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Аннотация

Данная бакалаврская диссертация основана на статье «Distributed Second
Order Methods with Fast Rates and Compressed Communication» [15] за авторством
Рустема Исламова, Шуна Кяна и Питера Рихтарика.

Мы разработали несколько новых эффективных с точки зрения коммуника-
ции методов второго порядка для распределенной оптимизации. Наш первый
метод, NEWTON-STAR, является одним из вариантов метода Ньютона, от кото-
рого он наследует свою быструю локальную квадратичную скорость. Однако,
в отличие от метода Ньютона, NEWTON-STAR имеет ту же стоимость ком-
муницирования за одну итерацию, что и градиентный спуск. Хотя этот метод
непрактичен, поскольку он опирается на использование некоторых неизвестных
параметров, характеризующих Гессиан целевой функции в оптимуме, он служит
отправной точкой, которая позволяет нам проектировать практические вари-
анты с доказанными теоретическими гарантиями сходимости. В частности, мы
разработали стратегию, основанную на использовании стохастической разрежен-
ности для изучения неизвестных параметров итеративным способом, сохраняя
эффективность с точки зрения коммуникаций. Применение этой стратегии к
NEWTON-STAR приводит к нашему следующему методу, NEWTON-LEARN,
для которого мы доказали локальные линейные и сверхлинейные скорости схо-
димости, не зависящие от числа обусловленности функции. Когда эти методы
применимы, они имеют значительно более высокие скорости сходимости по
сравнению с современными методами. Наши результаты подтверждаются экс-
периментальными результатами на реальных наборах данных и показывают
улучшение на несколько порядков по сравнению с базовыми и современными
методами с точки зрения эффективности коммуницирования.
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Abstract

This bachelor thesis is based on paper “Distributed Second Order Methods with
Fast Rates and Compressed Communication” [15] written by Rustem Islamov, Xun
Qian, and Peter Richtárik.

We develop new communication-efficient second-order method for distributed
optimization. Our first method, NEWTON-STAR, is a variant of Newton’s method
from which it inherits its fast local quadratic rate. However, unlike Newton’s
method, NEWTON-STAR enjoys the same per iteration communication cost as
gradient descent. While this method is impractical as it relies on the use of certain
unknown parameters characterizing the Hessian of the objective function at the
optimum, it serves as the starting point which enables us design practical variants
thereof with strong theoretical guarantees. In particular, we design a stochastic
sparsification strategy for learning the unknown parameters in an iterative fashion
in a communication efficient manner. Applying this strategy to NEWTON-STAR
leads to our next method, NEWTON-LEARN, for which we prove local linear and
superlinear rates independent of the condition number. When applicable, this
method can have dramatically superior convergence behavior when compared to
state-of-the-art methods. Our results are supported with experimental results on
real datasets, and show several orders of magnitude improvement on baseline and
state-of-the-art methods in terms of communication complexity.
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1 Introduction

The prevalent paradigm for training modern supervised machine learning models is based
on (regularized) empirical risk minimization (ERM) [39], and the most commonly used
optimization methods deployed for solving ERM problems belong to the class of stochastic
first order methods [30, 36]. Since modern training data sets are very large and are
becoming larger every year, it is increasingly harder to get by without relying on modern
computing architectures which make efficient use of distributed computing. However, in
order to develop efficient distributed methods, one has to keep in mind that communication
among the different parallel workers (e.g. processors or compute nodes) is typically very
slow, and almost invariably forms the main bottleneck in deployed optimization software
and systems [3]. For this reason, further advances in the area of communication efficient
distributed first order optimization methods for solving ERM problems are highly needed,
and research in this area constitutes one of the most important fundamental endeavors in
modern machine learning. Indeed, this research field is very active, and numerous advances
have been made over the past decade [1, 4, 27, 38, 42, 46, 49].

1.1 Distributed optimization

We consider L2 regularized empirical risk minimization problems of the form

min
x∈Rd

[
P (x) := f(x) +

λ

2
‖x‖2

]
, (1)

where f : Rd → R is a smooth1 convex function of the “average of averages” structure

f(x) :=
1

n

n∑
i=1

fi(x), fi(x) :=
1

m

m∑
j=1

fij(x), (2)

and λ ≥ 0 is a regularization parameter. Here n is the number of parallel workers (nodes),
and m is the number of training examples handled by each node2. The value fij(x) denotes
the loss of the model parameterized by vector x ∈ Rd on the jth example owned by the
ith node. This example is denoted as aij ∈ Rd, and the corresponding loss function is
ϕij : R→ R, and hence we have

fij(x) := ϕij(a
>
ijx). (3)

Thus, f represents the average loss/risk over all nm training datapoints, and problem
(1) seeks to find the model whose (L2 regularized) empirical risk is minimized. We make
the following assumption throughout the paper.

Assumption 1.1. Problem (1) has at least one optimal solution x∗. For all i and j,
the loss function ϕij : R→ R is γ-smooth, twice differentiable, and its second derivative
ϕ′′ij : R→ R is ν-Lipschitz continuous.

1Function φ : Rd → R is smooth if it is differentiable, and has Lφ Lipschitz gradient: ‖∇φ(x)−∇φ(y)‖ ≤
Lφ‖x− y‖ for all x, y ∈ Rd. We say that Lφ is the smoothness constant of φ.

2All our results can be extended in a straightforward way to the more general case when node i contains
mi training examples. We decided to present the results in the special case m = mi for all i in order to
simplify the notation.
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Note that in view of (3), the Hessian of fij at point x is

Hij(x) := ∇2fij(x) = hij(x)aija
>
ij, (4)

where
hij(x) := ϕ′′ij(a

>
ijx). (5)

In view of Assumption 1.1, we have |ϕ′′ij(t)| ≤ γ for all t ∈ R, and

|hij(x)− hij(y)| ≤ ν|a>ijx− a>ijy| ≤ ν‖aij‖‖x− y‖ (6)

for all x, y ∈ Rd. Let R := maxij ‖aij‖. The Hessian of fi is given by

Hi(x)
(2)
=

1

m

m∑
j=1

Hij(x)
(4)
=

1

m

m∑
j=1

hij(x)aija
>
ij, (7)

and the Hessian of f is given by

H(x)
(2)
=

1

n

n∑
i=1

Hi(x)
(7)
=

1

nm

n∑
i=1

m∑
j=1

hij(x)aija
>
ij. (8)

1.2 The curse of the condition number

All first order methods — distributed or not — suffer from a dependence on an appropriately
chosen notion of a condition number3 — a number that describes the difficulty of solving
the problem by the method at hand. A condition number is a function of the goal we
are trying to achieve (e.g., minimize the number of iterations vs minimize the number
of communications), choice of the loss function, structure of the model we are trying to
learn, and last but not least, the size and properties of the training data. In fact, most
research in this area is motivated by the desire to design methods that would have a
reduced dependence on the condition number. This is the case for many of the tricks
heavily studied in the literature, including minibatching [45], importance sampling [29, 53],
random reshuffling [28], variance reduction [8, 16, 37, 50], momentum [23, 24], adaptivity
[26], communication compression [1, 4, 27], and local computation [17, 25, 43]. Research
in this area is becoming saturated, and new ideas are needed to make further progress.

