
Deep Generative Models

Roman Isachenko

Moscow Institute of Physics and Technology

2019

1 / 26

Generative models zoo

Generative	Models

Likelihood	based
models

Implicit	density
models

Tractable
density

Approximate
density

Autoregressive	models
Flow	models Latent	variable	models

GANs

Radford A., Metz L., Chintala S. Unsupervised representation learning with deep

convolutional generative adversarial networks https://arxiv.org/abs/1511.06434

2 / 26

https://arxiv.org/abs/1511.06434

Bayesian framework

Bayes theorem

p(tjx) =
p(xjt)p(t)

p(x)
=

p(xjt)p(t)R
p(xjt)p(t)dt

I x – observed variables;

I t – unobserved (latent) variable;

I p(xjt) – likelihood;

I p(x) – evidence;

I p(t) – prior.

3 / 26

Variational Lower Bound

We are given the set of objectsX = f xi gn
i=1 . The goal is to

perform bayesian inference on the latent variablesT = f t i gn
i=1 .

Empirical Lower BOund (ELBO)

logp(X) = log
p(X; T)
p(T jX)

=

=
Z

q(T) log
p(X; T)
p(T jX)

dT =
Z

q(T) log
p(X; T)q(T)
p(T jX)q(T)

dT =

=
Z

q(T) log
p(X; T)

q(T)
dT +

Z
q(T) log

q(T)
p(T jX)

dT =

= L(q) + KL(q(T)jjp(T jX)) � L (q):

4 / 26

Mean �eld approximation

Assumption

q(T) =
kY

i =1

qi (T i):

Empirical Lower BOund (ELBO)

L (q) =
Z

q(T) log
p(X; T)

q(T)
dT =

Z kY

i =1

qi (T i) log
p(X; T)

Q k
i=1 qi (T i)

kY

i =1

dT i =

=
Z kY

i =1

qi logp(X; T)
kY

i =1

dT i �
kX

i =1

Z kY

j =1

qj logqi

kY

i =1

dT i =

=
Z

qj

2

4
Z

logp(X; T)
Y

i 6= j

qi dT i

3

5 dT j �

�
Z

qj logqj dT j + const(qj) ! max
qj

5 / 26

Mean �eld approximation

L (q) =
Z

qj

2

4
Z

logp(X; T)
Y

i 6= j

qi dZ i

3

5 dT j �
Z

qj logqj dT j + const(qj) =

=
Z

qj log p̂(X; T j)dT j �
Z

qj logqj dT j + const(qj) ! max
qj

log p̂(X; T j) = Ei 6= j logp(X; T) + const(qj)

Ei 6= j logp(X; T) =
Z

logp(X; T)
Y

i 6= j

qi dT i

L (q) =
Z

qj (T j) log p̂(X; T j)dT j �
Z

qj (T j) log qj (T j)dT j + const(qj) =

= KL(qj (T j)jj p̂(X; T j)) + const(qj) ! max
qj

:

6 / 26

Mean �eld approximation

ELBO

L (q) = KL(qj (T j)jj p̂(X; T j)) + const(qj) ! max
qj

:

Solution

qj (T j) = p̂(X; T j)

logqj (T j) = Ei 6= j logp(X; T) + const

Let use factorization on two parts:T = f Z; � g.

7 / 26

Mean �eld approximation

Solution

logqj (T j) = Ei 6= j logp(X; T) + const

EM algorithm

I Initialize � � ;
I E-step

q(Z) = arg max
q

L (q; � �) = arg min
q

KL(qjjp) = p(ZjX; � �);

I M-step
� � = arg max

�
L (q; �);

I Repeat E-step and M-step until convergence.

8 / 26

Likelihood-based models so far...

Autoregressive models

p(xj�) =
mY

i =1

p(xi jx1:i � 1; �)

I tractable likelihood,
I no inferred latent factors.

Latent variable models

p(xj�) =
Z

p(x; zj�)dz

I latent feature representation,
I intractable likelihood.

How to build model with latent variables and tractable likelihood?

9 / 26

Flows intuition
Let X be a random variable with densitypX (x). Then

Z = F(X) =
Z x

�1
p(t)dt � U[0; 1]:

Hence
Z � U[0; 1]; X = F � 1(Z) X � p(x):

https://sites.google.com/view/berkeley-cs294-158-sp19/home
10 / 26

Change of variables

Theorem
Let

I x is a random variable,
I f : Rm ! Rm is a di�erentiable, invertible function,
I z = f (x), x = f � 1(z) = g(z).

Then

p(x) = p(z)

�
�
�
�det

�
@z
@x

� �
�
�
� = p(f (x))

�
�
�
�det

�
@f (x)

@x

� �
�
�
� :

Note

I x and z have the same dimensionality;

I
�
�
�det

�
@f (x)

@x

� �
�
� =

�
�
�det

�
@g � 1(x)

@x

� �
�
� =

�
�
�det

�
@g(z)

@z

� �
�
�
� 1

.

11 / 26

Fitting
ows

MLE problem

� � = arg max
�

p(Xj�) = arg max
�

nY

i =1

p(xi j�) = arg max
�

nX

i =1

logp(xi j�):

Challenge
p(xj�) could be intractable.

Fitting
ow to solve MLE

p(xj�) = p(f (x; �))

�
�
�
�det

�
@f (x; �)

@x

� �
�
�
�

12 / 26

Flows

I Likelihood is given byz = f (x; �) and change of variables.
I Sampling ofx is performed by sampling from a base

distribution p(z) and applyingx = f � 1(z; �) = g(z; �).
I Latent representation is given byz = f (x; �).

https://arxiv.org/pdf/1605.08803.pdf
13 / 26

Flows

logp(xj�) = log p(f (x; �)) + log

�
�
�
�det

�
@f (x; �)

@x

� �
�
�
�

De�nition
Normalizing
ow is adi�erentiable, invertible mapping from datax
to the noisez.

I Normalizing - convert data distribution tonoise.
I Flow - sequence of such mapping is also a
ow

z = fK � � � � � f1(x); x = f � 1
1 � � � � � f � 1

K (z) = g1 � � � � � gK (z)

p(x) = p(fK � � � � � f1(x))

�
�
�
�det

�
@fK � � � � � f1(x)

@x

� �
�
�
� =

= p(fK � � � � � f1(x))
KY

k=1

�
�
�
�det

�
@fk

@fk� 1

� �
�
�
� :

14 / 26

Flows

logp(xj�) = log p(f (x; �)) + log

�
�
�
�det

�
@f (x; �)

@x

� �
�
�
�

What we want

I E�cient computation of Jacobian @f (x;�)
@x ;

I E�cient sampling from the base distributionp(z);
I Easy to invertf (x; �).

15 / 26

Planar Flows, 2015

g(z; �) = z + uh(wT z + b):

I � = f u; w; bg;
I h is a smooth element-wise non-linearity.

�
�
�
�det

�
@g(z; �)

@z

� �
�
�
� =

�
�
�det

�
I + h0(wT z + b)wuT

� �
�
�

=
�
�
�1 + h0(wT z + b)wT u

�
�
�

The transformation is invertible if (just one of example)

h = tanh; h0(wT z + b)uT w � � 1:

https://arxiv.org/pdf/1505.05770.pdf

16 / 26

	Intro
	Flow models

