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Abstract

We adopt the Relevance Vector Machine (RVM) framework to handle cases of table-
structured data such as image blocks and image descriptors. This is achieved by coupling
the regularization coefficients of rows and columns of features. We present two variants
of this new gridRVM framework, based on the way in which the regularization coefficients
of the rows and columns are combined. Appropriate variational optimization algorithms
are derived for inference within this framework. The consequent reduction in the number
of parameters from the product of the table’s dimensions to the sum of its dimensions
allows for better performance in the face of small training sets, resulting in improved resis-
tance to overfitting, as well as providing better interpretation of results. These properties
are demonstrated on synthetic data-sets as well as on a modern and challenging visual
identification benchmark.

Keywords: Bayesian learning, variational inference, feature selection, Relevance Vector
Machine, Automatic Relevance Determination, image classification

1. Introduction

Generalized linear models have been a popular approach to regression and classification
problems for decades. Special attention is often paid to obtain sparse decision rules, where
most of the assigned weights equal zero. Within a Bayesian framework the detection of
relevant features can be done automatically by assigning an individual regularization co-
efficient to each weight. This process is called automatic relevance determination (ARD).
The Relevance Vector Machine (RVM) is an important example of successful application of
ARD to linear/logistic regression (see Tipping (2001)).

In this paper we generalize the RVM framework to the case of tabular data, i.e. cases
where an object is described by a matrix of features. Tabular data arises in many domains
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Figure 1: The illustration of “grid” approach on the LFW data. Each image is split into
63 blocks (a) and for each block 8 descriptors are computed. GridRVM assigns
individual regularization coefficients for each block and each descriptor. The
relevance of blocks (the darker the more informative) is shown in (b) and the
relevance of descriptors (inverse regularization coefficient) is shown in (c).

(see section 2). Of course, it is always possible to convert tables to feature vectors and run
a standard learning algorithm. We will, however, show that this may sometimes lead to
overfitting. Here, we suggest assigning individual regularization coefficients to each column
and row of the table. The regularization coefficient of the feature in position ij in the table
is then the result of the composition of the coefficients for the ith row and the jth column.
We consider two variants of such compositions: product and summation of regularization
coefficients, thus deriving p- and s-gridRVM models. Variational inference is used to obtain
iterative equations for learning in these models. We demonstrate results on synthetic and
real-world problems and show that the gridRVM approach prevents overfitting in case of
small datasets. In particular we address the problem of same/not-same face classification in
the Labeled Faces in the Wild (LFW) image set (see Huang et al. (2007)). We convert each
image to a tabular presentation by computing a set of descriptors on distinct image blocks.
GridRVM is then applied to find the most relevant blocks and descriptors (see fig. 1).

The rest of the paper is organized as follows. Motivation and related work are given
in sections 2 and 3 respectively. Section 4 presents definitions of the p- and s-gridRVM
models and establishes the notation used thereafter. Iterative learning algorithms based on
variational inference are described in section 5. We conclude with experiments on illustrative
and real-world problems in section 6.

2. Motivation

In classical machine learning theory, a training set consists of a number of objects (prece-
dents) X = {~xn}N

n=1, each represented as a vector of features ~xn = (xn(1), . . . , xn(d)) ∈ Rd.
It is assumed that there is no hierarchy in the space of features. This is not, however, al-
ways the optimal representation. In some cases, a tabular presentation is more convenient.
Objects are then described by a number of features that form a table rather than a single
vector.

A natural example of such case arises in a region/descriptor-based framework for image
analysis. Within this framework, an image is split into several regions (blocks) and a set
of descriptors is then computed for each region. Then, we may associate each feature with
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the pair region/descriptor and form a tabular view of a single image. Note that often the
number of features extracted from single image exceeds the number of images in the whole
training set, resulting in increased risk of overfitting.

Another example is related to the use of radial basis functions (RBF) in regression /
classification algorithms. Traditionally, RBF depends only on the distance ρ(~x, ~yi) between
the object ~x and some predefined point ~yi in the space of features Rd

φi(~x) = f(ρ(~x, ~yi)), i ∈ {1, . . . , m}.