1.3 Newton’s method to the rescue?

One of the ideas that undoubtedly crossed everybody’s mind is the trivial observation that
there is a very old and simple method which does not suffer from any conditioning issues:
Newton’s method. Indeed, when it works, Newton’s method has a fast local quadratic
convergence rate which is entirely independent of the condition number of the problem
[2]. While this is a very attractive property, developing scalable distributed variants of
Newton’s method that could also provably outperform gradient based methods remains a
largely unsolved problem. To highlight the severity of the issues with extending Newton’s
method to stochastic and distributed settings common in machine learning, we note that

3Example: if one wishes to minimize an L-smooth µ-strongly convex function and one cares about the
number of gradient type iterations, the appropriate notion of a condition number is κ := L

µ .
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Table 1: Summary of algorithms proposed and convergence results proved in this paper.

Convergence

Method result † type rate
Rate
of the

condition number?
Theorem

NEWTON-STAR
(12)

rk+1 ≤ cr2k local quadratic 3 2.1

NEWTON-LEARN
Algorithm 1

Φk
1 ≤ θk1Φ0

1 local linear 3 3.2
rk+1 ≤ cθk1 rk local superlinear 3 3.2

Quantities for which we prove convergence: (i) distance to solution rk :=
∥∥xk − x∗∥∥; (ii) Lyapunov

function Φk
q :=

∥∥xk − x∗∥∥2 + cq
∑n

i=1

∑m
j=1(hkij −hij(x∗))2 for q = 1, 2, 3, where hij(x∗) = ϕ′′ij(a>ijx

∗)

(see (5)); (iii) Function value suboptimality ∆k := P (xk)− P (x∗)

† constant c is possibly different each time it appears in this table. Refer to the precise statements of

the theorems for the exact values.

until recently, we did not even have any Newton-type analogue of SGD that could provably
work with small minibatch sizes, let alone minibatch size one [19]. In contrast, SGD with
minibatch size one is one of the simplest and well understood variants thereof [29], and
much of modern development in the area of SGD methods is much more sophisticated.
Most variants of Newton’s method proposed for deployment in machine learning are
heuristics, which is to say that they are not supported with any convergence guarantees,
or have convergence guarantees without explicit rates, or suffer from rates that are worse
than the rates of first order methods.

1.4 Contributions summary

We develop several new fundamental Newton-type methods which we hope make a marked
step towards the ultimate goal of developing practically useful and communication efficient
distributed second order methods. Our methods are designed with the explicit goal of
supporting efficient communication in a distributed setting, and in sharp contrast with
most recent work, their design was heavily influenced by our desire to equip them with
strong convergence guarantees typical for the classical Newton’s method [34, 47] and
cubically regularized Newton’s method [12, 31]. Our convergence results are summarized
in Table 1.

• First new method and its local quadratic convergence. We first show that
if we know the Hessian of the objective function at the optimal solution, then we
can use it instead of the typical Hessian appearing in Newton’s method, and the
resulting algorithm, which we call NEWTON-STAR (NS), inherits local quadratic
convergence behavior of Newton’s method (see Theorem 2.1). In a distributed setting
with a central orchestrating sever, each compute node only needs to send the local
gradient to the server node, and no matrices need to be sent. While this method is
not practically useful, it acts as a stepping stone to our next method, in which these
deficiencies are removed. This method is described in Section 2.

• Second new method and its local linear and superlinear convergence.
Motivated by the above result, we propose a learning scheme which enables us
to learn the Hessian at the optimum iteratively in a communication efficient manner.
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This scheme gives rise to our second new method: NEWTON-LEARN (NL). We
analyze this method in the case, when all individual loss functions are convex and
λ > 0. Besides the local full gradient, each worker node needs to send additional
information to the server node in order to learn the Hessian at the optimum. However,
our learning scheme supports compressed communication with arbitrary compression
level. This level can be chosen so that in each iteration, each node sends an equivalent
of a few gradients to the server only. That is, we can achieve O(d) communication
complexity in each iteration. We prove local linear convergence for a carefully
designed Lyapunov function, and local superlinear convergence for the squared
distance to optimum (see Theorems 3.2). Remarkably, all these rates are independent
of the condition number. The NL method and the associated theory are described in
Section 3.

• Experiments. Our theory is corroborated with numerical experiments showing
the superiority of our method to several state-of-the-art benchmarks, including
DCGD [18], DIANA [14, 27], ADIANA [21], BFGS [6, 9, 11, 41], and DINGO
[7]. Our method can achieve communication complexity which is several orders of
magnitude better than competing methods (see Section 4).

1.5 Related work

Several distributed Newton-type methods can be found in recent literature. DANE [40] is
a distributed approximate Newton-type method where each worker node needs to solve a
subproblem using the full gradient at each iteration, and the new iterate is the average of
these subproblem solutions. The linear convergence of DANE was obtained in the strongly
convex case. An inexact DANE method in which the subproblem is solved approximately
was proposed and studied by Reddi et al. [35]. Moreover, an accelerated version of inexact
DANE, called AIDE, was proposed in [35] by a generic acceleration scheme — catalyst [22] —
and an optimal communication complexity can be obtained up to logarithmic factors in
specific settings. The DiSCO method, which combines inexact damped Newton method and
distributed preconditioned conjugate gradient method, was proposed by Zhang and Xiao
[52] and analyzed for self-concordant empirical loss. GIANT [48] is a globally improved
approximate Newton method which has a better linear convergence rate than first-order
methods for quadratic functions, and has local linear-quadratic convergence for strongly
convex functions. GIANT and DANE are identical for quadratic programming. The
communication cost per iteration of the above methods is O(d). These methods can only
achieve linear convergence in the strongly convex case. The comparison of the iteration
complexity of the above methods for the ridge regression problem can be found in Table 2
of [48].

Crane and Roosta [7] proposed a distributed Newton-type method called DINGO
for solving invex finite-sum problems. Invexity is a special case of non-convexity, which
subsumes convexity as a sub-class. A linear convergence rate was obtained for DINGO
under certain assumptions using an Armijo-type line search, and at each iteration, several
communication rounds are needed assuming two communication rounds for line-search
per iteration. The communication cost for each communication round is O(d). The
compressed version of DINGO was studied in [10] to reduce the communication cost
at each communication round by using the δ-approximate compressor, and the same
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Table 2: Comparison of distributed Newton-type methods. Our methods combine the
best of both worlds, and are the only methods we know about which do so: we obtain
fast rates independent of the condition number, and allow for O(d) communication per
communication round.

Method
Convergence

rate

Rate
independent of the
condition number?

