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Dimensionality reduction intro

Dimensionality reduction

Feature selection / Feature extraction

Feature extraction: �nd transformation of original data which
extracts most relevant information for machine learning task.

We will consider unsupervised dimensionality reduction methods,
which try to preserve geometrical properties of the data.
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Dimensionality reduction intro

Applications of dimensionality reduction

Applications:

visualization in 2D or 3D

reduce operational costs (less memory, disk, CPU usage on
data transfer)

remove multi-collinearity to improve performance of
machine-learning models
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Dimensionality reduction intro

Categorization

Supervision in dimensionality reduction:

supervised (such as Fisher's direction)

unsupervied

Mapping to reduced space:

linear

non-linear
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Supervised dimensionality reduction

Fisher's linear discriminant

Problem statement

Standard linear classi�cation decision rule

ĉ =

{
1, wT x ≥ −w0

2, wT x < w0

is equivalent to

1 dimensionality reduction to 1-dimensinal space (de�ned by w)
2 making classi�cation in this space

Idea of Fisher's LDA: �nd direction, giving most class
discriminative projections.
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Supervised dimensionality reduction

Fisher's linear discriminant

Possible realization

Classi�cation between ω1 and ω2.

De�ne C1 = {i : xi ∈ ω1}, C2 = {i : xi ∈ ω2} and

m1 =
1

N1

∑
n∈C1

xn, m2 =
1

N1

∑
n∈C2

xn

µ1 = wTm1, µ2 = wTm2

Naive solution:{
(µ1 − µ2)2 → maxw

‖w‖ = 1
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Supervised dimensionality reduction

Fisher's linear discriminant

Fisher's LDA

De�ne projected within class variances:

s1 =
∑
n∈C1

(wT xn − wTm1)
2, s2 =

∑
n∈C2

(wT xn − wTm2)
2

Fisher's LDA criterion: (µ1−µ2)2
s21+s22

→ maxw
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Supervised dimensionality reduction

Fisher's linear discriminant

Equivalent representation

(µ1 − µ2)2

s21 + s22
=

(
wTm1 − wTm2

)2∑
n∈C1

(wT xn − wTm1)2 +
∑

n∈C2
(wT xn − wTm2)2

=

[
wT (m1 −m2)

]2∑
n∈C1

[wT (xn −m1)]
2
+
∑

n∈C2
[wT (xn −m1)]

2

=
wT (m1 −m2)(m1 −m2)

Tw

wT
[∑

n∈C1
(xn −m1)(xn −m1)T +

∑
n∈C2

(xn −m2)(xn −m2)T
]
w

=
wTSBw

wTSWw

SB = (m1 −m2)(m1 −m2)
T ,

SW =
∑
n∈C1

(xn −m1)(xn −m1)
T +

∑
n∈C2

(xn −m2)(xn −m2)
T
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Supervised dimensionality reduction

Fisher's linear discriminant

Fisher's LDA solution

Q(w) = wTSBw
wTSWw

→ maxw

Using property that d
dw

(
wTAw

)
= 2Aw for any

A ∈ RKxK , AT = A

dQ(w)

dw
∝ 2SBw

[
wTSWw

]
− 2

[
wTSBw

]
SWw = 0

which is equivalent to[
wTSWw

]
SBw =

[
wTSBw

]
SWw

So
w ∝ S−1W SBw ∝ S−1W (m1 −m2)

12/57



Dimensionality reduction - Victor Kitov

Supervised dimensionality reduction

Supervised discriminant analysis

2 Supervised dimensionality reduction
Fisher's linear discriminant
Supervised discriminant analysis

13/57



Dimensionality reduction - Victor Kitov

Supervised dimensionality reduction

Supervised discriminant analysis

Idea of supervised discriminant analysis (SDA)

We can �nd directions w1,w2, ...wD , projections on which best
separate classes.

Ways to �nd w :

Fisher's LDA
Any linear classi�cation 〈w , x〉 ≷ threshold gives valuable
supervised 1-D dimension w .

We can �nd an orthonormal basis of such directions.
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Supervised dimensionality reduction

Supervised discriminant analysis

SDA algorithm

Listing 1: Finding orthonormal basis of supervised directions

INPUT:

* training set (x1, y1), ...(xN , yN)

* algorithm, fitting w in linear classification
ŷ = sign[〈w , x〉 − threshold ]

ALGORITHM:
for d = 1, 2, ...D:

wd - classifier_direction[(x1, y1), ...(xN , yN)]
wd = wd

||wd ||
for n = 1, 2, ...N: # project to orthogonal supplement of w(d)

xn = xn − 〈xn,wd〉wd

OUTPUT: w1,w2, ...wD.
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Principal component analysis

