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Bayesian framework

Bayes theorem

p(tjx) =
p(xjt)p(t)

p(x)
=

p(xjt)p(t)R
p(xjt)p(t)dt

I x – observed variables;

I t – unobserved (latent) variable;

I p(xjt) – likelihood;

I p(x) – evidence;

I p(t) – prior.
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Variational Lower Bound

We are given the set of objectsX = f xi gn
i=1 . The goal is to

perform bayesian inference on the latent variablesT = f t i gn
i=1 .

Empirical Lower BOund (ELBO)

logp(X) = log
p(X; T)
p(T jX)

=

=
Z

q(T) log
p(X; T)
p(T jX)

dT =
Z

q(T) log
p(X; T)q(T)
p(T jX)q(T)

dT =

=
Z

q(T) log
p(X; T)

q(T)
dT +

Z
q(T) log

q(T)
p(T jX)

dT =

= L(q) + KL(q(T)jjp(T jX)) � L (q):
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Mean �eld approximation

Assumption

q(T) =
kY

i =1

qi (T i ):

Empirical Lower BOund (ELBO)

L (q) =
Z

q(T) log
p(X; T)

q(T)
dT =

Z kY

i =1

qi (T i ) log
p(X; T)

Q k
i=1 qi (T i )

kY

i =1

dT i =

=
Z kY

i =1

qi logp(X; T)
kY

i =1

dT i �
kX

i =1

Z kY

j =1

qj logqi

kY

i =1

dT i =

=
Z

qj

2

4
Z

logp(X; T)
Y

i 6= j

qi dT i

3

5 dT j �

�
Z

qj logqj dT j + const( qj ) ! max
qj
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Mean �eld approximation

L (q) =
Z

qj

2

4
Z

logp(X; T)
Y

i 6= j

qi dZ i

3

5 dT j �
Z

qj logqj dT j + const( qj ) =

=
Z

qj log p̂(X; T j )dT j �
Z

qj logqj dT j + const( qj ) ! max
qj

log p̂(X; T j ) = Ei 6= j logp(X; T) + const( qj )

Ei 6= j logp(X; T) =
Z

logp(X; T)
Y

i 6= j

qi dT i

L (q) =
Z

qj (T j ) log p̂(X; T j )dT j �
Z

qj (T j ) log qj (T j )dT j + const( qj ) =

= KL(qj (T j )jj p̂(X; T j )) + const( qj ) ! max
qj

:
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Mean �eld approximation

ELBO

L (q) = KL(qj (T j )jj p̂(X; T j )) + const( qj ) ! max
qj

:

Solution

qj (T j ) = p̂(X; T j )

logqj (T j ) = Ei 6= j logp(X; T) + const

Let use factorization on two parts:T = f Z; � g.
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Mean �eld approximation

Solution

logqj (T j ) = Ei 6= j logp(X; T) + const

EM algorithm

I Initialize � � ;
I E-step

q(Z) = arg max
q

L (q; � � ) = arg min
q

KL(qjjp) = p(ZjX; � � );

I M-step
� � = arg max

�
L (q; � );

I Repeat E-step and M-step until convergence.
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Likelihood-based models so far...

Autoregressive models

p(xj� ) =
mY

i =1

p(xi jx1:i � 1; � )

I tractable likelihood,
I no inferred latent factors.

Latent variable models

p(xj� ) =
Z

p(x; zj� )dz

I latent feature representation,
I intractable likelihood.

How to build model with latent variables and tractable likelihood?
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Flows intuition
Let X be a random variable with densitypX (x). Then

Z = F(X) =
Z x

�1
p(t )dt � U[0; 1]:

Hence
Z � U[0; 1]; X = F � 1(Z) X � p(x):

https://sites.google.com/view/berkeley-cs294-158-sp19/home
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Change of variables

Theorem
Let

I x is a random variable,
I f : Rm ! Rm is a di�erentiable, invertible function,
I z = f (x), x = f � 1(z) = g(z).

Then

p(x) = p(z)

�
�
�
�det

�
@z
@x

� �
�
�
� = p(f (x))

�
�
�
�det

�
@f (x)

@x

� �
�
�
� :

Note

I x and z have the same dimensionality;

I
�
�
�det

�
@f (x)

@x

� �
�
� =

�
�
�det

�
@g � 1(x)

@x

� �
�
� =

�
�
�det

�
@g(z)

@z

� �
�
�
� 1

.
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Fitting 
ows

MLE problem

� � = arg max
�

p(Xj� ) = arg max
�

nY

i =1

p(xi j� ) = arg max
�

nX

i =1

logp(xi j� ):

Challenge
p(xj� ) could be intractable.

Fitting 
ow to solve MLE

p(xj� ) = p(f (x; � ))

�
�
�
�det

�
@f (x; � )

@x

� �
�
�
�
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Flows

I Likelihood is given byz = f (x; � ) and change of variables.
I Sampling ofx is performed by sampling from a base

distribution p(z) and applyingx = f � 1(z; � ) = g(z; � ).
I Latent representation is given byz = f (x; � ).

https://arxiv.org/pdf/1605.08803.pdf
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Flows

logp(xj� ) = log p(f (x; � )) + log

�
�
�
�det

�
@f (x; � )

@x

� �
�
�
�

De�nition
Normalizing 
ow is adi�erentiable, invertible mapping from datax
to the noisez.

I Normalizing - convert data distribution tonoise.
I Flow - sequence of such mapping is also a 
ow

z = fK � � � � � f1(x); x = f � 1
1 � � � � � f � 1

K (z) = g1 � � � � � gK (z)

p(x) = p(fK � � � � � f1(x))

�
�
�
�det

�
@fK � � � � � f1(x)

@x

� �
�
�
� =

= p(fK � � � � � f1(x))
KY

k=1

�
�
�
�det

�
@fk

@fk� 1

� �
�
�
� :
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Flows

logp(xj� ) = log p(f (x; � )) + log

�
�
�
�det

�
@f (x; � )

@x

� �
�
�
�

What we want

I E�cient computation of Jacobian @f (x;� )
@x ;

I E�cient sampling from the base distributionp(z);
I Easy to invertf (x; � ).
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Planar Flows, 2015

g(z; � ) = z + uh(wT z + b):

I � = f u; w; bg;
I h is a smooth element-wise non-linearity.

�
�
�
�det

�
@g(z; � )

@z

� �
�
�
� =

�
�
�det

�
I + h0(wT z + b)wuT

� �
�
�

=
�
�
�1 + h0(wT z + b)wT u

�
�
�

The transformation is invertible if (just one of example)

h = tanh; h0(wT z + b)uT w � � 1:

https://arxiv.org/pdf/1505.05770.pdf
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