Communication
cost

per iteration

Network
structure

DANE
[40]

Linear 7 O(d) Centralized

DiSCO
[52]

Linear 7 O(d) Centralized

AIDE
[35]

Linear 7 O(d) Centralized

GIANT
[48]

Linear 7 O(d) Centralized

DINGO
[7]

Linear 7 O(d) Centralized

DAN
[51]

Local quadratic† 3 O(nd2) Decentralized

DAN-LA
[51]

Superlinear 3 O(nd) Decentralized

NEWTON-STAR
this work

Local quadratic 3 O(d) Centralized

NEWTON-LEARN
this work

Local superlinear 3 O(d) Centralized

† DAN converges globally, but the quadratic rate is introduced only after O(L2/µ2) steps, where L2 is the
Lipschitz constant of the Hessian of P , and µ is the strong convexity parameter of P . This is a property it
inherits from the recent method of Polyak [32] this method is based on.

rate of convergence as DINGO can be obtained by properly choosing the stepsize and
hyper-parameters when δ is a constant. Zhang et al. [51] proposed two decentralized
distributed adaptive Newton methods, called DAN and DAN-LA. DAN combines the
distributed selective flooding (DSF) algorithm and Polyak’s adaptive Newton method [33],
and enters pure Newton method which has quadratic convergence after about 2M

µ2
‖∇P (x0)‖

iterations, where M is the Lipschitz constant of the Hessian of P and µ is the strongly
convex parameter of P . DAN-LA, which leverages the low-rank approximation method
to reduce the communication cost, has global superlinear convergence. At each iteration,
both DAN and DAN-LA need n− 1 communication rounds, and the communication cost
for each communication round is O(d2) and O(d) respectively.

We compare the convergence rate and per-iteration communication cost with these
Newton-type methods in Table 2. Note that the first five methods in the table have rates
that depend on the condition number of the problem, and as such, do not have the benefits
normally attributed to pure Newton’s method. Note also that the two prior methods
which do have rates independent of the condition number have high cost of communication.
Our methods combine the best of both worlds, and are the only methods we know about
which do so: we obtain fast rates independent of the condition number, and allow for O(d)
communication per communication round. We were able to achieve this by a complete
redesign of how second order methods should work in the distributed setting. Our methods
are not simple extensions of existing schemes, and our proofs use novel arguments and
techniques.
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2 Three Steps Towards an Efficient Distributed New-

ton Type Method

In order to better explain the algorithms and results of this paper, we will proceed through
several steps in a gradual explanation of the ideas that ultimately lead to our methods.
While this is not the process we used to come up with our methods, in retrospect we
believe that our methods and results will be understood more easily when seen as having
been arrived at in this way. In other words, we have constructed what we believe is a
plausible discovery story, one enabling faster and better comprehension. If these ideas
seem to follow naturally, it is because we made a conscious effort to make then appear that
way. The goal of this paper is to develop communication efficient variants of Newton’s
method for solving the distributed optimization problem (1).

2.1 Naive distributed implementation of Newton’s method

Newton’s method applied to problem (1) performs the iteration

xk+1 = xk −
(
∇2P (xk)

)−1∇P (xk)
(1)
= xk −

(
H(xk) + λI

)−1∇P (xk). (9)

A naive way to implement this method in the parameter server framework is for each
node i to compute the Hessian Hi(x

k) and gradient ∇fi(xk) and to communicate these
objects to the server. The server then averages the local Hessians Hi(x

k) to produce H(xk)
via (8), and averages the local gradients ∇fi(xk) to produce ∇f(xk). The server then adds
λI to the Hessian, producing H(xk) + λI = ∇2P (xk), adds λxk to the gradient, producing
∇P (xk) = ∇f(xk) + λxk, and subsequently performs the Newton step (9). The resulting
vector xk+1 is then broadcasted to the nodes and the process is repeated.

This implementation mirrors the way GD and many other first order methods are
implemented in the parameter server framework. However, unlike in the case of GD, where
only O(d) floats need to be sent and received by each node in each iteration, the upstream
communication in Newton’s method requires O(d2) floats to be communicated by each
worker to the server. Since d is typically very large, this is prohibitive in practice. Moreover,
computation of the Newton’s step by the parameter server is much more expensive than
simple averaging of the gradients performed by gradient type methods. However, in this
paper we will not be concerned with the cost of the Newton step itself, as we will assume
the server is powerful enough and the network connection is slow enough for this step not
to be the main bottleneck of the iteration. Instead, we assume that the communication
steps in general, and the O(d2) communication of the Hessian matrices in particular, is
what forms the bottleneck. The O(d) per node communication cost of the local gradients
is negligible, and so is the O(d) broadcast of the updated model.

2.2 A better implementation taking advantage of the structure
of Hij(x)

The above naive implementation can be improved in the setting when m < d2 by taking
advantage of the explicit structure (7) of the local Hessians as a conic combination of
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positive semidefinite rank one matrices:

Hi(x) =
1

m

m∑
j=1

hij(x)aija
>
ij. (10)

Indeed, assuming that the server has direct access to all the training data vectors aij ∈ Rd

(these vectors can be sent to the server at the start of the process), node i can send
the m coefficients hi1(x), . . . , him(x) to the server instead, and the server is then able
to reconstruct the Hessian matrix Hi(x) from this information. This way, each node
sends O(m + d) floats to the server, which is a substantial improvement on the naive
implementation in the regime when m � d2. However, when m � d, the upstream
communication cost is still substantially larger than the O(d) cost of GD. If the server
does not have enough memory to store all vectors aij, this procedure does not work.

2.3 NEWTON-STAR: Newton’s method with a single Hessian

We now introduce a simple idea which, surprisingly, enables us to remove the need to
iteratively communicate any coefficients altogether. Assume, for the sake of argument, that
we know the values hij(x

∗) for all i, j. That is, assume the server has access to coefficients
hij(x

∗) for all i, j, and that each node i has access to coefficients hij(x
∗) for j = 1, . . . ,m,

i.e., to the vector

hi(x) := (hi1(x), . . . , him(x)) ∈ Rm (11)

for x = x∗. Next, consider the following new Newton-like method which we call NEWTON-
STAR (NS), where the “star” points to the method’s reliance on the knowledge of the
optimal solution x∗:

xk+1 = xk −
(
∇2P (x∗)

)−1∇P (xk)

(1)
= xk − (H(x∗) + λI)−1

(
1

n

n∑
i=1

∇fi(xk) + λxk

)
. (12)

Since the server knows H(x∗), all that the nodes need to communicate are the local
gradients ∇fi(xk), which costs O(d) per node. The server then computes xk+1, broadcasts
it back to the nodes, and the process is repeated. This method has the same per-iteration
O(d) communication complexity as GD. However, as we show next, the number of iterations
(which is the same as the number of communications) of NEWTON-STAR does not depend
on the condition number — a property it borrows from the classical Newton’s method.
The following theorem says that NEWTON-STAR enjoys local quadratic convergence.

