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Abstract—Topic modelling is an area of text mining that has
been actively developed in the last 15 years. A probabilistic topic
model extracts a set of hidden topics from a collection of text
documents. It defines each topic by a probability distribution
over words and describes each document with a probability
distribution over topics. In applications, there are often many
requirements, such as, for example, problem-specific knowl-
edge and additional data, to be taken into account. Therefore,
it is natural for topic modelling to be considered a multi-
objective optimization problem. However, historically, Bayesian
learning became the most popular approach for topic modelling.
In the Bayesian paradigm, all requirements are formalized in
terms of a probabilistic generative process. This approach is
not always convenient due to some limitations and technical
difficulties. In this work, we develop a non-Bayesian multi-
objective approach called the Additive Regularization of Topic
Models (ARTM). It is based on regularized Maximum Likelihood
Estimation (MLE), and we show that many of the well-known
Bayesian topic models can be re-formulated in a much simpler
way using the regularization point of view. We review some of the
most important types of topic models: multimodal, multilingual,
temporal, hierarchical, graph-based, and short-text. The ARTM
framework enables easy combination of different types of models
to create new models with the desired properties for applications.
This modular “lego-style” technology for topic modelling is
implemented in the open-source library BigARTM.

I. INTRODUCTION

Understanding the thematic structure of text collections is
important in many applications of natural language processing
and information retrieval, including searches for similar docu-
ments, navigating large text collections, and the classification,
categorization and segmentation of documents. Topic mod-
elling is an area of text mining that has been actively developed
since the late 1990s. A probabilistic topic model extracts the
hidden topic structure of a collection representing each topic
by a probability distribution over words and describing each
document with a probabilistic mixture of topics.

Historically, the first such model was Probabilistic La-
tent Semantic Analysis (PLSA), introduced by T. Hofmann
in 1999 [1]. In 2003, D. Blei, A. Ng and M. Jordan proposed
its Bayesian extension named the Latent Dirichlet Allocation
(LDA). Since then, topic modelling has been mainly devel-
oped within the framework of graphical models and Bayesian
learning. Over the past years, hundreds of extensions of LDA
and PLSA have emerged which take into account the various
problem-specific features of data and desired properties of the
solution. A series of examples follows. When analysing topical
trends in news feeds, patent databases, and academic archives,
it may be quite informative to take into consideration authors,
dates and sources of texts [2]. In an exploratory information

search, it is important to ensure interpretability of topics and
to be able to organize topics into hierarchies [3]. In multi- and
cross-lingual information retrieval, parallel texts or external
dictionaries are used to learn a multi-language topic model [4].
When analysing social media data, it is important to take
into account the network structure, time stamps, authors, and
geographical locations [5]. When topic modelling is used to
classify documents, it is important that the class labels in
training data be accounted for [6]. When topic model is used in
recommender systems, the text description of users and items
should be analysed together with user behaviour data [7]. There
are some overviews of topic models and their applications
in [8], [9].

There are two motivations for considering topic mod-
elling as a multi-objective optimization problem. The first
is practical — there are usually considerable requirements,
problem-specific knowledge, and additional data to be taken
into account [10]. For example, the topic model for an ex-
ploratory search should be simultaneously well-interpretable,
hierarchical, temporal, and multimodal, while taking into ac-
count authors, categories, tags, and citations [11]. There are
models that address each of these requirements, but combining
them into a single model is a challenging, open problem when
using the widely adopted Bayesian framework. The second
motivation is theoretical. Learning hidden topics from data
is an ill-posed optimization problem, which, in general, has
infinitely many solutions. The standard way to address this
issue is to regularize the optimization problem and make the
solution more stable by adding a regularizer to the main
optimization objective [12]. A regularizer is an additional
criterion that formalizes problem-specific requirements and
consequently penalizes or favours certain solutions. The above
example of exploratory search shows that there may be many
regularization criteria in applications.

Bayesian learning is the de facto standard in topic mod-
elling. In this approach, one first describes the probabilistic
generative model for the data, specifies prior distributions of
the model parameters, and then uses Bayesian inference to
obtain the posterior distributions of the parameters. The gen-
erative probabilistic process encapsulates many different types
of domain-specific knowledge and requirements that come
from the application. Therefore, the Bayesian inference of the
posterior distributions is a difficult problem which requires
unique derivations and coding for each application. There is no
unified Bayesian solution that allows new functional blocks or
modules to be to “plugged” into the model. Practitioners often
prefer to use the simplest LDA topic model, ignoring more
advanced, but impractical, solutions. At the same time, there
are no strong reasons for inferring the posterior distributions



in topic modelling. Researchers often go through the many
technical difficulties inherent in Bayesian inference simply to
obtain the point estimates of the model parameters. Apparently,
Bayesian inference solves a more difficult problem than it is
necessary. Hence, some limitations follow in imposing non-
probabilistic constraints, specifying multiple criteria for the
model, and combining models in a “lego-style” technology.

In this work, we develop a non-Bayesian multi-objective
approach called Additive Regularization of Topic Models
(ARTM) [13], [14]. It is based on the maximization of the
log-likelihood together with a weighted sum of regulariza-
tion criteria. In multi-objective optimization, this approach
is known as scalarization. Log-likelihood describes a simple
generative model usually equivalent to a matrix factorization,
whereas each regularizer introduces one of the additional
requirements into the model. That is, in ARTM, the difficulty
of the problem is transferred from the generative process to
the set of additive criteria, which can be treated separately.
Many of the well-known topic models can be re-formulated in
terms of regularization, and we observe that this formulation
is usually much simpler. Moreover this approach allows com-
bining topic models simply by summing up their regularizers.
This gave rise to the modular technology for topic modelling
implemented in the BigARTM project [15] — an open-source
community-driven library for topic modelilng, available at
http://bigartm.org.

The goal of this work is to demonstrate how a variety
of topic models can be formulated using the regularization
framework. The focus will be on the first and most important
stage of the modelling process — formalizing the problem-
specific requirements in terms of regularization criteria. The
consequent steps are, in fact, almost completely automated in
the ARTM framework.

II. BASICS OF TOPIC MODELLING

Let us denote a finite set (collection) of texts by D, and
a finite set (vocabulary) of terms from these texts by W . Each
term can be a single word or a key phrase. Each document
d ∈ D is a sequence of nd terms (w1, . . . , wnd

) from W . Each
term might appear multiple times in the same document.

Assume that each term occurrence in each document is
associated with some latent topic from a finite set of top-
ics T . Text collection is considered to be a sample of triples
(wi, di, ti), i = 1, . . . , n, drawn independently from a discrete
distribution p(w, d, t) over a finite space W ×D × T . Term w
and document d are observable random variables, while topic t
is a latent (hidden) random variable. Following the “bag of
words” assumption, each document is represented by a subset
of terms d ⊂W with integers ndw that count how many times
the term w appears in the document d.

