Комбинаторный подход к выводу точных оценок вероятности переобучения

Константин Воронцов («Участник:Vokov» на www.MachineLearning.ru)

Вычислительный Центр им. А. А. Дородницына РАН

Интеллектуализация Обработки Информации, ИОИ-8 18–22 октября 2010, Кипр, г. Пафос

Содержание

- 1 Задача оценивания обобщающей способности
 - Проблема переобучения
 - Слабая вероятностная аксиоматика
- 2 Комбинаторные оценки вероятности переобучения
 - Учёт эффектов расслоения и связности
 - Модельные семейства алгоритмов
 - Некоторые математические техники вывода оценок
- Паправления исследований и открытые проблемы
 - Задачи и открытые проблемы
 - Задача оценивания кривой обучения

Задача обучения по прецедентам. Матрица ошибок.

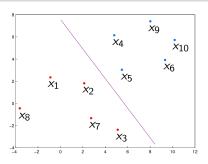
```
\mathbb{X}^L = \{x_1, \dots, x_L\} — конечное множество объектов; A = \{a_1, \dots, a_D\} — конечное множество алгоритмов; I(a,x) = [алгоритм a ошибается на объекте x ];
```

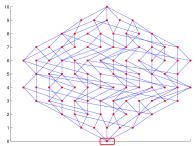
 $L \times D$ -матрица ошибок с попарно различными столбцами:

	a_1	a_2	a_3	a_4	a_5	a_6	• • • •	a_D	
<i>x</i> ₁	1	1	0	0	0	1		1	X — наблюдаемая
	0	0	0	0	1	1		1	(обучающая) выборка
x_ℓ	0	0	1	0	0	0		0	длины ℓ
$x_{\ell+1}$	0	0	0	1	1	1		0	$ar{X}$ — скрытая
	0	0	0	1	0	0		1	(контрольная) выборка
X_L	0	1	1	1	1	1		0	длины $k = L - \ell$

n(a,X) — число ошибок алгоритма a на выборке $X \subset \mathbb{X}^L$; $\nu(a,X) = n(a,X)/|X|$ — частота ошибок a на выборке $X \subset \mathbb{X}^L$;

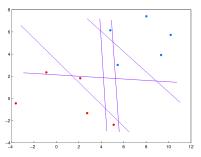
Пример. Матрица ошибок линейных классификаторов

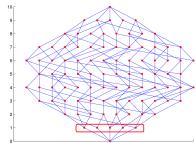




```
0
x_1
      0
x_2
      0
X3
      0
      0
      0
      0
      0
      0
```

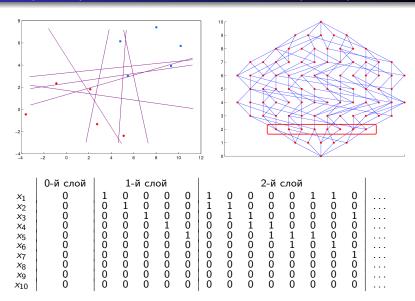
Пример. Матрица ошибок линейных классификаторов





X1	0	1	0	0	0	0	
X1 X2 X3 X4 X5 X6 X7 X8 X9	0	0	1 0	0	0	0	
X3	0	0		1 0	0	0	
X4	000000000000000000000000000000000000000	0	0	0	1 0	0 0 0 1 0	
X_5	0	0 0 0	0	0		1	
<i>x</i> ₆	0	0	0	0	0	0	
X7	0	0	0		0	0	
X8	0	Ŏ	0	0	0	0	
X9	0	0	0	0	0	0	
X10	0	0	0	0	0	0	l

Пример. Матрица ошибок линейных классификаторов



Задача оценивания вероятности переобучения

Опр. *Метод обучения* $\mu \colon 2^{(\mathbb{X}^L)} \to A$ по произвольной выборке $X \subset \mathbb{X}^L$ выбирает некоторый алгоритм $a \in A$.

Опр. *Переобучение* при разбиении $X\sqcup \bar{X}=\mathbb{X}^L$:

$$\delta(\mu, X) \equiv \nu(\mu X, \bar{X}) - \nu(\mu X, X) \geqslant \varepsilon.$$

Опр. Вероятность переобучения

$$Q_{\varepsilon}(\mu, \mathbb{X}^{L}) = \mathsf{P}_{X}[\delta(\mu, X) \geqslant \varepsilon].$$

Опр. Точная оценка: $Q_{\varepsilon}(\mu, \mathbb{X}^L) = \eta(\varepsilon)$.

