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Interactive image segmentation 

Input:    
image,  
user-defined “seeds” 

Output:    
segmentation 



MRFs for Image Labelling 

Posterior Probability Likelihood Term Pairwise 
Consistency Prior 

Energy 

Negative log 



Maximum a Posteriori (MAP) Inference 

Energy Minimization 



Image Segmentation 

N = number of pixels 

[Boykov and Jolly ‘ 01]  [Blake et al. ‘04] [Rother, Kolmogorov and Blake  `04] 



Unary potentials 

[Boykov and Jolly ‘ 01]  [Blake et al. ‘04] [Rother, Kolmogorov and Blake  `04] 

Unary Cost    
Dark (negative)     Bright (positive) 

Pixel color 



Pairwise potentials 

[Boykov and Jolly ‘ 01]  [Blake et al. ‘04] [Rother, Kolmogorov and Blake  `04] 

Discontinuity 
Cost         

Smoothness Prior 



Energy minimization 

[Boykov and Jolly ‘ 01]  [Blake et al. ‘04] [Rother, Kolmogorov and Blake  `04] 

If all                  then the energy is submodular  
and can be minimized  with  max-flow/min-cut algorithm.  



Problems 

• Encourages Short Boundaries 
[Jegelka & Bilmes, 11] 

 

• Does not enforce connectivity 
[Vincente et al.] [Nowozin and Lampert] [Rhemann et al.] 

 

• Inconsistent labeling of similar pixels 
[Kohli et al.  07, 08] 

 

• Consistency with Area/Boundary length 
[Boykov et al, 07][Lim et al, 08] 

 

 

 

 

Image Segmentation 



Example 



Example: GraphCut results 

Ground truth: 

Pairwise 
weight = 1.5 

Pairwise 
weight = 1.0 

Pairwise 
weight =  0.6 

Pairwise 
weight = 0.5 



Part 1: Cooperative cut model 



Image Segmentation 
Cooperative cut model 
[Jegelka and Bilmes,  11] 

Penalize types of 
boundaries not the actual 

number of boundaries!  

Overcoming short-boundary bias 

Encourages short 
boundaries  



Overcoming short-boundary bias 

• Divide edges into different types  
• Incorporate a higher order 

consistency potential over the 
edges 

[Jegelka and Bilmes,   11] 



Constructing groups 
 For each edge construct a feature vector: 

absolute difference between two nodes. 

 

Exclude edges with no difference.  

 

Cluster all remaining edges into 10 clusters using K-means. 

 

For each cluster use a truncated linear 

Function F 



Example 

 Cooperation 

Ground truth: 

Pairwise 
weight = 1.0 



Example 

 Cooperation 

Ground truth: 

Pairwise 
weight = 1.0 



Lower envelop of 
concave 

functions is 
concave 

[Kohli et al. 08] [Kohli and Kumar, 10]  

Transformation to pairwise energy 

Higher Order 
Submodular Function  

Quadratic Submodular 
Function  

1 2 3 



Our transformation 

+  Switching variables 

+  Standard  reduction for                    using  variable  



Transformation 

y1 y2 y3 

h1 

z12 z23 

y1 y2 y3 

Groups 

Edges 

Nodes 



Observations 

h1 

z12 z23 

y1 y2 y3 

 
   1)  non-submodular factors are concentrated around 
   2)   if we fix        the energy becomes submodular  
 
  

Groups 

Edges 

Nodes 



Algorithms 

1) Exhaustive search over       

 a)  dynamic  graph cuts  [Kohli and Torr, 05] 

 b)  special order of search 

 

2) Different greedy strategies 

 a)   descent till convergence 

 b)   1 pass over variables 

 

3)   Iterative bound minimization [Jegelka and Bilmes, 11] 



Qualitative results 

Graph cut     

[Jegelka&Bilmes, 11] 

Global minimum 



Quantitative results 

Method Energy Time Error 

GraphCut 1.0 0.19 1.61 

It. bound min. 0.39 0.47 0.77 

Global minimum 0.0 14.32 0.73 

Greedy 0.0 2.37 0.73 

1 pass 0.03 1.23 0.87 



Multilabel results 



Part 2: High-order losses 



Training setup 

Data: 

Energy parameterization: 

Goal:  find parameters such that model produces “good” results   
 
“Good” is defined by loss function  



Large-margin approach 

[Tsochantaridis et al, 05]  [Taskar et al  04,05]  [Szummer  et al  08]…… 

The problem can be solved with cutting-plane method. 

Key step:  finding the most violated constraint 



Loss-related problems 

• Correspondence to human perception 

 

• We are not optimizing the loss, but its 
hinge-bound 

 

 

• Biased loss estimates 
– Certain losses have higher Generalization 

error  
 

 



Simple (decomposable) losses 

Hamming distance: 

Weighted Hamming distance: 

Hamming distance averaged over classes (HAC): 



High-order losses 
[Tarlow and Zemel, 2012] 

 

PASCAL VOC loss  (Jaccard distance): 

 

 

 

 

Loss augmented inference by message-passing  



High-order losses 
[ Pletscher and Kohli, 2012] 

 

Observation: 

the loss enters the energy minimization with the negative sign, 
so supermodular losses are good 

 

Example:  “count” loss 

 

 

 

More generally,  any upper envelope of linear functions can be 
done    

[Kohli  and  Kumar, 2010] 

 

 

 

 

 



Family of losses 

S – arbitrary sets of pixels  

Special cases: 
• Hamming (weighted, averaged) loss 
• “Count” loss 
 
 
 



Silhouette loss 

S  –  rows and columns 



Skeleton based loss 

S  can  depend  on the groundtruth 



Experimental setup 
• 60 images  that are “more difficult” 
[Gulshan et al., 2010; Pletscher and Kohli, 2012] 

• 8-neighborhood 

• 51 unary features: 

– color (GMM) 

– geodesic distances from seeds 

• 6 pairwise features: (contrast sensitive) Potts  

• Large enough seeds to make the problem easier 



Results 

Hamming loss Weighted 
Hamming loss 

HAC Silhouette Skeleton 



Hinge bound is not tight! 

Hamming loss 
Hamming  hinge bound 

Lower bound on the hinge loss 

Area loss 
Area hinge loss 

Lower bound on the hinge loss 



Correlation between a loss and a hinge 
bound on the training set 



Training with one loss,  
testing with the other 



Thank you! 