Each object is described by a vector of m RBF values. Gaussian RBFs φi(~x) = exp(−δ‖~x−
~yi‖2) are a popular “rule-of-thumb” choice in many cases. The obvious drawback of Gaus-
sian RBF is their low discriminative ability in the presence of numerous noisy features. To
deal with noisy features one may consider basis functions consisting of a single feature

φij(~x) = f(|x(j) − yi(j)|).

Although representing ~x as a vector (φ11(~x), . . . , φm,d(~x)) is still possible, it may be more
natural to form a table of m columns and d rows.

The tabular representation of data provides new options in analyzing feature sets. In
particular, we may search for relevant columns and rows instead of searching for relevant
features by setting one regularization coefficient for each column and row, hence reducing
the number of hyperparameters from m×d to m+d. With the reduced number of adjustable
parameters we may expect the final decision rule to have better generalization properties.

3. Related work

The idea of treating image features as tables is not new and has been considered by a
number of authors. Many papers on tabular data consider the problem of dimensionality
reduction (either supervised or unsupervised). In Yang et al. (2004) 2-dimensional PCA
is proposed where each data point is treated as a matrix. In Xu et al. (2004) the authors
proposed an image reconstruction criterion to obtain the original image matrices using
two low dimensional coupled subspaces, which encode the row and column subspaces of
the image. They suggested an iterative method, CSA (Coupled Subspaces Analysis) to
optimize this criterion. They also prove that PCA and 2D-PCA are special cases of CSA.
The generalization of LDA to tabular data has been proposed in Ye et al. (2004) and Li and
Yuan (2005). More recently, Yang et al. (2009) has proposed projecting images along both
row and column directions, in an effort to maximize the so called Laplacian Bidirectional
Maximum Margin Criterion (LBMMC).

A variant of the Zero-norm SVM feature selection algorithm for tabular data was pre-
sented in Wolf et al. (2007). It was shown that the family of m×d tabular linear separators
that form matrices of rank k has a VC-dimension of no more than k(m + d) log(k(m + d)),
which is much lower than the VC-dimension of md + 1 obtained for linear functions over
the vector representation.

In the context of sparse methods several non-Bayesian techniques have been proposed,
for example, Boser et al. (1992) and Tibshirani (1996). Automatic relevance determination
was first proposed in MacKay (1992) which provides a Bayesian framework for determining
irrelevant parameters in machine learning models. The assignment of individual regular-
ization coefficient to each weight makes it possible to get extremely sparse decision rules.
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Unlike non-Bayesian methods, ARD does not require to set manually the values of the
sparsity controlling regularization parameters. The application of ARD to generalized lin-
ear models and in particular to linear/logistic regression was proposed in Tipping (2001) as
the Relevance vector machine model (RVM).

Since fully Bayesian inference is intractable even for regression problems, different au-
thors have used some approximations of the general Bayesian scheme. These include evi-
dence maximization (see MacKay (1992) and Tipping (2001)), marginalization w.r.t. the
hyperparameters (see Williams (1995) and Cawley and Talbot (2006)), and the variational
inference (see Bishop and Tipping (2000)).

In case of classification further approximations are necessary to perform inference. Var-
ious approximations of the likelihood function with a Gaussian were suggested. In Tipping
(2001) the authors used Laplace approximation. Local variational methods were proposed
in Jaakkola and Jordan (2000). The closely related expectation propagation technique
(see Minka (2001)) for approximate Bayesian inference in generalized linear models was
suggested in Qi et al. (2004). Although ARD methods have been applied successfully for
the search of relevant features, objects, and basis functions in many domains, over- and
underfitting of RVM was reported in some cases (see Qi et al. (2004)).

To our knowledge, ARD methods have so far only been applied to problems where the
objects are represented as vectors of features. Here, we extend the ARD framework to the
case of tabular data.