Conditional independence is the assumption that each
topic generates terms regardless of the document: p(w | t) =
p(w |d, t). According to the law of total probability and the
assumption of conditional independence,

p(w |d) =
∑

t∈T

p(t |d) p(w | t). (1)

The probabilistic model (1) describes how the collection D
is generated from the known distributions p(t |d) and p(w | t).

Learning a topic model is an inverse problem, i.e., the dis-
tributions p(t |d) and p(w | t) must be found, given the col-
lection. This problem is equivalent to finding an approximate
representation of the matrix of counts F =

(

p̂(w |d)
)

W×D
,

p̂(w |d) = ndw

nd
, as a product F ≈ ΦΘ of two unknown

matrices — the matrix Φ of term probabilities for the topics
and the matrix Θ of topic probabilities for the documents:

Φ = (ϕwt)W×T , ϕwt = p(w | t);

Θ = (θtd)T×D, θtd = p(t |d).

Matrices F , Φ, and Θ are probability matrices, i.e., they
have non-negative and normalized columns fd, ϕt, and θd,
respectively, representing discrete distributions. Usually the
number of topics |T | is much smaller than the collection
size |D| and the vocabulary size |W |. Thus, the problem is
one of low-rank non-negative matrix factorization.

In probabilistic latent semantic analysis, PLSA [1], the
topic model (1) is learned by log-likelihood maximization
with linear constraints. The likelihood is the probability of
the observed data as a function of model parameters Φ and
Θ. Due to the independence assumption, it is equivalent to the
product of the probabilities of words in the documents:

n
∏

i=1

p(di, wi) =
∏

d∈D

∏

w∈d

p(w |d)ndwp(d)ndw → max
Φ,Θ

.

Taking the logarithm, the above becomes a sum and the
terms that don’t depend on the model parameter can be
dropped because they don’t affect optimization. We have a
log-likelihood maximization subject to the linear constraints
of non-negativity and normalization:

L(Φ,Θ) =
∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

ϕwtθtd → max
Φ,Θ

; (2)

∑

w∈W

ϕwt = 1; ϕwt > 0;
∑

t∈T

θtd = 1; θtd > 0. (3)

Note that (2) is equivalent to searching for an approximate
matrix factorization F ≈ ΦΘ best in the sense of minimizing
a weighted sum of the KL-divergences:

L(Φ,Θ) =
∑

d∈D

nd KL
(

p̂(w |d)
∥

∥ p(w |d)
)

→ min
Φ,Θ

.

In Bayesian topic modelling, parameters (Φ,Θ) are as-
sumed to be drawn from a prior distribution p(Φ,Θ |γ) with
the hyperparameter γ. In this case, likelihood maximization
leads to the maximum a posteriori probability (MAP) estimate:

p(Φ,Θ |γ)

n
∏

i=1

p(di, wi |Φ,Θ) → max
Φ,Θ,γ

.

Taking the logarithm, we have an extension of (2) with the
log-prior playing the role of a regularizer:

L(Φ,Θ) + ln p(Φ,Θ; γ) → max
Φ,Θ,γ

. (4)

In Bayesian topic modelling, marginal likelihood maxi-
mization is used instead of MAP. The model parameters (Φ,Θ)
are first integrated out, then the log-likelihood is optimized
over the hyperparameters γ. This is said to reduce both the



dimensionality of the parameter space and the risk of overfit-
ting. Indeed, the dimensionality of γ is usually dramatically
smaller than the size of matrices Φ,Θ, and it also does not
depend on the size of the collection.

Bayesian inference results in the posterior p(Φ,Θ |D; γ)
instead of the matrices Φ,Θ themselves, although the point
estimates can also be derived. Different inference techniques,
give slightly different Φ,Θ estimates for the LDA model, but
they are close to the straightforward MAP estimates [16].
In applications, neither posterior, interval estimates, nor me-
dian/mode estimates are used. Hence, finding posterior distri-
butions appears to be excessive, in practice.

III. ADDITIVE REGULARIZATION FOR TOPIC MODELLING

Non-negative matrix factorization is an ill-posed problem.
If ΦΘ is a solution, then (ΦS)(S−1Θ) is another solution
for an invertible matrix S such that ΦS and S−1Θ are
probability matrices. The standard approach for addressing
ill-posed problems is to add a regularization criterion to the
main objective [12]. Usually regularizers formalize the domain
knowledge and penalize or favour certain solutions. In topic
modelling, there are often many requirements which could be
expressed by regularizers.

Additive regularization of topic models (ARTM) [13] is
based on maximizing the log-likelihood and a weighted sum
of regularizers Ri(Φ,Θ), i = 1, . . . , k:

∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

ϕwtθtd +

k
∑

i=1

τiRi(Φ,Θ) → max
Φ,Θ

; (5)

subject to constraints (3), where the τi are non-negative reg-
ularization coefficients. The optimization problem (5), (3) is
non-convex so it is only feasible to find a local maximum.

Consider a norm operator that normalizes a vector to make
it a vector of probabilities:

pi = norm
i∈I

(xi) =
(xi)+

∑

j∈I(xj)+
, for all i ∈ I,

where (x)+ = max{0, x} is a truncation of negative values.
If xi 6 0 for all i ∈ I , then norm(x) is the zero vector.

Theorem 1: Let regularizer R(Φ,Θ) be differentiable.
Then the local extreme (Φ,Θ) of the optimization problem
(5), (3) satisfies the following system of equations with auxil-
iary variables ptdw = p(t |d, w), nwt, and ntd:

ptdw = norm
t∈T

(

ϕwtθtd
)

; (6)

ϕwt = norm
w∈W

(

nwt+ϕwt

∂R

∂ϕwt

)

; nwt =
∑

d∈D

ndwptdw; (7)

θtd = norm
t∈T

(

ntd+θtd
∂R

∂θtd

)

; ntd =
∑

w∈d

ndwptdw; (8)

for all topics t and documents d that are non-degenerate in the
following sense:

a) t is degenerate, if nwt + ϕwt
∂R

∂ϕwt
6 0 for all w ∈ W ;

b) d is degenerate, if ntd + θtd
∂R
∂θtd

6 0 for all t ∈ T .

The above degeneracy may occur when regularizer R has
too strong of a sparsing effect on the model. Degenerate topics
and documents can be excluded from the model. Excluding
weak topics is a favourable effect of the regularization, and
the degeneracy of a document may mean that it is too short
or quite atypical, i.e., the model cannot describe it.