Reminder

Scalar product reminer

Here we will assume 〈a, b〉 = aTb

‖a‖ =
√
〈a, a〉

Signed projection of xonto a is equal to 〈x , a〉/ ‖a‖
Unsigned projection (length) of x onto a is equal to
|〈x , a〉| / ‖a‖
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Principal component analysis

Reminder

Useful properties

For any matrix X ∈ RNxD XTX ∈ RDxD is symmetric and
positive semi-de�nite:

{XTX}ij =
∑N

n=1
xnixnj =

∑N
n=1

xnjxni = {XTX}ji
∀a ∈ RD : 〈a,XTXa〉 = aTXTXa = ‖Xa‖2 ≥ 0

General properties:

if all eigenvalues are unique, eigenvectors are also unique (up
to scalar multipliers).
if A � 0 then all its eigenvalues are non-negative

Since XTX � 0 it follows that all its eigenvalues are
non-negative.

We will assume that eigenvalues of XTX are
λ1 ≥ λ2 ≥ ... ≥ λD ≥ 0.
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Principal component analysis

Reminder

Useful properties

For any x , b ∈ RD it holds that:

∂[bT x ]

∂x
= b

For any x ∈ RD and symmetric B ∈ RDxD it holds that:

∂[xTBx ]

∂x
= 2Bx
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Principal component analysis

De�nition

Best hyperplane �t

For point x and subspace L denote:

p-the projection of x on L
h-orthogonal complement

x = p + h, 〈p, h〉 = 0.

Proposition 1

For x, its projection p and orthogonal complement h

‖x‖2 = ‖p‖2 + ‖h‖2 .

Prove proposition 1.

For training set x1, x2, ...xN and subspace L we can also �nd:

projections: p1, p2, ...pN
orthogonal complements: h1, h2, ...hN .
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Principal component analysis

De�nition

Best hyperplane �t

De�nition 1

Best-�t k-dimensional subspace for a set of points x1, x2, ...xN is a
subspace, spanned by k vectors v1, v2, ...vk , solving

N∑
n=1

‖hn‖2 → min
v1,v2,...vk

Proposition 2

Vectors v1, v2, ...vk , solving

N∑
n=1

‖pn‖2 → max
v1,v2,...vk

also de�ne best-�t k-dimensional subspace.

Prove 2 using proposition 1.
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Principal component analysis

De�nition

De�nition of PCA

De�nition 2

Principal components a1, a2, ...ak are vectors, forming orthonormal
basis in the subspace of best �t.

Properties:

Not invariant to translation:

Before applying PCA, it is recommended to center objects:

x ← x − µ where µ =
1

N

N∑
n=1

xn

Not invariant to scaling:

scale features to have unit variance
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Principal component analysis

De�nition

Example: line of best �t

In PCA the sum of squared perpendicular distances to line is
minimized:

What is the di�erence with least squares minimization in

regression?
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Principal component analysis

De�nition

Best hyperplane �t

Subspace Lk or rank k best �ts points x1, x2, ...xD .
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Principal component analysis

Applications of PCA

Visualization
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Principal component analysis

Applications of PCA

Data �ltering

Remove noise to get a cleaner picture of data distribution:

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop
on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October.
http://www.gensips.gatech.edu/proceedings/.
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Principal component analysis

Applications of PCA

Economic description of data

Faces database:
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Principal component analysis

Applications of PCA

Eigenfaces

Eigenvectors are called eigenfaces. Projections on �rst several
eigenfaces describe most of face variability.
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Principal component analysis

Applications of PCA

PCA vs. SDA

Title format: dataset, method (quality of approximation (2)).
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Applications of PCA

PCA vs. SDA

Title format: dataset, method (quality of approximation (2)).
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Application details

3 Principal component analysis
Reminder
De�nition
Applications of PCA
Application details
Construction of principal components
Proof of optimality of principal components

35/57



Dimensionality reduction - Victor Kitov

Principal component analysis

Application details

Quality of approximation

Consider vector x . Since all D principal components form a full
othonormal basis, x can be written as

x = 〈x , a1〉a1 + 〈x , a2〉a2 + ...+ 〈x , aD〉aD

Let pK be the projection of x onto subspace spanned by �rst K
principal components:

pK = 〈x , a1〉a1 + 〈x , a2〉a2 + ...+ 〈x , aK 〉aK

Error of this approximation is

hK = x − pK = 〈x , aK+1〉aK+1 + ...+ 〈x , aD〉aD
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Principal component analysis

Application details

Quality of approximation

Using that a1, ...aD is an orthonormal set of vectors, we get

‖x‖2 = 〈x , x〉 = 〈x , a1〉2 + ...+ 〈x , aD〉2∥∥∥pK∥∥∥2 = 〈pK , pK 〉 = 〈x , a1〉2 + ...+ 〈x , aK 〉2∥∥∥hK∥∥∥2 = 〈hK , hK 〉 = 〈x , aK+1〉2 + ...+ 〈x , aD〉2