Theorem 2.1 (Local quadratic convergence). Let Assumption 1.1 hold, and assume that
H(x∗) � µ∗I for some µ∗ ≥ 0 (for instance, this holds if f is µ∗-strongly convex) and
that µ∗ + λ > 0. Then for any starting point x0 ∈ Rd, the iterates of NEWTON-STAR for
solving problem (1) satisfy the following inequality:

‖xk+1 − x∗‖ ≤ ν

2(µ∗ + λ)
·

(
1

nm

n∑
i=1

m∑
j=1

‖aij‖3

)
· ‖xk − x∗‖2. (13)
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Proof. By the first order optimality conditions, we have

∇f(x∗) + λx∗ = 0. (14)

Let H∗ := H(x∗). Since H∗ � µ∗I, we have H∗ + λI � (µ∗ + λ)I, and hence∥∥∥(H∗ + λI)
−1
∥∥∥ ≤ 1

µ∗ + λ
. (15)

Using (14) and (15) and subsequently applying Jensen’s inequality to the function x 7→ ‖x‖, we get

‖xk+1 − x∗‖ =
∥∥∥xk − x∗ − (H∗ + λI)

−1∇P (xk)
∥∥∥

(14)
=

∥∥∥(H∗ + λI)
−1 [

(H∗ + λI) (xk − x∗)−
(
∇f(xk)−∇f(x∗) + λ(xk − x∗)

)]∥∥∥
(15)

≤ 1

µ∗ + λ

∥∥(H∗ + λI) (xk − x∗)−
(
∇f(xk)−∇f(x∗)

)
− λ(xk − x∗)

∥∥
=

1

µ∗ + λ

∥∥∥∥∥ 1

n

n∑
i=1

Hi(x
∗)(xk − x∗)− 1

n

n∑
i=1

(
∇fi(xk)−∇fi(x∗)

)∥∥∥∥∥
≤ 1

n(µ∗ + λ)

n∑
i=1

∥∥Hi(x
∗)(xk − x∗)−

(
∇fi(xk)−∇fi(x∗)

)∥∥
(7)
=

1

n(µ∗ + λ)

n∑
i=1

∥∥∥∥∥∥ 1

m

m∑
j=1

[
hij(x

∗)aija
>
ij(x

k − x∗)− (∇fij(xk)−∇fij(x∗))
]∥∥∥∥∥∥ . (16)

We now use the fundamental theorem of calculus to express difference of gradients∇fij(xk)−∇fij(x∗)
in an integral, obtaining

∇fij(xk)−∇fij(x∗) =

∫ 1

0

∇2fij(x
∗ + τ(xk − x∗))(xk − x∗)dτ. (17)

Plugging this representation into (16) and noting that ∇2fij(x) ≡ Hij(x) (see (4)), we can continue:

‖xk+1 − x∗‖
(16)+(17)

≤ 1

n(µ∗ + λ)

n∑
i=1

∥∥∥∥∥∥ 1

m

m∑
j=1

(
hij(x

∗)aija
>
ij(x

k − x∗)

−
∫ 1

0

Hij(x
∗ + τ(xk − x∗))(xk − x∗)dτ

)∥∥∥∥
(4)
=

1

n(µ∗ + λ)

n∑
i=1

∥∥∥∥∥∥ 1

m

m∑
j=1

(
hij(x

∗)aija
>
ij(x

k − x∗)

−
∫ 1

0

hij(x
∗ + τ(xk − x∗))aija>ij(xk − x∗)dτ

)∥∥∥∥
=

1

n(µ∗ + λ)

n∑
i=1

∥∥∥∥∥∥ 1

m

m∑
j=1

aija
>
ij(x

k − x∗)
(
hij(x

∗)−
∫ 1

0

hij(x
∗ + τ(xk − x∗))dτ

)∥∥∥∥∥∥
≤ ‖xk − x∗‖

(µ∗ + λ)

1

nm

n∑
i=1

m∑
j=1

‖aij‖2
∣∣∣∣∫ 1

0

hij(x
∗)− hij(x∗ + τ(xk − x∗))dτ

∣∣∣∣ . (18)

In the last step we have again used Jensen’s inequality applied to the function x 7→ ‖x‖, followed by
inequalities of the form ‖Aijxtij‖ ≤ ‖Aij‖ ‖x‖ |tij | for Aij = aija

>
ij , x = xk − x∗ and tij ∈ R.

From (6) we obtain |hij(x∗)− hij(x∗ + τ(xk − x∗))| ≤ ντ‖aij‖ · ‖xk − x∗‖, which implies that∣∣∣∣∫ 1

0

hij(x
∗)− hij(x∗ + τ(xk − x∗))dτ

∣∣∣∣ ≤ ∫ 1

0

ντ‖aij‖ · ‖xk − x∗‖dτ =
ν‖aij‖

2
· ‖xk − x∗‖.

Plugging this into (18), we finally arrive at (13).
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Note that we do not need to assume f to be convex or strongly convex. All we need
to assume is positive definiteness of the Hessian at the optimum. This implies local strong
convexity, and since our convergence result is local, that is all we need.

3 NEWTON-LEARN: Learning the Hessian and Local

Convergence Theory

In Sections 2.1, 2.2 and 2.3 we have gone through three steps in our story, with the first
true innovation and contribution of this paper being the NEWTON-STAR method and its
rate. We have now sufficiently prepared the ground to motivate our first key contribution:
the NEWTON-LEARN method. We only outline the basic insights behind this method
here; the details are included in Section 3.

3.1 The main iteration

In NEWTON-LEARN we maintain a sequence of vectors

hki = (hki1, . . . , h
k
im) ∈ Rm,

for all i = 1, . . . , n throughout the iterations k ≥ 0 with the goal of learning the values
hij(x

∗) for all i, j. That is, we construct the sequence with the explicit intention to enforce

hkij → hij(x
∗) as k →∞. (19)

Using hkij ≈ hij(x
∗) we estimate the Hessian H(x∗) via

H(x∗) ≈ Hk :=
1

nm

n∑
i=1

m∑
j=1

hkijaija
>
ij, (20)

and then perform a similar iteration to (12):

xk+1 = xk −
(
Hk + λI

)−1∇P (xk). (21)

3.2 Learning the coefficients: the idea

To complete the description of the method, we need to explain how the vectors hk+1
i are

updated. This is also the place where we can force the method to be communication
efficient. Indeed, if we can design a rule that would enforce the update vectors hk+1

i − hki
to be sparse, say

‖hk+1
i − hki ‖0 ≤ s (22)

for some 1 ≤ s ≤ m and all i and k, then the upstream communication by each node
in each iteration would be of the order O(s + d) only (provided the server has access
to all vectors aij)! That is, each node i only needs to communicate s entries of the
update vector hk+1

i − hki as the rest are equal to zero, and each node also needs to
communicate the d dimensional gradient ∇fi(xk). Note that O(s+d) can be interpreted as

13



an interpolation of the O(m+ d) per-iteration communication complexity of the structure-
aware implementation of Newton’s method from Section 2.2, and of the O(d) per-iteration
communication complexity of NEWTON-STAR described in Section 2.3.

In the more realistic regime when the server does not have access to the data {aij},
we ask each worker i to additionally send the corresponding s vectors aij , which costs extra
O(sd) in communication per node. However, when s = O(1), this is the same per-iteration
communication effort as that of GD.

We develop the update rule defining the evolution of the vectors hk1, . . . , h
k
n. This rule

(see (25)) applies to the λ > 0 case and leads to NEWTON-LEARN which we call NL (see
Algorithm 1). This rule and the method are described in Section 3.5.

3.3 Outline of fast local convergence theory

We show in Theorem 3.2 (covering NL) that NEWTON-LEARN enjoys a local linear rate
wrt a certain Lyapunov function which involves the term ‖xk − x∗‖2 and also all terms
of the form ‖hki − hi(x∗)‖2. This means that i) the main iteration (21) works, i.e., xk

converges to x∗ at a local linear rate, and that ii) the learning procedure works, and the
desired convergence described in (19) occurs at a local linear rate. In addition, we also
establish a local superlinear rate of ‖xk − x∗‖2. Remarkably, these rates are independent
of any condition number, which is in sharp contrast with virtually all results on distributed
Newton-type methods we are aware of.

