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Abstract. In this paper we present a new asynchronous algorithm for
learning additively regularized topic models and discuss the main ar-
chitectural details of our implementation. The key property of the new
algorithm is that it behaves in a fully deterministic fashion, which is
typically hard to achieve in a non-blocking parallel implementation.
The algorithm had been recently implemented in the BigARTM library
(http://bigartm.org). Our new algorithm is compatible with all fea-
tures previously introduced in BigARTM library, including multimodal-
ity, regularizers and scores calculation. While the existing BigARTM
implementation compares favorably with the alternative packages such
as Vowpal Wabbit or Gensim, the new algorithm brings yet further im-
provements in CPU utilization, memory usage, and spends even less time
to achieve the same perplexity.
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1 Introduction

Topic models [1] is a powerful machine learning technology for statistical text
analysis that has been widely used in text mining, information retrieval, network
analysis and other areas [2]. Today a lot of research efforts around topic models is
devoted to distributed implementations of Latent Dirichlet Allocation (LDA) [4],
a specific Bayesian topic model that uses Dirichlet conjugate prior. This lead to
numerous implementations such as AD-LDA [7], PLDA [8] and PLDA+ [9], all
designed to run on a big cluster. Largest topic models of web scale can reach
millions of topics and vocabulary words, yielding Big Data models with trillions
of parameters [3]. Yet not all researchers and application are dealing with so large
web-scale collections, and they require an efficient implementation that can run
on a powerful workstation or even laptop. Such implementations are very useful,
as shown by popular open-source packages Vowpal Wabbit [11], Gensim [10] and
Mallet [12], which are neither distributed nor sometimes even multi-threaded.
Scaling down a distributed algorithm can be challenging. LightLDA [3] is a
major step in this direction, however it focuses only on the LDA model. Our goal
is to develop a flexible framework that can learn a wide variety of topic models.



BigARTM [17] is an open-source library for regularized multimodal topic
modeling of large collections. BigARTM is based on a novel technique of addi-
tive regularized topic models (ARTM) [14,15,16,18|, which gives flexible multi-
criteria approach to probabilistic topic modeling. ARTM includes all popular
models such as LDA [4], PLSA [5], and many others. Key feature of ARTM is
that it provides a cohesive framework that allows users to combine different topic
models that previously did not fit together.

BigARTM is proven to be very fast comparing to the alternative packages.
According to [17], BigARTM runs approx. 10 times faster comparing to Gen-
sim [10] and twice faster than Vowpal Wabbit (VW) [11] in a single thread. With
multiple threads BigARTM wins even more as it scales linearly up to at least
16 threads. In this paper we address the remaining limitations of the library,
including few performance bottlenecks and fixing non-deterministic behavior of
the Online algorithm.

The rest of the paper is organized as follows. In section 2 we introduce basic
notation. In sections 3 and 4 we summarize offline and online algorithms for
learning ARTM models. In sections 5 and 6 we discuss two asynchronous non-
blocking modifications of the online algorithm. In section 7 we compare the inter-
nal architecture of BigARTM library between versions 0.6 and 0.7. In section 8
we report results of our experiments on large datasets. In section 9 we discuss
advantages, limitations and open problems of BigARTM.

2 Notation

Let D denote a finite set (collection) of texts and W denote a finite set (vocab-
ulary) of all terms from these texts. Let ng,, denote the number of occurrences
of a term w € W in a document d € D; ng, values form a sparse matrix of size
|W| x |D|, known as bag-of-words representation of the collection.

Given an (ng,) matrix, a probabilistic topic model finds two matrices:
& = {¢ut} and O = {04}, of sizes |W| x |T| and |T| x |D| respectively,
where |T| is a used-defined number of topics in the model. Matrices ¢ and ©
provide a compressed representation of the (ng,,) matrix:

Ngw ~ Mg Z Gwibiq, for all d € D,w € W,
teT

where ng = ZwGW ngw denotes the total number of terms in a document d.
To learn @ and © from (ng,) an additively-regularized topic model (ARTM)
maximizes the log-likelihood, regularized via an additional penalty term R(®, ©):

3> nawn ) duibia + R(®,0) — max. (1)

®,0
deD weW teT

Regularization penalty R(®,©) may incorporate external knowledge of the ex-
pert about the collection. With no regularization (R = 0) it corresponds to
PLSA [5]. Many Bayesian topic models, including LDA [4], can be represented
as special cases of ARTM with different regularizers R, as shown in [15,16].