Опр. Верхняя оценка: $Q_{\varepsilon}(\mu, \mathbb{X}^L) \leq \eta(\varepsilon)$.

Единственное вероятностное допущение

Итак, $\mathbb{X}^L = \{x_1, \dots, x_L\}$ — конечное множество объектов.

Аксиома

Все C_L^ℓ разбиений $\mathbb{X}^L = X \sqcup \bar{X}$ равновероятны, где X — наблюдаемая обучающая выборка длины $\ell = |X|$; \bar{X} — скрытая контрольная выборка длины $k = |\bar{X}| = L - \ell$;

Вероятность понимается только как доля разбиений выборки:

$$Q_{\varepsilon}(\mu, \mathbb{X}^{L}) = \mathsf{P}\big[\delta(\mu, X) \geqslant \varepsilon\big] = \frac{1}{C_{L}^{\ell}} \sum_{\substack{X, \bar{X} \\ X \sqcup \bar{X} = \mathbb{X}^{L}}} \big[\delta(\mu, X) \geqslant \varepsilon\big].$$

Это аналог стандартной гипотезы о *независимости* наблюдений. Теория меры и предельный переход $L \to \infty$ не используются.

Аналог закона больших чисел в слабой аксиоматике

Пусть
$$|A| = 1$$
, $\mu X = a$ для всех $X \subset \mathbb{X}^L$. Обозначим $m = n(a, \mathbb{X}^L)$, $s = n(a, X)$.

Теорема (точная оценка)

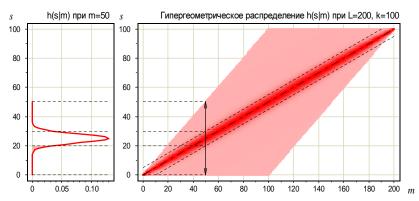
Вероятность большого уклонения частот описывается функцией гипергеометрического распределения (ГГР):

$$Q_{\varepsilon}(a, \mathbb{X}^{L}) = H_{L}^{\ell, m}(s_{m}(\varepsilon)), \quad s_{m}(\varepsilon) = \frac{\ell}{L}(m - \varepsilon k),$$

где
$$H_L^{\ell,m}(z)=\sum_{s=0}^{\lfloor z\rfloor} \frac{C_m^s C_{L-m}^{\ell-s}}{C_L^\ell}$$
 — левый «хвост» ГГР.

Вывод: основная аксиома обеспечивает возможность предсказания скрытого $n(a, \bar{X})$ по наблюдаемому n(a, X).

Гипергеометрическое распределение $h(s|m) = C_m^s C_{I-m}^{\ell-s}/C_I^\ell$

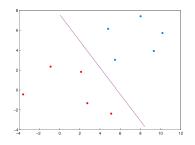


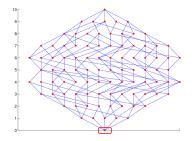
Предсказание $n(a, \bar{X})$ по n(a, X) возможно благодаря узости гипергеометрического пика (концентрации вероятности).

Закон больших чисел: $\nu(a,X) \to \nu(a,\mathbb{X}^L)$ при $\ell \to \infty$.

Ориентированный граф расслоения-связности

Множество вершин графа — все алгоритмы $a \in A$. Множество рёбер графа E — все пары вершин (a,a') такие, что $n(a,\mathbb{X}^L)+1=n(a',\mathbb{X}^L)$ и $I(a,x_i)\leqslant I(a',x_i), \ \forall x_i\in\mathbb{X}^L$.





Oпр. $A_m = \left\{ a \in A \colon n(a, \mathbb{X}^L) = m \right\} - m$ -й слой множества A.

Опр. $A = A_0 \sqcup \cdots \sqcup A_L$ — расслоение множества A.

Опр. $q(a) = \#\{a' \in A \colon (a,a') \in E\}$ — связность алгоритма $a \in A$.

Общая оценка расслоения-связности

Опр. Профиль расслоения $\Delta_m = |A_m|$.

Опр. Профиль расслоения—связности Δ_{mq} — это число алгоритмов в m-м слое со связностью q.