We can measure how well �rst K components describe our dataset
x1, x2, ...xN using relative loss

L(K ) =

∑N
n=1

∥∥hKn ∥∥2∑N
n=1 ‖xn‖

2
(1)

or relative score

S(K ) =

∑N
n=1

∥∥pKn ∥∥2∑N
n=1 ‖xn‖

2
(2)

Evidently L(K ) + S(K ) = 1.
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Principal component analysis

Application details

Contribution of individual component

Contribution of ak for explaining x is 〈x , ak〉2.
Contribution of ak for explaining x1, x2, ...xN is:

N∑
n=1

〈xn, ak〉2

Explained variance ratio: ∑N
n=1〈xn, ak〉2∑D

d=1

∑N
n=1〈xn, ad〉2

Explained variance ratio measures relative contribution of
component ak to explaining our dataset x1, ...xN .
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Principal component analysis

Application details

How many principal components to select?

Data visualization: 2 or 3 components.

Take most signi�cant components until their variance falls
sharply down:

Or take minimum K such that L(K ) ≤ t orS(K ) ≥ 1− t,
where typically t = 0.95.
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Principal component analysis

Application details

Transformation ξ � x

Dependence between original and transformed features:

ξ = AT (x − µ), x = Aξ + µ,

where µ = 1
N

∑N
n=1 xn.

Taking �rst r components - Ar = [a1|a2|...|ar ], we get the image of
the reduced transformation:

ξr = AT
r (x − µ)

ξr will correspond to

xr = A

(
ξr
0

)
+ µ = Arξr + µ

xr = ArA
T
r (x − µ) + µ

ArA
T
r is projection matrix with rank r

(follows from the property rank
[
AAT

]
= rank

[
ATA

]
for any A).
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Principal component analysis

Application details

Local linear projection

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop
on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October.
http://www.gensips.gatech.edu/proceedings/.
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Principal component analysis

Application details

Local linear projection

Local linear projection method makes denoised version of original
data by locally projecting it onto hyperplane of small rank.

INPUT:
p-local dimensionality of data
K-number of nearest neighbours

for each xi in X:
1) find K nearest neighbours of xi: xj(i,1), ...xj(i,K)

2) find linear hyperplane Lp of dimensionality p,
describing xj(i,1), ...xj(i,K) # hyperplane-subspace with offset

3) let x̂i be the projection of xi onto this hyperplane

OUTPUT:
denoised version of objects x̂1, x̂2, ...x̂K.
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Principal component analysis

Construction of principal components

Constructive de�nition of PCA

Principal components a1, a2, ...aD ∈ RD are found such that

〈ai , aj〉 =

{
1, i = j

0 i 6= j

Xai is a vector of projections of all objects onto the i-th
principal component.

For any object x its projections onto principal components are
equal to:

p = AT x = [〈a1, x〉, ...〈aD , x〉]T

where A = [a1; a2; ...aD ] ∈ RDxD .
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Principal component analysis

Construction of principal components

Constructive de�nition of PCA

1 a1 is selected to maximize ‖Xa1‖ subject to 〈a1, a1〉 = 1

2 a2 is selected to maximize ‖Xa2‖ subject to 〈a2, a2〉 = 1,
〈a2, a1〉 = 0

3 a3 is selected to maximize ‖Xa3‖ subject to 〈a3, a3〉 = 1,
〈a3, a1〉 = 〈a3, a2〉 = 0

etc.
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Principal component analysis

Construction of principal components

Derivation: 1st component

{
‖Xa1‖2 → maxak
‖a1‖ = 1

(3)

Lagrangian of optimization problem (3):

L(a1, µ) = aT1 X
TXa1 − µ(aT1 a1 − 1)→ extra1,µ

∂L

∂a1
= 2XTXa1 − 2µa1 = 0

so a1 is selected from a set of eigenvectors of XTX .
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Principal component analysis

Construction of principal components

Derivation: 1st component

Since

‖Xa1‖2 = (Xa1)
T Xa1 = aT1 X

TXa1 = λaT1 a1 = λ

a1 should be the eigenvector, corresponding to the largest
eigenvalue λ1.