Moreover, we wish to remark that second order methods are not typically analyzed
using a Lyapunov style analysis. Indeed, we only know of a couple works that do so.
First, Kovalev et al. [19] develop stochastic Newton and cubic Newton methods of a
different structure and scope from ours. They do not consider distributed optimization
nor communication compression. Second, Kovalev et al. [20] develop a stochastic BFGS
method. Again, their method and scope is very different from ours. Hence, our analysis
may be of independent interest as it adds to the arsenal of theoretical tools which could be
used in a more precise analysis of other second order methods.

3.4 Compressed learning

Instead of merely relying on sparse updates for the vectors hki (see (22)), we provide a more
general communication compression strategy which includes sparsification as a special case
[1]. We do so via the use of a random compression operator. We say that a randomized
map C : Rm → Rm is a compression operator (compressor) if there exists a constant ω ≥ 0
such that the following relations hold for all x ∈ Rm:

E[C(x)] = x (23)

E‖C(x)‖2 ≤ (ω + 1)‖x‖2. (24)

The identity compressor C(x) ≡ x satisfies these relations with ω = 0. The larger the
variance parameter ω is allowed to be, the easier it can be to construct a compressor C
for which the value C(x) can be encoded using a small number of bits only. We refer the
reader to [5] for a list of several compressors and their properties.

14



3.5 NL (learning in the λ > 0 case)

We now consider the case where all loss functions ϕij are convex and λ > 0.

Assumption 3.1. Each ϕij is convex, λ > 0.

When combined with Assumption 1.1, Assumption 3.1 implies that ϕ′′ij(t) ≥ 0 for all t,
hence hij(x) = ϕ′′ij(a

>
i x) ≥ 0 for all x ∈ Rd. In particular, hij(x

∗) ≥ 0 for all i, j. Since we
wish to construct a sequence of vectors hki = (hki1, . . . , h

k
im) ∈ Rm satisfying hkij → hij(x

∗),
it makes sense to try to enforce all vectors in this sequence to have nonnegative entries:

hkij ≥ 0.

Since Hk arises as a linear combination of the rank-one matrices aija
>
ij (see (20)), this

makes Hk positive semidefinite, which in turn means that the matrix Hk + λI appearing
in the main iteration (21) of NEWTON-LEARN is invertible, and hence the iteration is well
defined.4

3.5.1 The learning iteration and the NL algorithm

In particular, in NEWTON-LEARN each node i computes the vector hi(x
k) ∈ Rm of second

derivatives defined in (11), and then performs the update

hk+1
i =

[
hki + ηCki (hi(x

k)− hki )
]

+
, (25)

where η > 0 is a learning rate, Cki is a freshly sampled compressor by node i at iteration k.
By [·]+ we denote the positive part function applied element-wise, defined for scalars as
follows: [t]+ = t if t ≥ 0 and [t]+ = 0 otherwise.

We remark that it is possible to interpret the learning procedure (25) as one step of
projected stochastic gradient descent (SGD) applied to a certain quadratic optimization
problem whose unique solution is the vector hi(x

k).
The NL algorithm (Algorithm 1) arises as the combination of the Newton-like up-

date (21) (adjusted to take account of the explicit regularizer) and the learning proce-
dure (25). It is easy to see that the update rule for Hk in NL is designed to ensure that
Hk remains of the form Hk = 1

n

∑n
i=1 Hk

i , where Hk
i = 1

m

∑m
j=1 h

k
ijaija

>
ij. The update

rule for xk, performed by the server, is identical to (21), with an extra provision for the
regularizer. The vector xk+1 is broadcasted to all workers. Let us comment on how the
key communication step is implemented. If the server does not have direct access to the
training data vectors {aij}, we choose Option 1, otherwise we choose Option 2. A key
property of NL is that the server is able to maintain copies of the learning vectors hki
without the need for these vectors to be communicated by the workers to the server. Indeed,
provided the workers and the server agree on the same set of initial vectors h0

1, . . . , h
0
n,

update (25) can be independently computed by the server as well from its memory state
hki and the compressed message Cki (hi(x

k) − hki ) received from node i. This strategy is
reminiscent of the way the key step in the first-order method DIANA [14, 27] is executed.
In this sense, NL can be seen as arising from a successful marriage of Newton’s method
and the DIANA trick.

4Positive definiteness of Hessian estimates is enforced in several popular quasi-Newton methods as well;
for instance, in the BFGS method [6, 9, 11, 41]. However, quasi-Newton methods operate in a markedly
different manner, and the way in which positive definiteness is enforced there is also different.
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Algorithm 1 NL: NEWTON-LEARN (λ > 0 case)

Parameters: learning rate η > 0

Initialization: x0 ∈ Rd; h0
1, . . . , h

0
n ∈ Rm

+ ; H0 = 1
nm

n∑
i=1

m∑
j=1

h0
ijaija

>
ij ∈ Rd×d

for k = 0, 1, 2, . . . do
Broadcast xk to all workers
for each node i = 1, . . . , n do

Compute local gradient ∇fi(xk)
hk+1
i = [hki + ηCki (hi(x

k)− hki )]+
Send ∇fi(xk) and Cki (hi(x

k)− hki ) to server
Option 1: Send {aij : hk+1

ij − hkij 6= 0} to server
Option 2: Do nothing if server knows {aij : ∀j}

end for

xk+1 = xk −
(
Hk + λI

)−1
(

1
n

n∑
i=1

∇fi(xk) + λxk
)

Hk+1 = Hk + 1
nm

n∑
i=1

m∑
j=1

(hk+1
ij − hkij)aija>ij

end for

3.5.2 Theory

In our theoretical results we rely on the Lyapunov function

Φk
1 := ‖xk − x∗‖2 +

1

3mnην2R2
Hk, Hk :=

n∑
i=1

‖hki − hi(x∗)‖2.

Our main theorem follows.

Theorem 3.2 (Convergence of NL). Let Assumptions 1.1 and 3.1 hold. Let η ≤ 1
ω+1

and assume that ‖xk − x∗‖2 ≤ λ2

12ν2R6 for all k ≥ 0. Then for Algorithm 1 we have the
inequalities

E[Φk
1] ≤ θk1Φ0

1,

E
[
‖xk+1 − x∗‖2

‖xk − x∗‖2

]
≤ θk1

(
6η +

1

2

)
ν2R6

λ2
Φ0

1,

where θ1 := 1−min
{
η
2
, 5

8

}
.

Since the stepsize bound η ≤ 1
ω+1

is independent of the condition number, the linear

convergence rates of E[Φk
1] and E

[
‖xk+1−x∗‖2
‖xk−x∗‖2

]
are both independent of the condition number.

Next, we explore under what conditions we can guarantee for all the iterates to stay in a
small neighborhood.