Опр. Пессимистичная минимизация эмпирического риска (ПМЭР):

$$\mu X = \arg\max_{a \in A(X)} n(a, \bar{X}), \quad A(X) = \arg\min_{a \in A} n(a, X).$$

Теорема

Если $\mu-$ ПМЭР, то для любой \mathbb{X}^L и любого $\varepsilon\in[0,1]$

$$Q_{arepsilon} \leqslant \sum_{m=\lceil arepsilon k
ceil}^{L} \sum_{q=0}^{L} \Delta_{mq} \cdot rac{C_{L-q}^{\ell-q}}{C_{L}^{\ell}} \cdot H_{L-q}^{\ell-q,m}\left(s_{m}(arepsilon)
ight).$$

Сравнение с классическими оценками

Оценка для одного алгоритма:

$$Q_{\varepsilon}=H_{L}^{\ell,m}\left(s_{m}(\varepsilon)\right).$$

Оценка Вапника-Червоненкиса (1971):

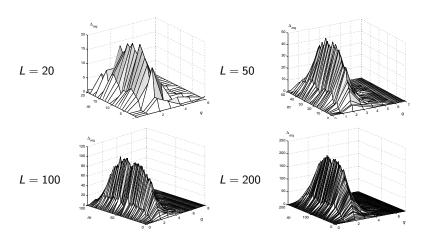
$$Q_{\varepsilon} \leqslant \sum_{m=\lceil \varepsilon k \rceil}^{L} \Delta_m \cdot H_L^{\ell,m}\left(s_m(\varepsilon)\right) \leqslant$$

 $\leqslant |A| \cdot \max_{m=0,...,L} H_L^{\ell,m}\left(s_m(\varepsilon)\right).$

Оценка с учётом расслоения-связности (2010):

$$Q_arepsilon \leqslant \sum_{m=\lceilarepsilon_{k}
ceil}^{L} \sum_{q=0}^{L} \Delta_{mq} \cdot rac{C_{L-q}^{\ell-q}}{C_{L}^{\ell}} \cdot H_{L-q}^{\ell-q,m}\left(s_{m}(arepsilon)
ight).$$

Пример. Профили расслоения-связности Δ_{mq} линейно разделимые двумерные выборки длины L; линейные классификаторы



Гипотеза сепарабельности: $\Delta_{mq} pprox \Delta_m \lambda_q$.

Гипотеза размерности: средняя связность \approx размерность пространства

Насколько важно учитывать эффекты расслоения и связности?

Эксперимент с цепочками алгоритмов:

Цепочка с расслоением:

Цепочка без расслоения:

Для каждой цепочки генерируется *не-цепочка* путём случайной перестановки в каждом столбце.

Итого имеем 4 модельных семейства:

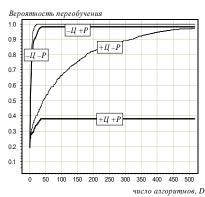
+Ц+Р	+Ц-Р
-Ц+Р	–Ц–Р

Эксперимент: зависимость $Q_{arepsilon}$ от D при $\ell=k=100$, arepsilon=0.05

Простая задача, $n(a_1, \mathbb{X}^L) = 10$

Вероятность переобучения 0.9 0.8 -Ц-Р 0.7 0.6 +II-P0.5 -∐ +Р 0.4 0.3 0.2 +II+P0.1 250 300 350 число алгоритмов, D

Трудная задача, $n(a_1, \mathbb{X}^L) = 50$

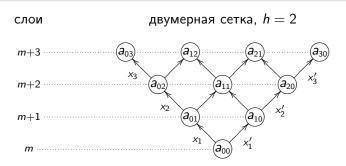


- ullet Связность приводит к замедлению роста $Q_{arepsilon}(D).$
- Расслоение понижает уровень горизонтальной асимптоты.

Модельные и реальные семейства алгоритмов, для которых уже получены точные комбинаторные оценки переобучения

- монотонная и унимодальная цепочка алгоритмов;
- единичная окрестность лучшего алгоритма;
- слой булева куба;
- интервал булева куба; d его нижних слоёв;
- монотонные и унимодальные h-мерные сетки [П. Ботов];
- пучок h монотонных цепочек [П. Ботов, А. Фрей];
- симметричные семейства алгоритмов, их разреженные подмножества [А. Фрей];
- хэммингов шар, d его нижних слоёв, его разреженные подмножества [И. Толстихин];
- пороговые конъюнкции вещественных признаков [А. Ивахненко].
- метод ближайшего соседа;
- семейство монотонных классификаторов;

Монотонная сетка алгоритмов — модельное семейство, обладающее свойствами расслоения, связности и размерности



Эмпирический факт 1. Q_{ε} реальных семейств неплохо аппроксимируется Q_{ε} монотонной сетки при некоторой h.

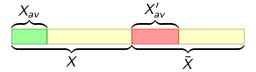
Эмпирический факт 2. Вероятность переобучения Q_{ε} монотонной сетки растёт практически линейно по h.