Comment: If many many eigenvector directions corrsponding to λ1
exist, select arbitrary eigenvector, satisfying constraint of (3).
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Principal component analysis

Construction of principal components

Derivation: 2nd component


‖Xa2‖2 → maxak
‖a2‖ = 1

aT2 a1 = 0

(4)

Lagrangian of optimization problem (4):

L(a2, µ) = aT2 X
TXa2 − µ(aT2 a2 − 1)− αaT1 a2 → extra2,µ,α

∂L

∂a2
= 2XTXa2 − 2µa2 − αa1 = 0 (5)
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Principal component analysis

Construction of principal components

Derivation: 2nd component

By multiplying by aT1 we obtain:

aT1
∂L

∂a1
= 2aT1 X

TXa2 − 2µaT1 a2 − αaT1 a1 = 0 (6)

Since a2 is selected to be orthogonal to a1:

2µaT1 a2 = 0

Since aT1 X
TXa2 is scalar and a1 is eigenvector of XTX :

aT1 X
TXa2 =

(
aT1 X

TXa2
)T

= aT2 X
TXa1 = λ1a

T
2 a1 = 0

It follows that (6) simpli�es to αaT1 a1 = α = 0 and (5) becomes

XTXa2 − µa2 = 0

So a2 is selected from a set of eigenvectors of XTX .
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Principal component analysis

Construction of principal components

Derivation: 2nd component

Since

‖Xa2‖2 = (Xa2)
T Xa2 = aT2 X

TXa2 = λaT2 a2 = λ

a2 should be the eigenvector, corresponding to second largest
eigenvalue λ2.

Comment: If many many eigenvector directions corrsponding to λ2
exist, select arbitrary eigenvector, satisfying constraints of (4).
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Principal component analysis

Construction of principal components

Derivation: k-th component


‖Xak‖2 → maxak
‖ak‖ = 1

aTk a1 = ... = aTk ak−1 = 0

(7)

Lagrangian of optimization problem (7):

L(ak , µ) = aTk X
TXak−µ(aTk ak−1)−

k−1∑
j=1

αja
T
k aj → extrak ,µ,α1,...αk−1

∂L

∂ak
= 2XTXak − 2µak −

k−1∑
j=1

αjaj = 0 (8)
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Principal component analysis

Construction of principal components

Derivation: k-th component

By multiplying by aTi for any i = 1, 2, ...k − 1 we obtain:

aTi
∂L

∂a1
= 2aTi X

TXak − 2µaTi ak − α1aTi a1 − ...− αk−1a
T
i ak−1 = 0

(9)
Since ai and aj are selected to be orthogonal for i 6= j , we have:

2µaTi ak = 0, αja
T
i aj = 0 ∀i 6= j

Since aTi X
TXa2 is scalar and ai is eigenvector of X

TX :

aTi X
TXa2 =

(
aTi X

TXak

)T
= aTk X

TXai = λia
T
k ai = 0

It follows that (9) simpli�es to αia
T
i ai = αi = 0. Since i was

selected arbitrary from i = 1, 2, ...k − 1, α1 = α2 = ... = αk−1 = 0
and (8) becomes

XTXak − µak = 0

So ak is selected from a set of eigenvectors of XTX .
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Principal component analysis

Construction of principal components

Derivation: k-th component

Since

‖Xak‖2 = (Xak)
T Xak = aTk X

TXak = λaTk ak = λ

ak should be the eigenvector, corresponding to the k-th largest
eigenvalue λk .

Comment: If many many eigenvector directions corrsponding to λk
exist, select arbitrary eigenvector, satisfying constraints of (7).
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Principal component analysis

Proof of optimality of principal components

Componentwise optimization leads to best �t subspace

Theorem 1

Let Lk be the subspace spanned by a1, a2, ...ak . Then for each k Lk
is the best-�t k-dimensional subspace for X .

Proof: use induction. For k = 1 the statement is true by de�nition
since projection maximization is equivalent to distance
minimization.
Suppose theorem holds for k − 1. Let Lk be the plane of best-�t of
dimension with dim L = k . We can always choose an orthonormal
basis of Lk b1, b2, ...bk so that{

‖bk‖ = 1

bk ⊥ a1, bk ⊥ a2, ...bk ⊥ ak−1
(10)

by setting bk perpendicular to projections of a1, a2, ...ak−1 on Lk .
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Principal component analysis

Proof of optimality of principal components

Componentwise optimization leads to best �t subspace

Consider the sum of squared projections:

‖Xb1‖2 + ‖Xb2‖2 + ...+ ‖Xbk−1‖2 + ‖Xbk‖2

By induction proposition L[a1, a2, ...ak−1] is space of best �t of
rank k − 1 and L[b1, ...bk−1] is some space of same rank, so sum of
squared projections on it is smaller:

‖Xb1‖2+‖Xb2‖2+...+‖Xbk−1‖2 ≤ ‖Xa1‖2+‖Xa2‖2+...+‖Xak−1‖2

and
‖Xbk‖2 ≤ ‖Xak‖2

since bk by (10) satis�es constraints of optimization problem (7)
and ak is its optimal solution.
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Principal component analysis

Proof of optimality of principal components

Conclusion

For x ∈ RD there exist D principal components.

Principal component ai is the i-th eigenvector of XTX ,
corresponding to i-th largest eigenvalue λi .

Sum of squared projections onto ai is ‖Xai‖2 = λi .

Explained variance ratio by component ai is equal to

λi∑D
d=1 λd
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