In the Expectation Maximization (EM-) algorithm, we
solve equations (6)–(8) with a fixed-point iteration method,
turning these equations into updates. We assign initial values
to ϕwt and θtd, and apply E-step (6) and M-step (7)–(8) as
updates in a loop until convergence [17].

Note that PLSA corresponds to the ARTM case in which
regularization is absent, i.e., R(Φ,Θ) = 0.

IV. NON-BAYESIAN GENERALIZATION OF LDA

The LDA model was proposed in [18] to address PLSA
model overfitting. PLSA predicted word probabilities p(w |d)
in new documents significantly worse than in training doc-
uments. Later, it became clear that, when training with big
data, both PLSA and LDA do not overfit, and the attained
likelihoods don’t differ by much [19], [20], [21]. Another way
to achieve similar performance is to consider robust versions
of the models. Some differences between PLSA and LDA
manifest only for rare terms that are normally not important for
inferring and interpreting the topics. In robust variants of these
models such terms are ignored, and this significantly reduces
both seeming overfitting and differences between PLSA and
LDA models [22].

Moreover, the quality of word prediction may not be the
best way to judge topic model performance. First, topic models
normally are fitted not for word prediction, but for discovering
semantic structures in a text collection. Second, when measur-
ing model quality, perplexity is often used, which is known to
strongly penalize underestimation of small probabilities. All
of this indicates that the difference between PLSA and LDA
is not as important as it was considered previously. However,
LDA was widely adopted as the better alternative to PLSA.

In the LDA model, it is assumed that columns θd and ϕt

are random vectors drawn from Dirichlet distributions with
nonnegative parameters α ∈ R

|T | and β ∈ R
|W |, respectively.

According to (4), LDA corresponds to the regularizer that
is equal to the logarithm of the Dirichlet prior:

R(Φ,Θ) = ln
∏

t∈T

Dir(ϕt;β)
∏

d∈D

Dir(θd;α) + const

=
∑

t,w

(βw − 1) lnϕwt +
∑

d,t

(αt − 1) ln θtd. (9)

Substituting R in (7)–(8) gives us the M-step:

ϕwt = norm
w∈W

(

nwt + βw − 1
)

; (10)

θtd = norm
t∈T

(

ntd + αt − 1
)

. (11)

When βw = 1, αt = 1, the Dirichlet distribution is uni-
form and LDA coincides with PLSA [23]. When βw > 1,
αt > 1, the regularizer has a smoothing effect: it makes small
probabilities ϕwt and θtd larger and brings these distributions



closer to the uniform. When 0 < βw < 1, 0 < αt < 1, the
regularizer has a sparsing effect: it makes small probabilities
smaller and eventually drives some of them to zero due to
negative values truncation in the norm operator.

The regularizer (9) can be equivalently represented using
KL-divergences instead of log-priors:

R(Φ,Θ) = |W |
∑

t∈T

KL
(

1
|W |

∥

∥ϕwt

)

− β0
∑

t∈T

KL
(

βw

β0

∥

∥ϕwt

)

+ |T |
∑

d∈D

KL
(

1
|T |

∥

∥θtd
)

− α0

∑

d∈D

KL
(

αt

α0

∥

∥θtd
)

.

This gives a non-Bayesian interpretation of LDA and
the effects of regularization: columns ϕt are pushed towards
distribution βw

β0

controlled by the coefficient β0; columns θd are

pushed towards αt

α0

controlled by α0; and a weak, uncontrolled
sparsing pushes all distributions away from uniform.

A. Unifying sparsing and smoothing

Dropping the restrictions that come from Bayesian infer-
ence and Dirichlet priors, we have the freedom to use negative
hyperparameters in (9), as well as to mix smoothing and
sparsing effects to improve topics.

Following (9), let us introduce a generalized cross-entropy
regularizer for smoothing and sparsing:

R(Φ,Θ) =
∑

t∈T

∑

w∈W

βwt lnϕwt +
∑

d∈D

∑

t∈T

αtd ln θtd.

Substituting R in (7)–(8) gives us the M-step:

ϕwt = norm
w∈W

(

nwt + βwt

)

; θtd = norm
t∈T

(

ntd + αtd

)

.

Positive αtd and βwt correspond to smoothing distributions,
negative values correspond to sparsing.

B. Semi-supervised topic learning

During the evaluation or application of a topic model, ex-
perts, assessors, or users may label some words and documents
as relevant or irrelevant for some topics. This leads to semi-
supervised topic learning with expert advice, which can be
realized by the smoothing and sparsing regularizer:

βwt = β+[w ∈W+
t ]− β−[w ∈W−

t ],

αtd = α+[d ∈ D+
t ]− α−[d ∈ D−

t ],

where W+
t and D+

t are “white lists” of relevant terms and
documents, respectively; W−

t and D−
t are “black lists” of

irrelevant terms and documents, respectively; and β± and α±

are regularization coefficients.

Semi-supervised topic learning can be viewed as a type of
topic-based information retrieval. In a query, a user provides a
topic lexis in the form of a one-topic document, a set of seed
words, or topic labels assigned to certain word positions [24].
Then the topic search engine should find and organize docu-
ments relevant to the specified topics. Semi-supervised topic
learning has been used for, e.g., search and categorization of
news [25], social media information on diseases and their
treatments [26], crime and extremism [27], and inter-ethnic

relations [28], [29], [30]. In the Ailment Topic Aspects Model
(ATAM), a large corpus of medical papers was used to produce
a smoothing distribution βwt [26]. In semi-supervised LDA
(SSLDA) and interval semi-supervised LDA (ISLDA) models,
a dictionary of a few hundred ethnonyms was used to search
ethnically relevant topics [28], [31], [32].

C. Separating subject topics and background topics

In order for a topic model to be more interpretable, each
topic should have a lexical kernel consisting of words that are
frequently used in the corresponding domain and rarely used
in other domains. For this, the matrices Φ and Θ should have
a different structure of sparseness for domain-specific subject
topics S ⊂ T and for background topics B = T \S.

The subject topic t ∈ S contains terms from a particular
subject domain. The distributions p(w | t) must be sparse and
significantly different. Distributions p(d | t) should normally
also be sparse since each subject topic should be present in
a relatively small fraction of documents.

The background topic t ∈ B contains common words that
should not be a part of subject topics. Distributions p(w | t)
and p(d | t) for background topics are smoothed as they are
typically present in most documents.

Topic model with subject and background topics can be
viewed as a generalization of robust topic models [33], [22]
that use a single background topic.

V. DECORRELATION OF TOPICS

An interpretable topic model should not contain duplicate
or very similar topics. To make topics as diverse as possible,
let us minimize the sum of all topic covariances or dot products
〈ϕt, ϕs〉 =

∑

w ϕwtϕws:

R(Φ) = −
τ

2

∑

t∈T

∑

s∈T\t

∑

w∈W

ϕwtϕws.