Метод порождающих и запрещающих множеств

Теорема

Для каждого $a\in A$ можно указать такой набор пар непересекающихся подмножеств объектов $X_{av}, X'_{av}\subset \mathbb{X}^L,$ $v\in V_a$ и такой коэффициент $c_{av}\in \{-1,+1\}$, что

$$[\mu X = a] = \sum_{v \in V_a} c_{av} [X_{av} \subseteq X] [X'_{av} \subseteq \bar{X}].$$



Опр. X_{av} — множество объектов, *порождающих* алгоритм a.

Опр. X'_{av} — множество объектов, запрещающих алгоритм a.

Метод порождающих и запрещающих множеств

Теорема (точная оценка вероятности переобучения)

Вероятность получить в результате обучения алгоритм с заданным вектором ошибок а:

$$P[\mu X=a] = \sum_{v \in V_a} c_{av} P_{av}; \quad P_{av} = \frac{C_{L_{av}}^{\ell_{av}}}{C_L^{\ell}}.$$

Вероятность переобучения:

$$Q_{\varepsilon} = \sum_{a \in A} \sum_{v \in V_a} c_{av} P_{av} H_{L_{av}}^{\ell_{av}, m_{av}} \left(s_{av}(\varepsilon) \right),$$

где
$$L_{av} = L - |X_{av}| - |X_{av}'|,$$
 $\ell_{av} = \ell - |X_{av}|,$ $m_{av} = n(a, \mathbb{X}^L) - n(a, X_{av}) - n(a, X_{av}'),$ $s_{av}(\varepsilon) = \frac{\ell}{L}(n(a, \mathbb{X}^L) - \varepsilon k) - n(a, X_{av}).$

Верхняя оценка вероятности переобучения

Опр. Объекты, порождающие рёбра графа, исходящие из а:

$$X_a^+ = \{x_i \in \mathbb{X}^L \mid \exists a' \colon (a, a') \in E, \ I(a, x_i) = 0, \ I(a', x_i) = 1\}.$$

Теорема

Пусть $\mu - \Pi M \ni P$.

Если $\mu X=$ а, то все $x_i\in X_a^+$ обязаны лежать в обучении:

$$[\mu X = a] \leqslant [X_a^+ \in X];$$

вероятность получить алгоритм а в результате обучения:

$$P_a = P[\mu X = a] \leqslant C_{L-q(a)}^{\ell-q(a)}/C_L^{\ell}, \quad q(a) = |X_a^+|;$$

вероятность переобучения

$$Q_{\varepsilon} \leqslant \sum_{a \in \Lambda} P_a H_{L-q(a)}^{\ell-q(a),m_a} \left(\frac{\ell}{L} (m_a - \varepsilon k) \right), \quad m_a = \textit{n}(a, \mathbb{X}^L).$$

Задачи и открытые проблемы

- точные оценки переобучения для реальных методов;
- построение разреженных подмножеств алгоритмов из нижних слоёв в реальных задачах;
- **3** снятие ограничения, что $\mu \Pi M \ni P$;
- ullet обоснование гипотез сепарабельности Δ_{mq} и размерности;
- получение комбинаторной оценки вероятности переобучения для линейных классификаторов;
- 💿 переход от ненаблюдаемых оценок к наблюдаемым;
- обобщение понятий расслоения и связности на случай произвольной (не бинарной) функции потерь;
- онлайновое обучение в условиях нестационарной выборки (в случаях как плавных, так и скачкообразных изменений);

Задача онлайнового обучения (доклад в среду, 15:00)

 $\mathbb{X}^L = (x_1, \dots, x_T)$ — конечная последовательность объектов; A — множество допустимых предсказаний;

Процесс Online Learning

- 1: для всех t := 1, ..., T
- 2: $a_{t+1} := \mu(x_1, \dots, x_t)$ предсказание из A;
- x_{t+1} становится известен;
- 4: $\mathscr{L}(a_{t+1}, x_{t+1})$ величина потерь от предсказания;

Задача

Найти кривую обучения— зависимость математического ожидания потери от времени:

$$Q(t) = \mathsf{E} \mathscr{L}(\mathsf{a}_{t+1}, \mathsf{x}_{t+1}), \quad t = 1, \dots, T-1.$$

Q(t) характеризует обучаемость предсказывающего алгоритма μ .

Вопросы?

Bopoнцов Константин Вячеславович vokov@forecsys.ru

Страницы на www.MachineLearning.ru:

- Участник: Vokov
- Слабая вероятностная аксиоматика
- Расслоение и сходство алгоритмов (виртуальный семинар)