Algorithm 1: ProcessDocument(d, P)

Input: document d € D, matrix @ = (pwt);
Output: matrix (fwe), vector 6iq;

1 initialize ;g := ﬁ forallt € T}
2 repeat
3 Ptdw = norm(qzﬁthtd) for allwedandteT;
teT
— R .
4 Orq = n%rjm(zwed NdwPtdw + thm) for all t € T}

5 until 64 converges;
6 Mt ‘= NdwPtdw for all w € d and t € T

In [14] it is shown that the local maximum (@, ©) of the problem (1) satisfies
the following system of equations:

Prdw = nt%rq{n(qbwt@td); (2)
OR
Pwt = norm <nwt + qﬁwt%), Nt = Z NdwPtdw; (3)
deD
OR
Orqg = nt(‘)gr}n <ntd + etd89td> ; Ntd = %ndwptduﬁ (4)

P . 0 :
where operator norm z; = max{zi,0} 1.0 nsforms a vector (z;)ier to a discrete
icl

- ZI max{z;,0}
€
distribution, n.; counters liepresent term frequency of word w in topic .

Learning of @ and © from (2)-(4) can be done by EM-algorithm, which
starts from a random values in @ and ©, and iterates E-step (2) and M-steps
(3),(4) until convergence. In the sequel we discuss several variations of such EM-
algorithm, which are all based on the above formulas but differ in the way how
operations are ordered and grouped together.

In addition to plain text many collections has other metadata, such as au-
thors, class or category labels, date-time stamps, or even associated images, audio
or video clips, usage data, etc. In [18] this data can be represented as modalities,
where the overall vocabulary W is split into M subsets W = W' U .- U WM,
one subset per modality, and in (3) matrix & is normalized independently within
each modality. Incorporating modalities into topic model improves its quality
and makes it applicable for classification, cross-modal retrieval, or making rec-
ommendations. In the sequel we list all algorithms for one modality, but our
implementation in BigARTM supports the general case.

3 Offline algorithm

Offline ARTM (Alg. 2) relies on subroutine ProcessDocument (Alg. 1), which
corresponds to equations (2) and (4) from the solution of the ARTM optimization
problem (1). ProcessDocument requires a fixed ¢ matrix and a vector ng, of



Algorithm 2: Offline ARTM

Input: collection D;

Output: matrix @ = (Pwt);

initialize (¢wt);

create batches D := Dy U Dy U---U Dp;
repeat

(nawt) == Z Z ProcessDocument(d, ®);

AW N =

0
5 | (duwe) := norm(nwe + du )

6 until (¢.¢) converges;
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Fig.1. Gantt chart for Offline ARTM (Alg. 2)

term frequencies for a given document d € D, and as a result it returns a topical
distribution 6,4 for the document, and a matrix () of size |d| x |T'|, where
|d| gives the number of distinct terms in the document. The ProcessDocument
might be also useful as a separate routine which finds 6,4 distribution for a new
document, but in the Offline algorithm it is rather used as a building block in
an iterative EM-algorithm that learns the @ matrix.

Offline algorithm performs scans over the collection, calling ProcessDocument
for each document d € D from the collection, and then aggregating the resulting
(fuwt) matrices into the final (n,:) matrix of size |W| x |T|. After each scan it
recalculates ¢ matrix according to the equation (3).

At step 2 we split collection D into batches (Dj). This step is not strictly
necessary for Offline algorithm, and it rather reflects an internal implementa-
tion detail. For performance reasons the outer loop over batches b=1,..., B is
parallelized across multiple threads, and within each batch the inner loop over
documents d € Dy, is executed in a single thread. Each batch is stored in a sepa-
rate disk file on disk to allow out-of-core streaming of the collection. For typical
collections it is reasonable to have around 1000 documents per batch, however
for ultimate performance we encourage users to experiment with this parameter.
Too small batches can cause disk 10 overhead due to lots of small reads, while



too large batches will result in bigger tasks that will not be distributed evenly
across computation threads.

Note that 6.4 values appear only within ProcessDocument subroutine. This
leads to efficient memory usage because the implementation never stores the
entire theta matrix at any given time. Instead, 0;4 values are recalculated from
scratch on every pass through the collection.

Fig. 1 shows a Gantt chart of the Offline algorithm. Here and in the sequel
Gantt charts are built for a single EM-iteration on NYTimes dataset® (|D| =
300K, |W| = 102K) with |T'| = 16 topics. ProcessBatch boxes correspond to the
time spent in processing an individual batch. The final box Norm, executed on
the main thread, correspond to the time spent in the step 4 in Alg. 2 where n,,;
counters are normalized to produce a new ¢ matrix.

4  Online algorithm

The Online ARTM (Alg. 3) generalizes the Online variational Bayes algorithm,
suggested in [6] for the LDA model. Online ARTM improves the convergence rate
of the Offline ARTM by re-calculating matrix ¢ after every n batches. To simplify
the notation we introduce a trivial subroutine

ProcessBatches({ Dy}, ®) = ZZ ProcessDocument(d, P)
Dy deDy

that aggregates the output of ProcessDocument across a given set of batches at
a constant @ matrix. Here the split of the collection D := D; U Dy Ll---U Dp
into batches plays far more significant role than in the Offline algorithm, because
different splitting algorithmically affects the result. At step 6 the new n%,* values
are calculated as a convex combination of the old values n!,, and the value 7!,
produced on the recent batches. Old counters nl,, are discounted by a factor
(1 — p;), which depends on the iteration number. A common strategy is to use
pi = (10 + 1)~", where typical values for 7y are between 64 and 1024, for k —
between 0.5 and 0.7.