Substituting R in (7) gives us the M-step:

ϕwt = norm
w∈W

(

nwt − τϕwt

∑

s∈T\t

ϕws

)

. (12)

Decorrelation was first introduced in the Topic Weak Cor-
related LDA (TWC-LDA) model within the Bayesian frame-
work [34]. In [34], a useful side-effect was observed in that
decorrelation groups common words in separate topics. Later
experiments with ARTM confirmed this observation [35], [17].

Combining decorrelation with smoothing background top-
ics and sparsing subject topics improves the interpretability of
topics [35], [17], [36]. A similar combination of regularizers
improved the quality of exploratory search, although none of
the search quality criteria were directly optimized [11].

VI. CORRELATED TOPIC MODEL

The Correlated Topic Model (CTM) formalizes the intuitive
idea that documents are likely to contain certain combinations
of topics more often than others [37]. For example, a document
pertaining to geology is more likely to also be about archae-
ology than about genetics. This means that the components



of vector θd are correlated, whereas basic topic models like
LDA assume them to be independent. Dropping this unrealistic
assumption may improve the quality of topics. CTM originally
employed the Bayesian framework and imposed a prior distri-
bution on Θ with correlations between its components. One
way to model correlations for probability vectors is to use the
log-normal distribution:

p(ln θd |µ,Σ) ∝ exp
(

− 1
2 (ln θd − µ)TΣ−1(ln θd − µ)

)

,

were µ is the mean and Σ is the covariance of the ln θ vectors.
Using this prior distribution in (4) results in the regularizer:

R(Θ, µ,Σ) = −
τ

2

∑

d∈D

(ln θd − µ)TΣ−1(ln θd − µ).

Substituting R in (7) gives us the M-step:

θtd = norm
t∈T

(

ntd − τ
∑

s∈T

Σ−1
ts

(

ln θsd − µs

)

)

, (13)

where Σ−1
ts are elements of the inverse covariance matrix.

Parameters Σ, µ can be found through maximum likelihood
estimation (4) assuming the θd are known:

µ =
1

|D|

∑

d∈D

ln θd; Σ =
1

|D|

∑

d∈D

(

ln θd − µ
)(

ln θd − µ
)T
.

Parameters Σ, µ can be estimated after each pass of the
EM-algorithm over the collection. In [37], Lasso-type regres-
sion was used to obtain a sparse covariance matrix Σ. The
covariance matrix, Σ itself, is an interesting CTM topic model
output that may help to interpret the discovered topics through
the relationships between them.

VII. CONTROLLING THE NUMBER OF TOPICS

A topic selection regularizer was introduced in [35] for
dropping insignificant topics from the model. The regularizer is
based on cross-entropy sparsing of the distribution p(t), which
can be easily expressed via Θ:

R(Θ) = τn
∑

t∈T

1

|T |
ln p(t), p(t) =

∑

d

p(d)θtd.

Substituting R in (8) and replacing θtd by the unbiased
frequency estimate ntd

nd

gives us the M-step:

θtd = norm
t∈T

(

ntd

(

1− τ
n

nt|T |

))

. (14)

If the value of the counter nt is small enough, all elements
of the t-th row become zero, and the topic t is excluded from
the model. When using this regularizer, we must start with an
excessive number of topics |T |.

Topic selection in the ARTM framework is much simpler
than in the non-parametric Bayesian Hierarchical Dirichlet
Process (HDP) [38]. In both ARTM and HDP approaches,
there is a hyperparameter that controls the number of topics:
the regularization coefficient τ in ARTM and the hyperparam-
eter γ in HDP.

Both HDP and ARTM can discover the true number of
topics, but ARTM does it more accurately and robustly [36].

The topic selection regularizer has another useful feature: it
drops duplicate, split, and correlated topics. In addition, ARTM
with the topic selection regularizer is 100-times faster than the
publicly available HDP implementation.

VIII. MODELLING HIERARCHIES OF TOPICS

Hierarchical models divide topics into subtopics recur-
sively, thus simplifying information retrieval, browsing, and
understanding of large multidisciplinary collections. Much
work has been done on hierarchical topic modelling [39],
[40], [41]. Despite this, learning a good topical hierarchy and
optimizing the size and the structure of the hierarchy are
still open problems. Moreover, evaluating the quality of the
hierarchy remains an open problem as well [40].

There are multiple strategies for building a hierarchy:
top-down vs. down-top, level-by-level vs. node-by-node, tree-
based vs. multipartite graph, and document vs. term clustering.
Nevertheless, there is no widely adopted best strategy.

In [42], a top-down strategy is proposed within the ARTM
framework. The hierarchy is represented by a multipartite
graph with a fixed number of levels and topics in each level.
Each level is a flat topic model so the time for building a
hierarchy is still linear in the size of the collection.

At the top level, we build an ordinary “flat” topic model.
Once this parent level ℓ with topic set T is built, we build the
next level ℓ + 1 with a larger number of child subtopics S.
Conditional probabilities ψst = p(s | t) link subtopics s with
parent topics t. The requirement is that parent topic p(w | t)
must be accurately approximated by the probabilistic mixture
of the child topics p(w |s):

∑

t∈T

nt KLw

(

p(w | t)
∥

∥

∥

∑

s∈S

p(w |s) p(s | t)
)

=
∑

t∈T

nt KLw

(

nwt

nt

∥

∥

∥

∑

s∈S

ϕwsψst

)

→ min
Φ,Ψ

,

where Ψ = (ψst)S×T is the interlevel probability matrix,
which is to be estimated as an extra model parameter when
learning the topic model for the ℓ+ 1 level.

The above maximization problem is equivalent to the
matrix factorization of the parent level matrix Φℓ = ΦΨ.

Next, we add the above requirement as a regularizer to the
MLE for learning the topic model of the level ℓ+ 1:

R(Φ,Ψ) = τ
∑

t∈T

∑

w∈W

nwt ln
∑

s∈S

ϕwsψst. (15)

This maximization problem is equivalent to the original (2)
if we consider each parent topic t as a pseudo-document and
insert it into the collection with assigned word frequencies
nwt = τntϕwt. This means that it is not necessary to im-
plement a special regularizer for building topical hierarchies.
When building the model for level ℓ + 1, it is only necessary
to add |T | pseudo-documents to the collection. Then the
connection matrix Ψ will appear in the corresponding |T |
columns of the estimated Θ matrix.

An additional regularizer may be used to make the inter-
level connections more sparse [42]. In particular, this regular-
izer will force each subtopic to have a single parent; in this
case, the hierarchy becomes a tree.



