$\left\{\omega_{j}, j=1,,N\right\} \subset \Omega$	и матрица парных сравнений $\left[S(\omega_j,\omega_l),\ j,l=1,,N\right]$

Мысленное погружение множества объектов в воображаемое линейное пространство со скалярным произведением, вообще говоря, индефинитным:

$$x(\omega): \Omega \to \mathbb{X}, \ K(x',x''): \mathbb{X} \times \mathbb{X} \to \mathbb{R}$$
 – автоматически следуют из $S(\omega',\omega'')$.

Обобщенный линейный признак объекта $z(\boldsymbol{x}_{i}, \boldsymbol{v}, b) = K(\boldsymbol{x}_{i}, \boldsymbol{v}) + b$,

 $v \in \mathbb{X}$ – искомый направляющий вектор, $b \in \mathbb{R}$ – искомый сдвиг

Функция связи, выбираемая наблюдателем $q(y,z): \mathbb{Y} \times \mathbb{R} \to \mathbb{R}^+$, выпуклая по z.

Регуляризующая функция, выбираемая наблюдателем $V(v \mid \mu) \colon \mathbb{X} \to \mathbb{R}^+$

Обучение — выбор
$$(v \in \mathbb{X}, b \in \mathbb{R})$$
 по критерию минимума регуляризованного эмпирического риска
$$V(v \mid \mu) + c \sum_{j=1}^{N} q(y_j, z(\boldsymbol{x}_j, v, b)) \to \min(v, b)$$

Параметрическое представление направляющего вектора $\boldsymbol{v}(\boldsymbol{a}) = \sum_{i=1}^n a_i \boldsymbol{x}_{\phi}(\omega_i^0), \; \sum_{i=1}^n a_i = 0.$

Критерий обучения: Минимум регуляризованного эмпирического риска

Множество объектов $\omega \in \Omega$, функция парного сравнения $S(\omega', \omega''): \Omega \times \Omega \to \mathbb{R}$.

Базисная совокупность	Нет значений целевой характеристики, есть только
$\left\{ \omega_{i}^{0},i=1,,n\right\} \subset\Omega$	матрица парных сравнений $\left[S(\omega_i,\omega_k),\ i,k=1,,n\right]$
Обучающая совокупность (часть базисной совокупности)	Известны значения целевой характеристики $y(\omega_j) \in \mathbb{Y}$
$\left\{ \omega_{j}, j=1,,N \right\} \subset \Omega$	и матрица парных сравнений $\left[S(\omega_j,\omega_l),\ j,l=1,,N\right]$

Функция связи, выбираемая наблюдателем $q(y,z): \mathbb{Y} \times \mathbb{R} \to \mathbb{R}^+$, выпуклая по z.

Регуляризующая функция, выбираемая наблюдателем $V(v | \mu) \colon \mathbb{X} \to \mathbb{R}^+$

Обучение: Выбор
$$(v \in \mathbb{X}, b \in \mathbb{R})$$
 по критерию минимума регуляризованного эмпирического риска
$$V(v \mid \mu) + c \sum_{j=1}^{N} q(y_{j}, z(x_{j}, v, b)) \to \min(v, b)$$

Параметрическое представление направляющего вектора $v(a) = \sum_{i=1}^{n} a_i x_{\phi}(\omega_i^0), \sum_{i=1}^{n} a_i = 0.$

Выпуклая параметрическая регуляризующая функция $V(\boldsymbol{a} \mid \boldsymbol{\mu}) \colon \mathbb{R}^n \to \mathbb{R}^+$

Параметрическое обучение:
Выбор
$$(a \in \mathbb{R}^n, b \in \mathbb{R})$$
,
$$Z(\omega_j, a, b) = \sum_{i=1}^n \left(S(\omega, \omega_i^0) \right) a_i + b, \text{ выпуклый критерий.}$$

