Additive Regularization for Hierarchical Multimodal Topic Modeling

N. A. Chirkova^{1,2}, K. V. Vorontsov³

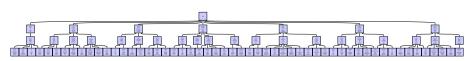
¹JSC Antiplagiat, ²Lomonosov Moscow State University ³Federal Research Center "Computer Science and Control" of RAS

October 14, 2016

How to overview a large text collection in a few minutes?

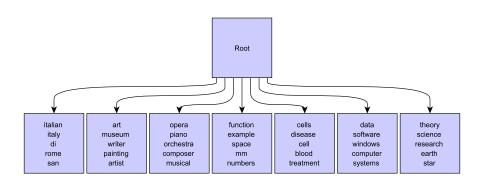
Topic hierarchy:

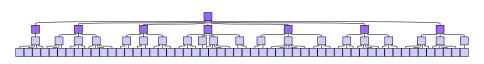
- soft hierarchical documents clustering into topics;
- topics are described by specific terminology.

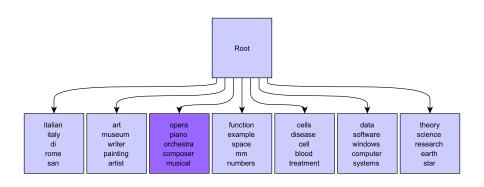


A fragment of English Wikipedia topic hierarchy

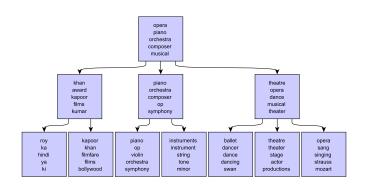
N. A. Chirkova

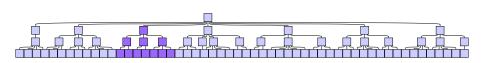


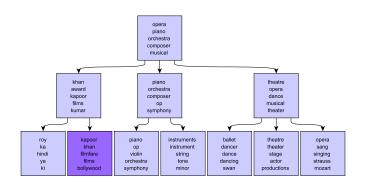




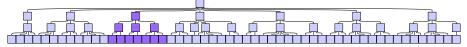
Topic articles: Toccata and Fugue, F major, E minor, Carl Friedrich Abel, List of compositions by Frédéric Chopin by genre, Piano quintet, F minor...

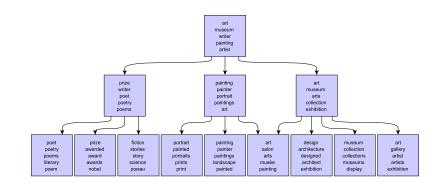


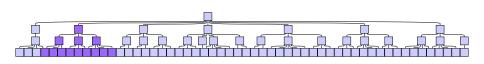


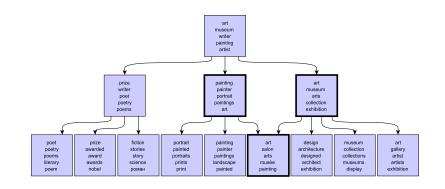


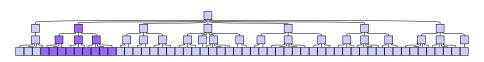
Topic articles: Filmfare Award for Best Actor, Filmfare Award for Best Film, Karisma Kapoor, Rishi Kapoor, Arjun Rampal, Shammi Kapoor...

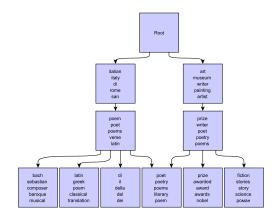


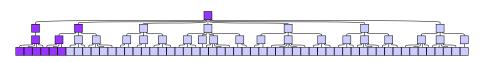






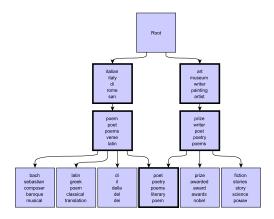


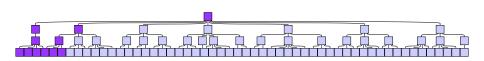




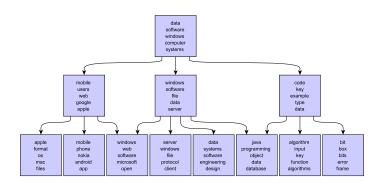
N. A. Chirkova October 14, 2016

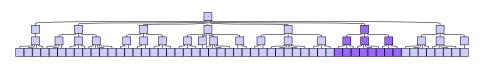
9 / 31

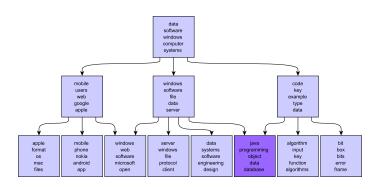




N. A. Chirkova October 14, 2016

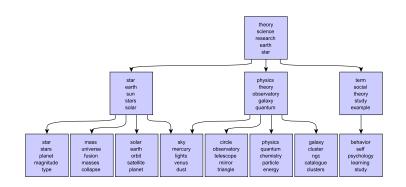


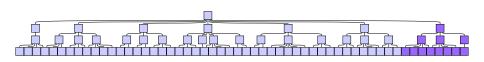




Topic articles: Functional (C++), SQL/CLI, SQL/JRT, Constructor (object-oriented programming), Static cast, Copy constructor, C++/CX, Java Persistence Query Language...