Lemma 3.3. Let Assumptions 1.1 and 3.1 hold. Assume hkij is a convex combination of

{hij(x0), hij(x
1), ..., hij(x

k)} for all i, j and k. Assume ‖x0 − x∗‖2 ≤ λ2

12ν2R6 . Then

‖xk − x∗‖2 ≤ λ2

12ν2R6
for all k ≥ 0.
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It is easy to verify that if we choose h0
ij = hij(x

0) and use the random spar-
sification compressor and η ≤ 1

ω+1
, then hkij is always a convex combination of

{hij(x0), hij(x
1), ..., hij(x

k)} for k ≥ 0. Thus, from Lemma 3.3 we can guarantee that all
the iterates stay in the small neighborhood assumed in Theorem 3.2 as long as the initial
point x0 is in it.

4 Experiments

We now study the empirical performance of our second order method NL and compare it
with relevant benchmarks and with state-of-the-art methods. We test on the regularized
logistic regression problem

min
x∈Rd

{
1

n

n∑
i=1

1

m

m∑
j=1

log
(
1 + exp(−bija>ijx)

)
+
λ

2
‖x‖2

}
,

where {aij, bij}j∈[m] are data samples at the i-th node.

4.1 Datasets and parameter settings

In our experiments we use five standard datasets from the LIBSVM library: a2a, a7a, a9a,
w8a and phishing. Besides, we generated an artificial dataset artificial as follows: each
of the d elements of the data vector aij ∈ Rd was sampled from the normal distribution
N (10, 10). The corresponding label bij was sampled uniformly at random from {−1, 1}.
We partitioned each dataset across several nodes (selection of n) in order to capture a
variety of scenarios. See Table 3 for more details on all the datasets and the choice of n.

In all experiments we use the theoretical parameters (e.g., stepsizes) for all the three
algorithms: vanilla Distributed Compressed Gradient Descent (DCGD) [18], DIANA [27],
and ADIANA [21].

As the initial approximation of the Hessian in BFGS [6, 9, 11, 41], we use
H0 = ∇2P (x0), and the stepsize is 1. We set the same constants in DINGO [7]
as they did: θ = 10−4, φ = 10−6, ρ = 10−4, and use backtracking line search for DINGO
to select the largest stepsize in {1, 2−1, 2−2, 2−4, . . . , 2−10}. We conduct experiments for
three values of the regularization parameter λ: 10−3, 10−4, 10−5. In the figures we plot the
relation of the optimality gap P (xk)− P (x∗) and the number of accumulated transmitted
bits5 or the number of iterations. The optimal value P (x∗) in each case is the function
value at the 20-th iterate of standard Newton’s method. We adopt the realistic setting
where the server does not have access to the local data (Option 1).

4.2 Compression operators

For the first order methods we use three compression operators: random sparsification
[44], random dithering [1], and natural compression [13] (all defined below). For random-r
sparsification, the number of communicated bits per iteration is 32r + log2

(
d
r

)
, and we

choose r = d/4. For random dithering, we choose s =
√
d, which means the number of

5In all plots, “communicated bits” refers to the total number of bits sent by all nodes to the server.
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Table 3: Datasets used in the experiments, and the number of worker nodes n used in
each case.

Datasets # workers n # data points (= nm) # features d
a2a 15 2 265 123
a7a 100 16 100 123
a9a 80 32 560 123
w8a 142 49 700 300

phishing 100 11 000 68
artificial 100 1 000 200

communicated bits per iteration is 2.8d + 32. For natural compression, the number of
communicated bits per iteration is 9d bits.

For NL we use the random-r sparsification operator with a selection of values of r. In
addition, we use the random sparsification operator Cp induced by the random-r compressor.
This compressor is also defined below.

4.2.1 Random sparsification

The random sparsification compressor [44], denoted random-r, is a randomized mapping
C : Rm → R defined as

C(x) :=
m

r
· ξ ◦ x

where ξ ∈ Rm is a random vector distributed uniformly at random on the discrete set
{y ∈ {0, 1}m : ‖y‖0 = r}, where ‖y‖0 := {i | yi 6= 0} and ◦ is the Hadamard product. The
variance parameter associate with this compressor is ω = m

r
− 1.

4.2.2 Random dithering

The random dithering compressor [1, 14] with s levels is defined via

C(x) := sign(x) · ‖x‖q ·
1

s
· ξs,

where ‖x‖q := (
∑

i |xi|q)
1/q and ξs ∈ Rm is a random vector with i-th element defined as

ξs(i) :=

{
l + 1 with probability |xi|

‖x‖q s− l
l otherwise

.

Here, l satisfies |xi|
‖x‖q ∈ [ l

s
, l+1

s
] and s ∈ N+ denotes the levels of the rounding. The variance

parameter of this compressor is ω ≤ 2+ m1/2+m1/q

s
[14]. For q = 2, one can get the improved

bound ω ≤ min{m
s2
,
√
m
s
} [1].

4.2.3 Natural compression

The natural compression [13] operator Cnat : Rm → R is obtained by applying the random
mapping C : R → R, defined next, to each coordinate of x independently. We define
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C(0) = 0 and for t 6= 0, we let

C(t) :=

{
sign(t) · 2blog2 |t|c with probability p(t) := 2dlog2 |t|e−|t|

2blog2 |t|c

sign(t) · 2dlog2 |t|e with probability 1− p(t)

The variance parameter of natural compression is ω = 1
8
.

4.2.4 Bernoulli compressor

A variant of any compression operator C : Rm → R can be constructed as follows:

Cp(x) :=

{
1
p
C(x) with probability p

0 otherwise
, (26)

where p ∈ (0, 1] is a probability parameter. It is easy to verify that Cp is still a compression
operator with variance parameter ωp := ω+1

p
− 1, where ω is the variance parameter of the

underlying compressor C.

4.3 Behavior of NL

Before we compare our method NL with competing baselines, we investigate how is their
performance affected by the choice of the sparsification parameter r defining the random-r
sparsification operator C. Likewise, we vary the probability parameter p defining the
induced Bernoulli compressor Cp.

According to the results summarized in Figure 1, the best performance of NL is
obtained for r = 1 and p = 1. We will use these parameter settings for NL in our
subsequent experiments where we compare our method with several baselines and state-of-
the-art methods.
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Figure 1: Performance of NL across a few values of r defining the random-r compressor,
and a few values of p defining the induced Bernoulli compressor Cp.

4.4 Comparison of NL with Newton’s method

In our next experiment we compare NL using different values of r for random-r compression,
with Newton’s method; see Figure 2. We clearly see that Newton’s method performs
better than NL in terms of iteration complexity, as expected. However, our methods have
better communication efficiency than Newton’s method, by several orders of magnitude.
Moreover, we see that the smaller r is, the better NL performs in terms of communication
complexity. In Figure 3 we perform a similar comparison for several more datasets, but
focus on communication complexity only. The conclusions are unchanged: our methods
NL have superior performance.
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Figure 2: Comparison of NL with Newton’s method in terms of iteration complexity for
(a), (c); in terms of communication complexity for (b), (d).
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Figure 3: Comparison of NL with Newton’s method in terms of communication complexity.

4.5 Comparison of NL with BFGS

In our next test, we compare NL with BFGS in Figure 4. As we can see, our methods have
better communication efficiency than BFGS, by several orders of magnitude.