IX. MULTIMODAL ARTM

It is often the case that documents contain meta-data of
different modalities apart from the text. Examples of textual
modalities are: natural language words, n-grams [43], [44],
tags [45], and named entities [46]. For short texts with typos,
modality of character-level n-grams can be considered; this
may help to improve the quality of information retrieval [47].
Non-textual modalities are: authors [48]; time stamps [2],
[49]; classes, genres and categories [6]; cited or citing docu-
ments [50]; citing or cited authors [51]; users of the document,
social network page, or the web-site [7]; pictures in the
document; advertisements on the web-page; and so on. Clearly,
meta-data can help infer topics and vise-versa, i.e., topics can
help infer the semantics of the meta-data or predict the missing
values of meta-data. Despite the above use-cases and data-
types are quite different, they all can be easily and uniformly
incorporated into the framework of multi-modal ARTM. Each
document is considered as a container of tokens coming from
different modalities, including natural language words.

Let M be a set of modalities. Each modality has its own
vocabulary of tokens Wm, m ∈M . These vocabularies do
not overlap, and denote their union by W . Now denote the
modality of a token w ∈ W by m(w). The distribution p(t |d)
of topics in each document is shared across modalities.

The topic model for a modality m is equivalent to (1):

p(w |d) =
∑

t∈T

p(w | t) p(t |d) =
∑

t∈T

ϕwtθtd. (16)

Stacking probability matrices Φm =
(

ϕwt

)

Wm×T
of all the

modalities vertically gives the matrix Φ of size W×T .

Consider the log-likelihood for each modality m as a reg-
ularizer with coefficient τm:

∑

m,d

∑

w∈Wm

τmndw ln
∑

t∈T

ϕwtθtd +R(Φ,Θ) → max
Φ,Θ

; (17)

∑

w∈Wm

ϕwt = 1; ϕwt > 0;
∑

t∈T

θtd = 1; θtd > 0. (18)

Theorem 2: Let regularizer R(Φ,Θ) be differentiable.
Then a local extreme (Φ,Θ) of the optimization problem (17)–
(18) satisfies the following conditions with auxiliary variables
ptdw = p(t |d, w) for all non-degenerate topics and documents:

ptdw = norm
t∈T

(

ϕwtθtd
)

; (19)

ϕwt = norm
w∈Wm

(

∑

d∈D

τm(w)ndwptdw + ϕwt

∂R

∂ϕwt

)

; (20)

θtd = norm
t∈T

(

∑

w∈W

τm(w)ndwptdw + θtd
∂R

∂θtd

)

. (21)

Theorem 1 is a particular case of Theorem 2 with single
modality, |M | = 1, and τm = 1.

We can see that the multimodal extension of ARTM
consists of two modifications: 1) breaking the matrix Φ into
blocks Φm that are normalized separately, and 2) multiplying
the data ndw by weights of modalities τm(w).

A. The language modalities

One excellent idea in multi-language topic modelling is that
the parallel collection of document translations is sufficient
to find topics across languages and then to build the cross-
language search [4]. The first multi-lingual topic models [52]
considered each language as a separate modality and merged
all translations of a document into one common document.
Aligning parallel texts by sentences or words proved to be
time-consuming and essentially did not improve the quality of
the cross-lingual search.

Using a cross-language dictionary is a type of smoothing
regularizer [53]. It expresses the guess that if a word u in a
language k is a translation of the word w in a language ℓ,
then the topic distributions of these words p(t |u) and p(t |w)
should be close in the sense of cross-entropy:

R(Φ) =
∑

w,u

∑

t∈T

nut lnϕwt.

Substituting R in (7) gives us the M-step:

ϕwt = norm
w∈W ℓ

(

nwt + τ
∑

u

nut

)

.

We can see that probability of a word w in a topic t increases
if the word has translations that also have a high probability of
appearing in topic t. Experiments showed that linking parallel
texts improves the search quality more effectively than using
a bilingual dictionary [53].

B. The class modality

The problem of supervised document classification is one
of the most important in text analysis [54]. Classifiers such
as Support Vector Machine (SVM) or Regularized Logistic
Regression (RLR) are generally reported to be good techniques
for this task. A drawback to this approach is that performance
drops rapidly as the total number of class labels and the number
of labels per document increase. Topic models for multi-label
document classification cope with this problem by processing
class labels in the same way as words, which was done in the
Dependency LDA model [6] within a Bayesian framework.

The same idea can be expressed easily in a multimodal
setting by introducing the modality of class labels C. Each
document d ∈ D contains a subset of labels Cd ⊂ C.

At the training stage, we fit a topic model using both word
and class modalities to obtain ϕwt = p(w | t) and ϕct = p(c | t),
as well as topic distributions θtd = p(t |d) for each training d.

At the testing stage, we infer θtd′ for a new document d′

with empty set Cd′ using word counts nd′w of the document
and word distributions of topics ϕwt. Then the class labels for
the document d′ can de predicted by the probabilistic model:

p(c |d′) =
∑

t∈T

ϕctθtd′ ,

which is essentially a linear classifier with feature vector θd′

and coefficients ϕct. Next, we can choose some thresholds
to convert probabilities of classes p(c |d) into class labels.
Alternatively, we can apply any non-linear classifier to the
topic distributions θtd′ as feature vectors.



Experiments in [6] indicate that topic models gives su-
perior classification quality for a multi-class problem with a
large number of imbalanced, overlapping, and interdependent
classes. The multimodal ARTM framework gives comparable
results for the same datasets [55].

C. The time modality

Document time stamps are important for modeling the
topical dynamics in newsfeeds, scientific publications, patent
databases, and social media.

We introduce the time modality of time intervals as a finite
set I . Assume that topics as distribution p(w | t) do not
change in time. In the multimodal ARTM framework, the topic
dynamic over time p(i | t) = ϕit appears in the t-th column of
the Φ matrix according to (16):

p(i |d) =
∑

t∈T

p(i | t) p(t |d) =
∑

t∈T

ϕitθtd. (22)

In Topics Over Time (TOT) [56], the dynamic of a topic
is modelled by a parametric beta-distribution. This distribution
family includes monotone and unimodal distributions, which
are convenient for modelling event topics and a few variants
of trending dynamics, but not suitable for describing more
complex dynamics. Non-parametric models are more flexible
and can describe arbitrary dynamics. However, some con-
straints must be specified to avoid overfitting. Consider two
regularizers that control the topic dynamics.

First, assume that many topics correspond to short-lived
events. Therefore, each interval i contains a small part of the
topics from T . We essentially require the sparseness of the
distributions p(t | i), and we achieve this by applying a cross-

entropy regularizer using Bayes rule p(t | i) = p(i | t)p(t)
p(i) :

R1(Φ) = −τ1
∑

i∈I

∑

t∈T

ln
ϕitnt

∑

z ϕiznz

,

where the nt counter is produced in the EM-algorithm.