As in the Offline algorithm, the outer loop over batches Dy ;_1y41,- .., Dy is
executed concurrently across multiple threads. The problem with this approach
is that all threads have no useful work to do during steps 5-7 of the Online
algorithm. The threads can not start processing the next batches because a new
version of ¢ matrix is not ready yet. As a result the CPU utilization stays low,
and the run-time Gantt chart of the Online algorithm typically looks like in Fig.
2. Boxes Even batch and Odd batch both correspond to step 4, and indicate the
version of the & matrix (even i or odd ). Merge correspond to the time spend
in merging n.; with 7. Norm is, as before, the time spent to normalize 7.
counters into the new ¢ matrix.

In the next two sections we present asynchronous modifications of the online
algorithm that results in better CPU utilization. The first of them (Async ARTM)

3 https://archive.ics.uci.edu/ml/datasets/Bag+of+Words



Algorithm 3: Online ARTM

Input: collection D, parameters n, 1o, K;
Output: matrix @ = (dwt);

create batches D := D; U D2 U---U Dpg;
initialize (¢%;);
for all update i =1,...,|B/n]|
(Riy) = ProcessBatches({Dy(i—1)4+1,- -+, Dui}, @7 1);
pi = (10 +1)7";
(Miwe) = (L= pi) - (") + pi - (i)
(é1wt) = norm(nie + diuy' 5o );
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Fig.2. Gantt chart for Online ARTM (Alg. 3)

has non-deterministic behavior and few performance bottlenecks. The second
algorithm (DetAsync ARTM) addresses these problems.

5 Async: asynchronous online algorithm

The Async algorithm was implemented in BigARTM v0.6 as described in [17].
Basic idea is to trigger asynchronous execution of the Offline algorithm and
store the resulting 7,,; matrices into a queue. Then, whenever the number of
elements in the queue becomes a multiple of 7, the Async algorithm performs
steps 5-7 of the Online ARTM (Alg. 3). For performance reasons merging of the
N4t counters happens in a background by a dedicated Merger thread.

First problem of the Async algorithm is that it does not define the order in
which 7,,; are merged. This order is usually different from the original order of
the batches, and typically it changes from run to run. This affects the final @
matrix which also changes from run to run.

Another issue with Async algorithm is that queuing 7,; counters may con-
siderably increase the memory usage, and also lead to performance bottlenecks
in the Merger thread. In some cases the execution of the Async algorithm is
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Fig. 3. Gantt chart for Async ARTM from BigARTM v0.6 — normal execution
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Fig. 4. Gantt chart for Async ARTM from BigARTM v0.6 — performance issues

as efficient as for the Offline algorithm, as shown on Fig. 3. However, certain
combination of the parameters (particularly, small batch size or small number
of iterations in ProcessDocument’s inner loop 2-5) might overload the merger
thread. Then the Gantt chart may look as on Fig. 4, where most threads are
waiting because there is no space left in the queue to place n,,; counters.

In the next section we resolve the aforementioned problems by introducing
a new DetAsync algorithm, which has an entirely deterministic behavior and
achieves high CPU utilization without requiring user to tweak the parameters.

6 DetAsync: deterministic asynchronous online algorithm

DetAsync ARTM (Alg. 4) is based on two new routines, AsyncProcessBatches and
Await. The former is equivalent to ProcessBatches, except that it just queues the
task for an asynchronous execution and returns immediately. Its output is a
future object (for example, an std::future from C++11 standard), which can be



Algorithm 4: DetAsync ARTM

Input: collection D, parameters n, 1o, K;
Output: matrix @ = (dwt);

create batches D := D; U D2 U---U Dpg;
initialize (¢%;);
F' := AsyncProcessBatches({D1, ..., D,},®°);
for all updatei=1,...,|B/n]|
if i # |B/n] then
| F'*!:= AsyncProcessBatches({ Dyit1, ..., Dyity}, @ 1);
(k) = Await(F?);
pi = (1o +1)7";
(mhe) 1= (1= p2) - (1) + pi - ()
(Pwi) = r;%rvry(nht + Gt B‘Zit )i
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Fig. 5. Gantt chart for DetAsync ARTM (Alg. 4)

later passed to Await in order to get the actual result, e.g. in our case the 7.
values. In between calls to AsyncProcessBatches and Await the algorithm can
perform some other useful work, while the background threads are calculating
the (7,¢) matrix.