4.6 Comparison of NL with ADIANA

Next, we compare NLwith ADIANA using three different compression operators: natural
compression (DIANA-NC), random sparsification (DIANA-RS, r = d/4) and random
dithering (DIANA-RD, s =

√
d); see Figure 5. Based on the experimental results, we can

conclude that NL outperforms all three versions ADIANA for all types of compression,
often by several degrees of magnitude.

4.7 Comparison of NL with DINGO

In our next experiment, we compare NL with DINGO. The results, presented in Figure 6,
show that our method are more communication efficient than DINGO by many orders of
magnitude. This is true for all experiments.
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Figure 4: Comparison of NL and BFGS in terms of communication complexity.
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Figure 5: Comparison of NL with ADIANA in terms of communication complexity.
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Figure 6: Comparison of NL with DINGO in terms of communication complexity.
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Appendix

A Proofs for NL (Section 3.5)

Let W k := (hk1, . . . , h
k
n, x

k).

A.1 Lemma

We first establish a lemma.

Lemma A.1. Let S2 :=
∑n

i=1

∑m
j=1 ‖aij‖

2. For η ≤ 1
ω+1

and all k ≥ 0, we have

E
[
Hk+1 | W k

]
≤ (1− η)Hk + ην2S2

∥∥xk − x∗∥∥2
.

Proof. First, recall that

Hk =
n∑
i=1

∥∥hki − hi(x∗)∥∥2
. (27)

Since hi(x
∗) ∈ Rm

+ due to convexity of fij, we have

‖[x]+ − hi(x∗)‖2 ≤ ‖x− hi(x∗)‖2 , for all x ∈ Rm. (28)

Then as long as η ≤ 1
ω+1

, we have

E
[
Hk+1 | W k

]
= E

[
n∑
i=1

∥∥hk+1
i − hi(x∗)

∥∥2 | W k

]

=
n∑
i=1

E
[∥∥[hki + ηCki (hi(x

k)− hki )]+ − hi(x∗)
∥∥2 | W k

]
(28)

≤
n∑
i=1

E
[∥∥hki + ηCki (hi(x

k)− hki )− hi(x∗)
∥∥2 | W k

]
=

n∑
i=1

∥∥hki − hi(x∗)∥∥2
+ 2η

n∑
i=1

E
[
〈Cki (hi(x

k)− hki ), hki − hi(x∗)〉 | W k
]

+η2

n∑
i=1

E
[∥∥Cki (hi(x

k)− hki )
∥∥2 | W k

]
(27)+(23)+(24)

≤ Hk + 2η
n∑
i=1

〈hi(xk)− hki , hki − hi(x∗)〉

+η2

n∑
i=1

(ω + 1)‖hi(xk)− hki ‖2. (29)

Using the stepsize restriction η ≤ 1
ω+1

, we can bound η2(ω + 1) ≤ η. Plugging this back in
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(29), we get

E
[
Hk+1 | W k

]
≤ Hk + η

n∑
i=1

〈hi(xk)− hki , hi(xk) + hki − 2hi(x
∗)〉

= Hk + η

n∑
i=1

(∥∥hi(xk)− hi(x∗)∥∥2 −
∥∥hki − hi(x∗)∥∥2

)
= (1− η)Hk + η

n∑
i=1

∥∥hi(xk)− hi(x∗)∥∥2

(11)
= (1− η)Hk + η

n∑
i=1

m∑
j=1

(hij(x
k)− hij(x∗))2

(6)

≤ (1− η)Hk + η

n∑
i=1

m∑
j=1

ν2 ‖aij‖2
∥∥xk − x∗∥∥2

≤ (1− η)Hk + ην2S2
∥∥xk − x∗∥∥2

.

A.2 Proof of Theorem 3.2

It is easy to see that

Hk =
1

n

n∑
i=1

Hk
i , Hk

i =
1

m

m∑
j=1

hkijaija
>
ij. (30)

By the first order necessary optimality conditions, we have

∇f(x∗) + λx∗ = ∇P (x∗) = 0. (31)

Furthermore, since we maintain Hk � 0 for all k, we have Hk + λI � λI, whence∥∥∥(Hk + λI
)−1
∥∥∥ ≤ 1

λ
. (32)

Then we can write∥∥xk+1 − x∗
∥∥ (21)

=
∥∥xk − x∗ − (Hk + λI)−1(∇f(xk) + λxk)

∥∥
=

∥∥(Hk + λI)−1
(
(Hk + λI)(xk − x∗)−∇f(xk)− λxk

)∥∥
(32)

≤ 1

λ

∥∥(Hk + λI)(xk − x∗)−∇f(xk)− λxk
∥∥

(31)
=

1

λ

∥∥Hk(xk − x∗)− (∇f(xk)−∇f(x∗))
∥∥

=
1

λ

∥∥∥∥∥ 1

n

n∑
i=1

[
Hk
i (x

k − x∗)− (∇fi(xk)−∇fi(x∗))
]∥∥∥∥∥

≤ 1

nλ

n∑
i=1

∥∥Hk
i (x

k − x∗)− (∇fi(xk)−∇fi(x∗))
∥∥ .
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where the last step follows from applying Jensen’s inequality to he convex function x 7→ ‖x‖.
Using (30) and (2) we get

∥∥xk+1 − x∗
∥∥ ≤ 1

nλ

n∑
i=1

∥∥∥∥∥ 1

m

m∑
j=1

[
hkijaija

>
ij(x

k − x∗)− (∇fij(xk)−∇fij(x∗))
]∥∥∥∥∥ . (33)

We can now express the difference of the gradients in integral form via the fundamental
theorem of calculus, obtaining

∇fij(xk)−∇fij(x∗) =

∫ 1

0

Hij(x
∗ + τ(xk − x∗))(xk − x∗) dτ

(4)
=

∫ 1

0

hij(x
∗ + τ(xk − x∗))aija>ij(xk − x∗) dτ.

We can plug this back into (33), which gives

∥∥xk+1 − x∗
∥∥

≤ 1

nλ

n∑
i=1

1

m

∥∥∥∥∥
m∑
j=1

(
hkijaija

>
ij(x

k − x∗)−
∫ 1

0

hij(x
∗ + τ(xk − x∗))aija>ij(xk − x∗)dτ

)∥∥∥∥∥
=

1

nλ

n∑
i=1

1

m

∥∥∥∥∥
m∑
j=1

aija
>
ij(x

k − x∗)
(
hkij −

∫ 1

0

hij(x
∗ + τ(xk − x∗))dτ

)∥∥∥∥∥
≤

∥∥xk − x∗∥∥
λ

1

nm

n∑
i=1

m∑
j=1

‖aij‖2

∣∣∣∣∫ 1

0

hkij − hij(x∗ + τ(xk − x∗))dτ
∣∣∣∣ . (34)

From (6), we have

∣∣∣∣∫ 1

0

hkij − hij(x∗ + τ(xk − x∗))dτ
∣∣∣∣

≤
∫ 1

0

∣∣hkij − hij(x∗ + τ(xk − x∗))
∣∣ dτ

≤ |hkij − hij(x∗)|+
∫ 1

0

∣∣hij(x∗)− hij(x∗ + τ(xk − x∗))
∣∣ dτ

(6)