N. A. Chirkova

Applications of topic hierarchies

- Navigation through large text collection
- Harmonization of existing categorizations
 - duplicate categories detection
 - splitting of miscellaneous topics
- Searching of semantically similar documents
- News filtering
- ⇒ The need for automatic learning of topic hierarchies.

N. A. Chirkova October 14, 2016 14 / 31

Applications of topic hierarchies: real world tasks

- Navigation through large multilingual, multisource, multilmodal text collection
- Harmonization of existing categorizations
 - duplicate categories detection
 - miscellaneous categories splitting
 - detecting of relations between categories
- Personalized searching for semantically similar documents
- News filtering with respect to geography and time

⇒ The need for automatic learning of flexible topic hierarchies.

N. A. Chirkova October 14, 2016 15 / 31

Topic hierarchies in ARTM

Additive Regularization of Topic Models:

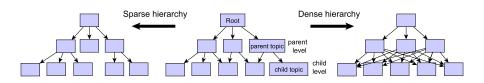
- Modeling fixed number of topics from a set of multimodal documents:
 - ullet text, tags, authors, categories, geotags ans timestamps, commented users, etc ightarrow flexibility
- Regularization to satisfy additional requirements:
 - topics sparsity, decorrelation, interpretability; consistency with partial markup, etc → flexibility
- Scalable open-source implementation: BigARTM.org

The goal of the research: to extend ARTM to learn topic hierarchies and to implement approach in BigARTM.

N. A. Chirkova October 14, 2016 16 / 31

Topic hierarchies in ARTM: key features

Topic hierarchy is a multipartite (multilevel) graph of topics:



The flexibility of hierarchical structure:

- multiple inheritance (a topic may have several parent topics);
- control over hierarchy sparsity.
- ⇒ Automatic determination of children topics number.

N. A. Chirkova October 14, 2016 17 / 31

Topic hierarchies in ARTM: approach

- (a) Each level (except Root) is a flat topic model with its own regularizers.
- ② When learning topics of ℓ -th level we use specific regularier to find parent topics from $(\ell-1)$ -th level.
- 3 We propose a regularizer to control hierarchy sparsity.

N. A. Chirkova October 14, 2016 18 / 31

ARTM: a flat topic model

Given:

- documents set $d \in D$,
- modalities $m \in M$,
- modalities disjoint dictionaries $W = \bigsqcup_{m \in M} W^m$ of tokens $w \in W$,
- document-token counters matrix n_{dw} used to estimate p(w|d):

$$p(w|d) = \frac{n_{dw}}{\sum_{w' \in W^m} n_{dw'}}$$

Flat topic model for each modality *m*:

$$p(w|d) \approx \sum_{t \in T} p(w|t)p(t|d) = \sum_{t \in T} \phi_{wt}\theta_{td} \quad d \in D, w \in W^m,$$

with topics set T and model parameters

$$\Phi^m = \{\phi_{wt}\}_{W^m \times T}$$
 with $p(w|t)$ and $\Theta = \{\theta_{td}\}_{T \times D}$ with $p(t|d)$ values, $\Phi = |\cdot|_{m \in M} \Phi^m$

ARTM: flat model learning

Optimization task:

$$\underbrace{\sum_{m \in M} \kappa_m \sum_{d \in D} \sum_{w \in W^m} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td}}_{Log-Likelihood} + \underbrace{\sum_{i} \tau_i R_i(\Phi, \Theta)}_{Regularizers} \rightarrow \max_{\Phi, \Theta}$$

$$\sum_{d \in D} \sum_{w \in W^m} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + \underbrace{\sum_{i} \tau_i R_i(\Phi, \Theta)}_{Regularizers} \rightarrow \max_{\Phi, \Theta}$$

$$\sum_{d \in D} \sum_{w \in W^m} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + \underbrace{\sum_{i} \tau_i R_i(\Phi, \Theta)}_{Regularizers} \rightarrow \max_{\Phi, \Theta}$$

EM-algorithm for topic model training:

E-step:
$$p(t|d, w) = \underset{t \in T}{\operatorname{norm}} [\phi_{wt} \theta_{td}]$$