To calculate 2% it uses $*~! matrix, which is one generation older than &°
matrix used by the Online algorithm. This adds an extra “offset” between the
moment when @ matrix is calculated and the moment when it is used, and as
a result gives the algorithm additional flexibility to distribute more payload to
computation threads. Steps 3 and 5 of the algorithm are just technical tricks to
implement the “offset” idea.

Adding an “offset” should negatively impact the convergence of the DetAsync
algorithm comparing to the Online algorithm. For example, in AsyncProcessBatches
the initial matrix #° is used twice, and the two last matrices ®LB/1—1 and $LB/1]
will not be used at all. One the other hand the asynchronous algorithm gives
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better CPU utilization, as clearly shown by the Gantt chart from Fig. 5. This
tradeoff between convergence and CPU utilization will be evaluated in section 8.

7 Implementation

The challenging part for the implementation is to aggregate the 7,,; matrices
across multiple batches, given that they are processed in different threads. The
way BigARTM solves this challenge was changed between versions v0.6 (Fig. 6)
and v0.7 (Fig. 7).

In the old architecture the 7, matrices were stored in a queue, and then
aggregated by a dedicated Merger thread. In the new architecture we removed
Merger thread, and n,,; are written directly into the final n,; matrix concur-
rently from all processor threads. To synchronize the write access we require
that no threads simultaneously update the same row in n,,; matrix, yet the data
for distinct words can be written in parallel. This is enforced by spin locks I,
one per each word in the dictionary W. At the end of ProcessDocument we loop
through all w € d, acquire the corresponding lock [,,, append 7., to n,: and
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Table 1. BigARTM peak memory usage, GB

|T| Offline Online DetAsync Async (v0.6)
Pubmed | 1000  5.17 4.68 8.18 13.4
Pubmed | 100 1.86 1.62 2.17 3.71
Wiki 1000 1.74 2.44 3.93 7.9
Wiki 100 0.54 0.53 0.83 1.28

release the lock. This approach is similar to [13], where the same pattern is used
to update a shared stated in a distributed topic modeling architecture.

In our new architecture we also removed DataLoader thread, which previously
was loading batches from disk. Now this happens directly from processor thread,
which simplified the architecture without sacrificing performance.

In addition, we provided a cleaner API so now the users may use simple
FitOffline, FitOnline methods to learn the model, and Transform to apply the
model to the data. Previously the users had to interact with low-level building
blocks, such as ProcessBatches routine.

8 Experiments

In this section we compare the effectiveness of Offline (Alg. 2), Online (Alg. 3),
Async [17] and DetAsync (Alg. 4) algorithms. According to [17] Async algorithm
runs approx. 10 times comparing to Gensim [10], and twice faster comparing to
Vowpal Wabbit (VW) [11] in a single thread; an with multiple threads BigARTM
wins even more.

In the experiments we use Wikipedia dataset (|D| = 3.7M articles, |W| =
100K words) and Pubmed dataset (|D| = 8.2M abstracts, |[W| = 141K words).
The experiments ran on Intel Xeon CPU E5-2650 v2 system with 2 processors,
16 physical cores in total (32 with hyper-threading).



Fig. 8 show the perplerity as a function of the time spend by the four algo-
rithms listed above. The perplexity measure is defined as

P(D,p) = exp <711 Z Z Ndw IHZ ¢wt9td)a (5)

deD wed teT

where n = ), ng. Lower perplexity means better result. Each point on the
figures corresponds to a moment when the algorithm finishes a complete scan of
the collection. Each algorithm was time-boxed to run for a 30 minutes.

Table 1 gives peak memory usage for |T'| = 1000 and |T| = 100 topics model
on Wikipedia and Pubmed datasets.

9 Conclusions

We presented a deterministic asynchronous (DetAsync) online algorithm for
learning additively regularized topic models (ARTM). The algorithm supports
all features of ARTM models, including multi-modality, ability to add custom
regularizers and ability to combine regularizers. As a result, the algorithm al-
lows the user to produce topic models with a rich set of desired properties. This
differenciates ARTM from the existing models, such as LDA or PLSA, which
give almost no control over the resulting topic model.

We provided an efficient implementation of the algorithm in BigARTM open-
source library, and our solution runs an order of magnitude faster than the
alternative open-source packages. Comparing to the previous implementation we
eliminated certain performance bottlenecks, achieving optimal CPU utilization
without requiring user to tweak batch size, number of inner loops per document,
and other parameters. In addition, DetAsync algorithm guaranties a deterministic
behavior, which makes it easier for us to unit-test our implementation and makes
BigARTM ready for production use-cases.

In the future we will focus on memory efficiency to benefit from sparsity of
word-topic (@) and topic-document (@) matrices, and extend our implementa-
tion to run on a cluster.
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