≤ |hkij − hij(x∗)|+
∫ 1

0

τν‖aij‖ · ‖xk − x∗‖dτ

= |hkij − hij(x∗)|+
ν‖aij‖

2
‖xk − x∗‖. (35)

By squaring both sides of (34), applying Jensen’s inequality to the function t 7→ t2 in the
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form
(

1
nm

∑
i

∑
j tij

)2

≤ 1
nm

∑
i

∑
j t

2
ij, and plugging in the bound (35), we get∥∥xk+1 − x∗

∥∥2

≤
∥∥xk − x∗∥∥2

λ2

(
1

nm

n∑
i=1

m∑
j=1

‖aij‖2

∣∣∣∣∫ 1

0

hkij − hij(x∗ + τ(xk − x∗))dτ
∣∣∣∣
)2

≤
∥∥xk − x∗∥∥2

λ2

1

nm

n∑
i=1

m∑
j=1

(
‖aij‖2

∣∣∣∣∫ 1

0

hkij − hij(x∗ + τ(xk − x∗))dτ
∣∣∣∣)2

(35)

≤ ‖xk − x∗‖2

λ2

1

nm

n∑
i=1

m∑
j=1

‖aij‖4

(
|hkij − hij(x∗)|+

ν‖aij‖
2
‖xk − x∗‖

)2

≤ ‖xk − x∗‖2

λ2

1

nm

n∑
i=1

m∑
j=1

‖aij‖4

(
2|hkij − hij(x∗)|2 +

ν2‖aij‖2

2
‖xk − x∗‖2

)

≤ ‖xk − x∗‖2

λ2

1

nm

n∑
i=1

m∑
j=1

R4

(
2|hkij − hij(x∗)|2 +

ν2R2

2
‖xk − x∗‖2

)
.

In the last step we have used Young’s inequality.6

Since R := maxi,j{‖aij‖}, we can further bound

‖xk+1 − x∗‖2 ≤ 2R4

nmλ2
Hk‖xk − x∗‖2 +

ν2R6

2λ2
‖xk − x∗‖4. (36)

Assume ‖xk − x∗‖2 ≤ λ2

12ν2R6 for all k ≥ 0. Then from (36), we have

‖xk+1 − x∗‖2 ≤ λ2

12ν2R6
· 2R4

nmλ2
Hk +

λ2

12ν2R6
· ν

2R6‖xk − x∗‖2

2λ2

≤ 1

6nmν2R2
Hk +

1

24
‖xk − x∗‖2,

and by taking expectation, we have

E
[
‖xk+1 − x∗‖2 | W k

]
≤ 1

6nmν2R2
Hk +

1

24
‖xk − x∗‖2. (37)

Next, Lemma A.1 implies that

E
[
Hk+1 | W k

]
≤ (1− η)Hk + ηnmν2R2

∥∥xk − x∗∥∥2
. (38)

Recall that Φk+1
1 := ‖xk+1 − x∗‖2 + 1

3ηnmν2R2Hk+1. Combining (37) and (38), we get

E
[
Φk+1

1 | W k
]

= E
[
‖xk+1 − x∗‖2 | W k

]
+

1

3ηnmν2R2
E
[
Hk+1 | W k

]
(37)

≤ 1

3ηnmν2R2

(
1− η +

η

2

)
Hk +

(
1

24
+

1

3

)
‖xk − x∗‖2

≤
(

1−min

{
η

2
,
5

8

})
Φk

1 = θk1Φk
1. (39)

6(a+ b)2 ≤ 2a2 + 2b2.
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By applying the tower property, we get

E
[
Φk+1

1

]
= E

[
E
[
Φk+1

1 | W k
]] (39)

≤ θ1E
[
Φk

1

]
.

Unrolling the recursion, we get E
[
Φk

1

]
≤ θk1Φ0

1, and the first claim is proved.
We further have E

[
‖xk − x∗‖2

]
≤ θk1Φ0

1 and E
[
Hk
]
≤ θk13ηnmν2R2Φ0

1. Assume
xk 6= x∗ for all k. Then from (36), we have

‖xk+1 − x∗‖2

‖xk − x∗‖2
≤ 2R4

nmλ2
Hk +

ν2R6

2λ2
‖xk − x∗‖2,

and by taking expectation, we obtain

E
[
‖xk+1 − x∗‖2

‖xk − x∗‖2

]
≤ 2R4

mnλ2
E
[
Hk
]

+
ν2R6

2λ2
E
[
‖xk − x∗‖2

]
≤ θk1

(
6η +

1

2

)
ν2R6

λ2
Φ0

1.

A.3 Proof of Lemma 3.3

We prove this by induction. First, we have ‖x0 − x∗‖2 ≤ λ2

12ν2R6 by the assumption. We

assume ‖xk − x∗‖2 ≤ λ2

12ν2R6 holds for all k ≤ K. For k ≤ K, since hkij is a convex
combination of {hij(x0), hij(x

1), ..., hij(x
k)} for all i, j, we have

hkij =
k∑
t=0

ρthij(x
t), with

k∑
t=0

ρt = 1, and ρt ≥ 0,

which implies that

n∑
i=1

‖hki − hi(x∗)‖2 =
n∑
i=1

m∑
j=1

|hkij − hij(x∗)|2

=
n∑
i=1

m∑
j=1

∣∣∣∣∣
k∑
t=0

ρt(hij(x
t)− hij(x∗))

∣∣∣∣∣
2

≤
n∑
i=1

m∑
j=1

k∑
t=0

ρt|hij(xt)− hij(x∗)|2

(6)

≤
n∑
i=1

m∑
j=1

k∑
t=0

ρtν
2‖aij‖2‖xt − x∗‖2

As. 3.1

≤ ν2R2

n∑
i=1

m∑
j=1

k∑
t=0

ρt ·
λ2

12ν2R6

=
mnλ2

12R4
,

for k ≤ K.
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Combining the above inequality and (36), we arrive at

‖xK+1 − x∗‖2 ≤ 2‖xK − x∗‖2R4

mnλ2

n∑
i=1

‖hKi − hi(x∗)‖2 +
ν2R6‖xK − x∗‖4

2λ2

≤ 2‖xK − x∗‖2R4

mnλ2
· mnλ

2

12R4
+
ν2R6‖xK − x∗‖4

2λ2

≤ 1

6
‖xK − x∗‖2 +

ν2R6‖xK − x∗‖4

2λ2

≤ 1

6
· λ2

12ν2R6
+
ν2R6

2λ2
·
(

λ2

12ν2R6

)2

≤ λ2

12ν2R6
.

27



References

[1] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. Advances in Neural Information
Processing Systems, pages 1709–1720, 2017.

[2] Amir Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Appli-
cations with MATLAB. Society for Industrial and Applied Mathematics, USA, 2014.
ISBN 1611973643.

[3] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning:
Parallel and distributed approaches. Cambridge University Press, 2011.

[4] J. Bernstein, Y. X. Wang, K. Azizzadenesheli, and A. Anandkumar. SignSGD:
Compressed optimisation for non-convex problems. The 35th International Conference
on Machine Learning, pages 560–569, 2018.
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