Second, assume that probabilities p(i | t) do not change
too rapidly in time i for a topic t. This requirement can be
formalized by the L1 smoothness regularizer:

R2(Φ) = −τ2
∑

i∈I

∑

t∈T

∣

∣ϕit − ϕi−1,t

∣

∣.

This regularizer smooths the values p(i | t) at each point of
the time-series relative to the neighbouring points.

X. AUTHOR TOPIC MODEL

The author topic model (ATM) first introduced in [48]
was motivated by an assumption that topics are generated by
authors of documents rather than the documents themselves.
Some other modality could replace authors as topic-generative,
e.g., document category or any type of document source. This
assumption changes the structure of the parameter space and
leads to the three-matrix factorization problem.

Assume that each term w in each document d is associated,
not only with a topic, but also with a category c from a given
set of categories C. Assume also that for each document, we

know a subset Cd ⊆ C that can be associated with words
in this document. For example, we may know the set of
document authors. Now, observations (di, wi, ti, ci) come from
the extended space D ×W × T × C instead of D ×W × T .

Consider a topic model (1) in which probabilities of topics
for a document θtd = p(t |d) are calculated using mixtures
of distributions ψtc = p(t |c) of topics in categories (e.g., the
topic profile for an author) and distributions πcd = p(c |d) of
categories for documents (e.g., the contribution of each author
to the document d):

p(w |d) =
∑

t∈T

∑

c∈Cd

ϕwtψtcπcd. (23)

The model is based on two conditional independence
assumptions: p(t |c, d) = p(t |c) and p(w | t, c, d) = p(w | t).

We use the regularized log-likelihood maximization:
∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

∑

c∈Cd

ϕwtψtcπcd +R(Φ,Ψ,Π) → max
Φ,Ψ,Π

with the usual constraints on probability matrices Φ,Ψ,Π.

Theorem 3: Let regularizer R(Φ,Ψ,Π) be differentiable.
Then local extreme (Φ,Ψ,Π) of the optimization problem
satisfies the following conditions with auxiliary variables
ptcdw = p(t, c |d, w) for all non-degenerate t, d, c:

ptcdw = norm
(t,c)∈T×Cd

ϕwtψtcπcd;

ϕwt = norm
w∈W

(

∑

d∈D

∑

c∈Cd

ndwptcdw + ϕwt

∂R

∂ϕwt

)

;

ψtc = norm
t∈T

(

∑

d∈D

∑

w∈d

ndwptcdw + ψtc

∂R

∂ψtc

)

;

πcd = norm
c∈Cd

(

∑

w∈d

∑

t∈T

ndwptcdw + πcd
∂R

∂πcd

)

.

In the Tag Weighted Topic Model (TWTM) [57], tags for
the document were used as a topic-generating modality. A sim-
ilar model was used for video processing [58]. Documents d
were defined as consecutive 1-second video clips, terms w
corresponded to the visual events, topics t were interpreted as
actions composed of events, and categories c were used for
mining complicated behaviours. The problem as outlined was
to recognize a major behaviour c in each one-second clip.

XI. REGRESSION TOPIC MODEL

There are a lot of practically important problems in which it
is necessary to predict some numeric value for a text document.
Some application examples from e-commerce are: prediction
of the user rating for a product (e.g., a consumer good, movie
or book) based on the review text; prediction of the number
of clicks on the ad based on its text; prediction of the salary
based on the job opening description; and prediction of the
number of likes on the user-review for a service.

Standard regression models use a vector document rep-
resentation. Then a topic model can be used as a tool that
extracts feature vectors θd. Another approach is to include the
regression fitting criterion as a regularizer [59]. This may help
to infer topics more suitable for the numerical prediction.



Assume that there is a target value yd ∈ R that is known
for each document d in the training collection that must be
predicted for new documents. Often regression is fitted to
minimize the squared error between predictions and target
values. Consider a linear regression for simplicity:

R(Θ, v) = −τ
∑

d∈D

(

yd −
∑

t∈T

vtθtd

)2

,

where v ∈ R
T is a vector of regression coefficients. It can be

found from likelihood maximization (4) by fixing θd:

v = (ΘΘT)−1Θy.

This is the standard linear regression solution for known “data”
matrix Θ. Next, we substitute the above regularizer into the
equation for the M-step (8):

θtd = norm
t

(

ntd + τvtθtd

(

yd −
∑

s∈T

vsθsd

))

.

Vector v can be updated after each pass of the EM-
algorithm over the document collection [59].

XII. MODELLING CONNECTED DOCUMENTS

There is often some information on links between docu-
ments that presume similarity of documents topics. This can
be the fact that two documents reside in the same category, are
mentioned together in another document, are hyperlinked, or
one cites the other. The similarity between the topic-profiles
of documents d and d′ can be measured by the covariance
∑

t θtdθtd′ . We then introduce a regularizer to maximize these
covariances for linked documents:

R(Θ) = τ
∑

d,d′

wdd′

∑

t∈T

θtdθtd′ ,

where wdd′ is the weight of the connection between documents
d and d′, e.g., the number of links between them.

Substituting R in (8) gives us the M-step:

θtd = norm
t∈T

(

ntd + τθtd
∑

d′∈D

wdd′θtd′

)

.

This is a variant of smoothing regularizer. The θd dis-
tribution is pushed towards distributions θd′ of documents
connected with d.

A. Document network topic model

The paper [60] introduces a generic topic model NetPLSA,
which accounts for a given graph structure imposed on a
document collection. Consider a graph 〈V,E〉 with a set
of vertices V and a set of edges E. Each vertex v ∈ V
corresponds to a subset of documents Dv ⊂ D. For example,
the vertex can be a single document v, all posts of one author
v, or all posts from one geographic region v.

The topic distribution of a vertex v follows from the law
of total probability:

p(t |v) =
∑

d∈Dv

p(t |d) p(d |v) =
∑

d∈Dv

θtdpdv,

where pdv can be estimated as norm
d∈Dv

(nd) or 1
|Dv |

.

The NetPLSA model introduces a quadratic regularizer:

R(Θ) = −
τ

2

∑

(u,v)∈E

wuv

∑

t∈T

(

p(t |v)− p(t |u)
)2
,

where wuv is the weight of an edge (u, v). For example, if Dv

consists of all the papers of an author v, then wuv can be the
number of papers in which u and v are co-authors.

This regularizer requires us to have access to all documents
profiles θ when processing a document d. This may be
computationally inefficient for a large collection.