M-step:
$$\phi_{wt} = \underset{w \in W^m}{\text{norm}} \left[n_{wt} + \frac{\partial R}{\partial \phi_{wt}} \phi_{wt} \right], \quad n_{wt} = \sum_{t=0}^{\infty} n_{dw} p(t|d, w)$$

$$\theta_{td} = \underset{t \in T}{\text{norm}} \left[n_{td} + \frac{\partial R}{\partial \theta_{td}} \theta_{td} \right], \quad n_{td} = \sum_{w \in W} n_{dw} p(t|d, w)$$

 $norm_{i \in I}[y_i] = \frac{\max\{y_i, 0\}}{\sum_{i' \in I} \max\{y_{i'}, 0\}}$

ARTM: regularizers example

The goal: distributions p(w|t) and p(t|d) should be sparse.

Θ sparsing:

$$R_1(\Theta) = -\sum_{d \in D} \sum_{t \in T} \frac{1}{|T|} \ln \theta_{td}$$

Updated M-step:

$$\theta_{td} = \underset{t \in T}{\mathsf{norm}} \left[n_{td} - \frac{\tau_2}{|T|} \right]$$

Φ sparsing:

$$R_2(\Phi^m) = -\sum_{t \in T} \sum_{w \in W^m} \frac{1}{|W^m|} \ln \phi_{wt}$$

Updated M-step:

$$\phi_{wt} = \underset{w \in W^m}{\mathsf{norm}} \left[n_{wt} - \frac{\tau_1}{|W^m|} \right]$$

21 / 31

hARTM: Φ interlevel regularizer

Already learned: levels $1, \ldots, \ell$,

 ℓ -th level: topics set $a \in A$, parameters $\Phi^{\ell} \in \mathbb{R}^{W \times A}$ and $\Theta^{\ell} \in \mathbb{R}^{A \times D}$. **Level to learn:** topics set $t \in T$, parameters $\Phi \in \mathbb{R}^{W \times T}$ and $\Theta \in \mathbb{R}^{T \times D}$. **The goal:** to establish parent-child relations "t is a child of a".

Hypothesis: parent topic is a mixture of children topics

$$p(w|a) = \sum_{t \in T} p(w|t)p(t|a), \quad w \in W^m, a \in A.$$

Φ regularization criteria with new parameters $\Psi = \{\psi_{ta}\}_{T \times A}$, $\psi_{ta} = p(t|a)$:

$$\Phi^\ell pprox \Phi \Psi$$

$$R_3(\Phi, \Psi) = \sum_{m \in M} \sum_{a \in A} \sum_{w \in W^m} n_{wa} \ln \sum_{t \in T} \phi_{wt} \psi_{ta}$$

Implementation: |A| pseudodocuments with n_{wa} (counted on M-step).

hARTM: Θ interlevel regularizer

Already learned: levels $1, \ldots, \ell$,

 ℓ -th level: topics set $a \in A$, parameters $\Phi^{\ell} \in \mathbb{R}^{W \times A}$ and $\Theta^{\ell} \in \mathbb{R}^{A \times D}$. **Level to learn:** topics set $t \in T$, parameters $\Phi \in \mathbb{R}^{W \times T}$ and $\Theta \in \mathbb{R}^{T \times D}$. **The goal:** to establish parent-child relations "t is a child of a".

Hypothesis:

$$p(a|d) = \sum_{t \in T} p(a|t)p(t|d), \quad a \in A, d \in D.$$

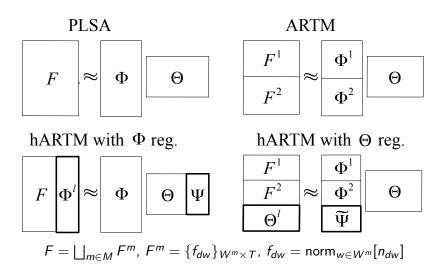
 Θ regularization criteria with new parameters $\widetilde{\Psi}=\{\widetilde{\psi}_{at}\}_{A imes T}$, $\widetilde{\psi}_{at}=p(a|t)$:

$$\Theta^\ell pprox \widetilde{\Psi} \Theta$$

$$R_4(\Theta, \widetilde{\Psi}) = \sum_{a \in A} \sum_{d \in D} n_{ad} \ln \sum_{t \in T} \widetilde{\psi}_{at} \theta_{td}$$

Implementation: new modality with tokens corresponding to $a \in A$.

hARTM: interlevel regularizers illustration



N. A. Chirkova

hARTM: hierarchy sparsing with Θ interlevel regularizer

The goal: topics have small number of parent topics $\Leftrightarrow p(a|t)$ is sparse.