Отбор подмножества базисных объектов: Квадратично-модульная регуляризация

Регуляризация Elastic Net: $V(\boldsymbol{a} \mid \boldsymbol{\mu}) = \sum_{i=1}^{n} a_i^2 + \boldsymbol{\mu} \sum_{i=1}^{n} |a_i|, \ \boldsymbol{\mu} \ge 0$ — параметр селективности

Критерий обучения:
$$\sum_{i=1}^n a_i^2 + \mu \sum_{i=1}^n |a_i| + \sum_{j=1}^N q \Big(y_j, z(\omega_j, \boldsymbol{a}, b) \Big), \quad z(\omega_j, \boldsymbol{a}, b) = \sum_{i=1}^n \Big(S(\omega_j, \omega_i^0) \Big) a_i + b.$$

Теорема. Пусть значения $(\hat{\lambda}_1,...,\hat{\lambda}_N)$ являются решением двойственной задачи

Теорема. Пусть значения
$$(\hat{\lambda}_1,...,\hat{\lambda}_N)$$
 являются решением двойственной задачи выпуклого программирования:
$$\left[\frac{1}{2\beta} \sum_{i=1}^n \left\{ \min \left[\frac{\mu}{2} + \sum_{j=1}^N \lambda_j x_{ij}, \ 0, \ \frac{\mu}{2} - \sum_{j=1}^N \lambda_j x_{ij} \right] \right\}^2 - \sum_{j=1}^N \min \left(q(y_j,z) + \lambda_j z \right) \rightarrow \min(\lambda_1,...,\lambda_N), \\ \sum_{j=1}^N \lambda_j = 0.$$

Тогда

$$\hat{a}_i = \begin{cases} \left(\sum_{j=1}^N \hat{\lambda}_j S(\omega_j, \omega_i^0) + \mu/2\right) < 0, \sum_{j=1}^N \hat{\lambda}_j S(\omega_j, \omega_i^0) < -\mu/2, \\ 0, \quad -\mu/2 \le \sum_{j=1}^N \hat{\lambda}_j S(\omega_j, \omega_i^0) \le \mu/2, \\ \left(\sum_{j=1}^N \hat{\lambda}_j S(\omega_j, \omega_i^0) - \mu/2\right) > 0, \sum_{j=1}^N \hat{\lambda}_j S(\omega_j, \omega_i^0) > \mu/2, \end{cases} \begin{cases} \hat{b} = \frac{1}{N} \sum_{j=1}^N \left(\hat{z}_j - \sum_{i=1}^n \hat{a}_i x_{ij}\right), \text{ где} \\ \hat{z}_j = \arg\min_{z \in \mathbb{R}} \left(q(y_j, z) + \hat{\lambda}_j z\right). \end{cases}$$

Чем больше $\mu \ge 0$, тем выше селективность отбора базисных объектов.

Функции связи для некоторых частных видов целевой переменной

Функция связи (link function)

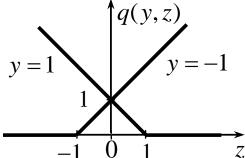
$$q(y,z)\colon \mathbb{Y} imes \mathbb{R} o \mathbb{R}^+$$
 — фантазия наблюдателя

1) Задача оценивания числовой регрессии. Целевая переменная $y \in \mathbb{Y} = \mathbb{R}$ — действительное число. $q(y,z) = (y-z)^2$. $\begin{array}{c|c}
\hline
0 & y
\end{array}$

q(y,z)

- 2) Задача обучения распознаванию объектов двух классов. Целевая переменная $y \in \mathbb{Y} = \{-1, 1\}$ индекс класса. Метод логистической регрессии: $q(y, z) = \ln[1 + \exp(-yz)]$.
- y = 1 $\ln 2$ y = -1 0 z
- 3) Задача обучения распознаванию объектов двух классов. Целевая переменная $y \in \mathbb{Y} = \{-1, 1\}$ — индекс класса. Метод опорных векторов:

$$q(y,z) = \max [0, 1-yz] = \begin{cases} 1-yz, & 1-yz > 0, \\ 0, & 1-yz \le 0. \end{cases}$$



Спасибо за внимание!