Alternatively, we can make the set of vertices V a modality
and introduce a regularizer that depends only on the matrix Φ.
Let us add into each document d ∈ Dv a token v ∈ V of
the modality V . We express the topic distribution of a vertex
using Bayes rule: p(t |v) = ϕvt

pt

pv
, and then we use frequency

estimates for pv and pt. Substituting this into the NetPLSA
regularizer makes it a function of Φ rather than Θ:

R(Φ) = −
τ

2

∑

(u,v)∈E

wuv

∑

t∈T

(

ϕvt

pt
pv

− ϕut

pt
pu

)2

. (24)

B. The modality of geotags and geolocations

Geographic locations associated with documents or with
their authors are often used when analysing social network
data. The applications may include discovering location-
specific topics and the distribution of topics over locations.
For example, in [61], areas of popularity of national cousins
are analysed based on Flickr users posts. Another example
is a reconstruction of the geographic path of the “Katrina”
hurricane based on social network posts [60].

There are two common ways to specify the location of
a document d. The first is the modality of geotags, e.g.,
the names of countries, regions, cities and so on. We can
use directly the modality of geotags following the approach
used in Section IX. The second way to specify location is
to use the geographic coordinate or geolocation described
by latitude and longitude ℓd = (xd, yd). We can use the
regularizer (24) to account for the geographical proximity
of locations. A quadratic regularizer first suggested in [61]
is, in fact, the same as that used in in the NetPLSA with
weights wuv = exp(−γr2uv) based on geographic proximity
r2uv = (xu − xv)

2 + (yu − yv)
2, where (u, v) can be either

a document pair or a geotag pair. The NetPLSA generic
approach allows both variants of modeling.

The ARTM framework allows combining both types of
geographic data in the model.

XIII. BEYOND BAG-OF-WORDS

The bag-of-words hypothesis is probably one of most
criticized assumptions in topic modelling. In response to this
criticism, many advanced models of sequential text appeared.
We distinguish three directions of such extensions.

The first is to consider n-grams or collocations of words
rather than individual words. Topics inferred from n-grams
are usually much easier to interpret than those based on



unigrams [43]. The second extension is to consider the co-
occurrence of words according to the Harris’ distributional hy-
pothesis [62]. The development of word2vec [63] and other
word embeddings techniques [64] stimulated the development
of sparse interpretable topic-based word embeddings [65]. The
third extension is based on the assumption that the natural lan-
guage text is usually a sequence of segments, each containing
only one topic or a very small number of topics. This leads
to sentence topic models and topic-based text segmentation
techniques.

A. Multigram topic models

The first Bigram Topic Model (BTM) [43] is formally
equivalent to a multimodal model in which each word v ∈W
induces a separate modality. The vocabulary Wv ⊆W of
the word modality consists of all words that appear exactly
after v somewhere in the collection. This multimodal repre-
sentation allows us to introduce the conditional probabilities
ϕv
wt = p(w|v, t) over words w that go after the word v in the

topic t. The log-likelihood of the bigram model can be used
as a regularizer for the unigram model log-likelihood (in the
original BTM it has been used as a separate bigram model
objective):

R(Φ,Θ) =
∑

d∈D

∑

v∈d

∑

w∈Wv

ndvw ln
∑

t∈T

ϕv
wtθtd,

where ndvw counts the bigram vw in the document d. The
limitation of the BTM model is that it does not consider higher
order n-grams. Another problem is that the number of bigrams
grows rapidly with document collection size.

In the multimodal ARTM framework, n-grams can be more
naturally specified as separate modalities for each n (unigrams,
bigrams, 3-grams, etc). To reduce the sizes of the vocabularies,
recent fast collocation miners can be used: TopMine [66],
SegPhrase [67], or AutoPhrase [68].

B. Biterm topic model for short texts

Short texts are documents that are not long enough for
reliable topic inference. Examples are Twitter messages, news
headers, short ads, dialog messages, and so on.

The Biterm Topic Model (BitermTM) is one of the most
successful approaches to the problem of short texts [69].
Biterm is a pair of words that occur near to each other in
the text. “Near” can mean in one sentence or a window of ±h
words, depending on the problem at hand. The input data for
the model are the counts nuv of biterms (u, v) in the document
collection. BitermTM describes the probability of words co-
occurrence p(u, v) using the conditional independence assump-
tion p(u, v | t) = p(u | t) p(v | t) and the law of total probability:

p(u, v) =
∑

t∈T

p(u | t) p(v | t) p(t) =
∑

t∈T

ϕutϕvtπt,

where ϕwt = p(w | t) and πt = p(t) are model parameters.
This is a 3-matrix factorization ΦΠΦT with a diagonal matrix
Π = diag(π1, . . . , πT ). The biterm topic model does not define
the topic profiles of documents Θ and, hence, does encounter
the problem of determining topic profiles for short documents.

ARTM allows us to combine the biterm and ordinary
topic models and estimate the improved Θ matrix for short

documents. For this, we can use the log-likelihood of the
biterm topic model as a regularizer:

R(Φ,Π) = τ
∑

u,v

nuv ln
∑

t

ϕutϕvtπt.

Substituting R in (7) gives us the M-step:

ϕwt = norm
w∈W

(

nwt + τ
∑

u∈W

nuwptuw

)

; (25)

ptuw = norm
t∈T

(

ntϕwtϕut

)

. (26)

This can be interpreted as adding pseudo-documents to
the collection. For each word u ∈W , let us define a pseudo-
document du containing the bag of words that appeared near
the word u anywhere in the collection. The count of the word w
in the pseudo-document du equals τnuw . Then computing the
auxiliary variables ptuw = p(t |u,w) in the EM-algorithm cor-
responds to the E-step processing for the pseudo-document du
if its topic distribution is defined as θtu = norm

t
(ntϕut). In

other words, in the biterm topic model, the columns of Θ
corresponding to the pseudo-documents are computed from
the rows of matrix Φ using Bayes rule.

Increasing the regularization coefficient τ , we can force
the matrix Φ to be estimated mainly with biterms. In the limit
τ → ∞, the combined model tends to BitermTM.

C. Word network topic model

The above-mentioned idea of modelling word-context
pseudo-documents instead of the original documents is at heart
of the Word Topic Model (WTM) [70] and Word Network
Topic Model (WNTM) [71]. Essentially, WTM and WNTM
are equivalent to applying PLSA and LDA correspondingly to
the collection of pseudo-documents du:

p(w |du) =
∑

t∈T

p(w | t) p(t |du) =
∑

t∈T

ϕwtθtu.