Entropy sparsing regularizer:

$$R_5(\widetilde{\Psi}) = -\sum_{t \in T} \sum_{a \in A} \frac{1}{|A|} \ln \widetilde{\psi}_{at}$$

Updated M-step:

$$\tilde{\psi}_{at} = \underset{a \in A}{\operatorname{norm}} \left[n_{at} - \frac{\tau_5}{|A|} \right]$$

Drawback: the possibility of $p(a|t) = 0 \forall a$

Power sparsing regularizer:

$$R_5(\widetilde{\Psi}) = rac{1}{q} \sum_{t \in T} \sum_{a \in A} \widetilde{\psi}_{at}^q, \ q > 1$$

Updated M-step:

$$ilde{\psi}_{at} = \underset{a \in A}{\mathsf{norm}} \left[n_{at} + au_5 ilde{\psi}_{at}^q
ight]$$

N. A. Chirkova

hARTM: hierarchy sparsing with Φ interlevel regularizer

The goal: topics have small number of parent topics $\Leftrightarrow p(a|t)$ is sparse.

Entropy sparsing regularizer:

$$R_5(\Psi) = \sum_{t \in T} \sum_{a \in A} \frac{1}{|A|} \ln p(a|t) = \frac{1}{|A|} \sum_{a} \sum_{t} \ln \frac{\psi_{ta} p(a)}{\sum_{a'} \psi_{ta'} p(a')}$$

Updated M-step:

$$\psi_{t\mathsf{a}} = \operatorname*{\mathsf{norm}}_{t \in T} \left[n_{t\mathsf{a}} - au_{\mathsf{5}} \bigg(rac{1}{|A|} - p(\mathsf{a}|t) \bigg)
ight]$$

At any time $\forall t \exists a : p(a|t) > 0$.

hARTM in BigARTM

Key BigARTM concepts:

- Documents set is split into batches and stored on disk
- 1 EM-step = a pass through batches \times iterating over each batch
- Storing Φ permanently, retraining Θ for any loaded batch

Φ interlevel regularizer implementation:

- 1 Learn levels $\ell = 1, 2, 3 \dots$
- For levels $\ell > 1$ add 1 extra batch composed from $(\ell 1)$ -th level's Φ
- Extract Ψ as Θ corresponding to extra batch

⊖ intervelel regularizer implementation:

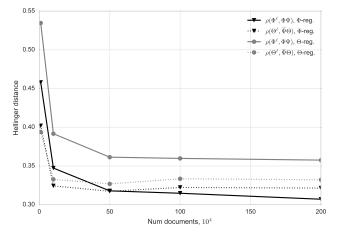
- **1** Learn levels $\ell = 1, 2, 3 \dots$
- For levels $\ell > 1$ modify all batches: add extra modality composed from $(\ell-1)$ -th level's Θ
- 3 Extract Ψ as Φ corresponding to extra modality

Experiments: comparison of Φ and Θ interlevel regularizers

Wikipedia: $D = 3.6 \cdot 10^6$, $W = 10^5$.

Learning 2nd level, |A| = 50, |T| = 250, vary number of batches.

Measuring the quality of approximation $\Phi^{\ell} \approx \Phi \Psi$ and $\Theta^{\ell} = \widetilde{\Psi} \Theta$.



Approximation is quite the same with both regularizers, Φ -reg. is better.

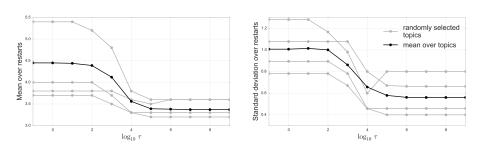
Experiments: children number study

Postnauka: D = 1728, W = 38467.

Learning 2nd level with Φ -reg., |A|=10, |T|=30, vary hierarchy sparsing reg. au_5 .

Measuring the mean and standard deviation of estimated subtopics count over 10 restarts.

t is a child of a if p(t|a) >threshold.

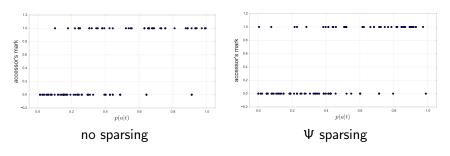


The bigger τ_5 , the more sparse the hierarchy. For large τ_5 subtopics count estimation is robust (std < 1).

Experiments: parent-child relations study

Postnauka: D = 1728, W = 38467.

Learning 10-30-90 topics hierarchy with Φ -reg. Generating 100 pairs topic-subtopic, asking an expert to mark a pair as "relation exists" or not.



When using the hierarchy sparcing, we can impose a threshold with minimum errors.

N. A. Chirkova

Summary

Contributions:

- An approach to learn topic hierarchies from multimodal data with additional requirements.
- A method to control hierarchy sparsity.
- Open-source implementation in BigARTM with friendly interface.

Ongoing projects with hARTM:

- Creating a user-friendly navigator through Postnauka.ru materials.
- Developing a system for online news flow filtration.

31 / 31

N. A. Chirkova October 14, 2016