Consider the log-likelihood of the model p(w |du) as a
regularizer for the original topic model:

R(Φ,Θ) = τ
∑

u,w∈W

nuw ln
∑

t∈T

ϕwtθtu,

where nuw is the count of the co-occurrence of words u,w
and is defined as above for biterms. The major difference
from the biterm topic model is that we explicitly infer
Θ for pseudo-documents, while in the biterm topic model
Θ = diag(π1, . . . , πt)Φ

T. Hence, the number of estimated
parameters is two times larger in WNTM. Experiments in
[71] based on a collection of short texts indicate that WNTM
performs slightly better than BTM and significantly better than
LDA. For collections of large texts, the co-occurrence topic
models do not provide significant advantage.

Both biterm and word network topic models give sparse
and interpretable topic-based word embeddings [65]. Word
embedding is a vector representation of a word. In the case
of a topic model, the |T |-dimensional vector consists of con-

ditional probabilities p(t |w) = ϕwt
p(t)
p(w) . The resulting topic-

based embeddings perform on par with Skip-Gram Negative
Sampling (SGNS) [63] on word similarity tasks and benefit in
the sparseness and interpretability of the components [65].



XIV. EXPERIMENTS

We compare the BigARTM library with the latest versions
of the two major public libraries for topic modelling.

Vowpal Wabbit (VW)is a library of online machine learning
algorithms. For topic modelling, VW contains the VW.LDA
algorithm. VW.LDA is not multi-core, but an effective single-
threaded implementation in C++ made it one of the widely
adopted tools for topic modelling.

Gensim [72] is a library for topic modelling and matrix
factorization. It has two LDA implementations — LdaModel
and LdaMulticore. Gensim is written in Python and, to speed-
up calculations, it uses the NumPy library. In LdaModel,
all batches are processed sequentially, and the concurrent
processing is done only in NumPy. In LdaMulticore, several
batches are processed concurrently, and a single aggregation
thread merges the results asynchronously.

The architecture of BigARTM algorithm is based on mul-
tithreading with update delays [73].

Both Gensim and Vowpal Wabbit use the online variational
Bayes LDA [74]. All three libraries work out-of-core, i. e., they
are designed to process datasets that are too large to fit into
a computers main memory at one time. This allowed us to
benchmark using a fairly large collection of 3.7 million articles
from the English Wikipedia.For each library, we perform a
single pass over the collection and train a model with a fixed
number of topics. The collection was split into batches with
10K documents each (chunksize in Gensim, minibatch
in VW.LDA). The vocabulary consists of words that appear in
at least 20 documents, but in no more than 10% of documents
in the collection. The resulting dictionary was capped at the
|W | = 100 000 most frequent words.

Perplexity is used as the test sample quality measure:

P(D, p) = exp

(

−
1

n

∑

d∈D

∑

w∈d

ndw ln p(w |d)

)

,

which is essentially an inverse of the likelihood of data, i.e.,
the smaller it is for the test data, the better. The size of the
test sample for computing the perplexity is 100K documents.

In order to make a fair comparison, we have configured
BigARTM to use only smoothing out of variety of regularizers
it has, which is equivalent to the LDA model. LDA priors were
fixed as α = 1/|T |, β = 1/|T | for all libraries.

For the experiments, we used the latest versions: VW
8.4.0, Gensim 2.3.0 (v0.10.3 under Python 2.7), and BigARTM
0.8.3. We also used a Dell Precision T5600 workstation with
2 Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00Hz, 8 Cores and
16 Logical Processors.

Table I compares the performance of the libraries.

We can see that if we do not explicitly split the training
between multiple processors, BigARTM is already ∼5 times
faster than Gensim and ∼2 times faster than VW. The out-of-
sample perplexity for all libraries is on par.

VW is not designed to explicitly split training job between
processors, so its results are effectively the same in all the rows
of the table. If we explicitly specify using multiple processors

TABLE I. THE COMPARISON OF BIGARTM WITH VW.LDA AND

GENSIM TRAINING TIME AND OUT-OF-SAMPLE QUALITY.
CELL FORMAT: “TRAIN TIME IN MINUTES (TEST PERPLEXITY)”.

ROWS: P — # OF PROCESSORS, T — # OF TOPICS.

Gensim VW-LDA BigARTM BigARTM (async)

P = 1, T= 50 142m (4945) 50m (5413) 42m (5117) 25m (5131)
P = 1, T= 100 287m (3969) 91m (4592) 52m (4093) 32m (4133)
P = 1, T= 200 637m (3241) 154m (3960) 83m (3347) 53m (3362)

P = 2, T= 50 89m (5056) 22m (5092) 13m (5160)
P = 2, T= 100 143m (4012) 29m (4107) 19m (4144)
P = 2, T= 200 325m (3297) 47m (3347) 28m (3380)

P = 4, T= 50 88m (5311) 12m (5216) 7m (5353)
P = 4, T= 100 104m (4338) 16m (4233) 10m (4357)
P = 4, T= 200 315m (3583) 26m (3520) 16m (3634)

P = 8, T= 50 88m (6344) 8m (5648) 5m (6220)
P = 8, T= 100 107m (5380) 10m (4660) 6m (5119)
P = 8, T= 200 288m (4263) 15m (3929) 10m (4309)

TABLE II. RUN OF BIGARTM WITH A LARGE NUMBER OF TOPICS.
CELL FORMAT: “TRAIN TIME IN MINUTES (TEST PERPLEXITY)”.

Framework/Topics 2000 5000

BigARTM 166m (2377) 399m (1942)

BigARTM (async) 119m (2645) 281m (2216)

for training in Gensim and BigARTM, BigARTM is 5–10 times
faster than VW and 10–20 times faster than Gensim. Out-of-
sample perplexity is on par between BigARTM and the VW
and for both it is better than the Gensim perplexity.

Finally, we run model training in BigARTM with a very
large number (2000 and 5000) of topics, Table II. We can
see that BigARTM is able to solve the task in a reasonable
time. Asynchronous training performs better in terms of time,
although it loses slightly in the out-of-sample quality com-
parison. Nevertheless, it was shown that the asynchronous
algorithm achieves a better model in the given time-frame than
the synchronous algorithm [73].

XV. CONCLUSION

Ater more than a decade of active development, hundreds
of types of topic models have been created: hierarchical, tem-
poral, multimodal, multilingual, supervised, semi-supervised,
relational, sequential, and many others. Several major types of
modern topic models were reviewed in this paper.

In applications, topic models often have to combine mul-
tiple extensions. Additive Regularization of Topic Models
(ARTM) provides topic modellers with a “bag-of-regularizers”
modular technology implemented in the open-source library
BigARTM. A built-in set of unified regularizers enables the
construction of topic models for various practical applications
without tedious derivations and programming.

A lot of topic models introduced in the Bayesian frame-
work can be reformulated much more simply in the ARTM
framework, as we have tried to demonstrate in this review.
We hope that ARTM will prove to be a convenient language
for studying topic modelling and lowering the entry barrier for
practitioners
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