4. GridRVM models

Consider a regression and two-class classification problem with tabular data. Let (X,~t) =
{~xn, tn}N

n=1 be the training set, where tn ∈ R are target values for regression problem and
tn ∈ {−1, 1} are class labels for classification problem. Each object ~xn is represented as a
table of generalized features (φij(~xn))M1,M2

i,j=1 . Note that we will also use one-index notation
(φk(~xn))M

k=1, M = M1M2 when we need to treat the description of the object as a vector.
Define the following probabilistic model for regression (p-gridRVR):

p(~t, ~w, ~α, ~β, γ|X) = p(~t|X, ~w, γ)p(~w|~α, ~β)p(~α)p(~β)p(γ),

p(~t|X, ~w, γ) =
N∏

n=1

N (tn|~wT ~φ(~xn), γ−1),

p(~w|~α, ~β) =

∏M1,M2
i,j=1

√
αiβj

√
2π

M1M2
exp

−1
2

M1,M2∑
i,j=1

αiβjw
2
ij

 , (1)

p(~α) =
M1∏
i=1

G(αi|a0, b0), (2)

p(~β) =
M2∏
j=1

G(βj |c0, d0), (3)

p(γ) = G(γ|e0, f0).

Here G(αi|a0, b0) stands for a gamma distribution over αi with parameters a0, b0 and all
αi, βj , γ ≥ 0. Note that the number of regularization coefficients ~α and ~β is M1 + M2 while
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the number of weights ~w is M1M2. Within this model we assign independent regularization
coefficients to each row and column of the tabular presentation. The regularization coeffi-
cient for the weight wij is the result of a combination of αi and βj . In p-gridRVR we take
the product of the two. Alternatively, we may consider the sum, i.e.

p(~w|~α, ~β) =

∏M1,M2
i,j=1

√
αi + βj

√
2π

M1M2
exp

−1
2

M1,M2∑
i,j=1

(αi + βj)w2
ij

 , (4)

We refer to this model as s-gridRVR. Note that if we consider independent regularization
coefficients αij for each position in tabular representation, we get the standard RVR model.

In p- and s-gridRVR models we consider the joint influence of the row and column of
each table entry on the associated feature weight. However the models have one important
distinction. In the case of s-gridRVR, large values of αi mean that all regularization coeffi-
cients for the ith row are at least as large as αi. The same of course holds for large values of
βj . In p-gridRVR the situation is different. Large values of, say, αi do not necessarily imply
large values of the regularization coefficient for a particular weight wij since the coefficient
βj may have a small value. Thus we may expect a different behavior from these models.

Now we define the probabilistic model for classification (p-gridRVM):

p(~t, ~w, ~α, ~β|X) = p(~t|X, ~w)p(~w|~α, ~β)p(~α)p(~β),

where priors are computed using (1), (2), (3) and data likelihood function is

p(~t|X, ~w) =
N∏

n=1

σ(tn ~wT ~φ(~xn)).

Here σ(y) = 1/(1 + exp(−y)) is a logistic function. Similar to regression case we may
consider prior (4) instead of (1) thus defining the s-gridRVM model.

5. Variational learning

Variational methods (see Jordan et al. (1998)) are popular technique for inference in Bayesian
models. These methods allow to move from hardly computable model evidence to its lower
bound, which is much simpler for estimation. In this section we first briefly describe basic
ideas of the variational approach and then show its application for learning in the p- and
s-gridRVM models.

5.1 Global variational inference

Suppose we are given a probabilistic model with variables (~t, ~θ), where ~t is observable and
~θ is not. We would like to estimate the model evidence

p(~t) =
∫

p(~t, ~θ)d~θ,

which we assume cannot be found analytically. Variational inference introduces here some
distribution over the unobservable variables q(~θ). Using this distribution the model evidence
can be decomposed as follows

log p(~t) = L(q) + KL(q||p(~θ|~t)),
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where

L =
∫

q(~θ) log
p(~θ,~t)

q(~θ)
d~θ (5)

and KL(q||p) is the Kullback-Leibler divergence between two distributions. Since KL(q||p) ≥
0, L is a lower bound on the log-evidence. Besides, log p(~t) does not depend on q(~θ) and
hence maximization of the lower bound L w.r.t. q(~θ) is equivalent to minimization of the
KL divergence between q(~θ) and posterior distribution p(~θ|~t).

Now consider the case when the distribution q(~θ) has a factorized form

q(~θ) =
∏

i

qi(~θi).

Here {~θi} is a decomposition of a full set of variables so that ~θ = ti
~θi. In Jordan et al. (1998)

it’s shown that maximization of (5) can be done iteratively by the following recalculation
formula:

qi(~θi) =
1
Z

exp

∫
log p(~t, ~θ)

∏
j 6=i

qj(~θj)d~θj

 , (6)

where Z is a normalization constant ensuring that qi(~θi) is a distribution. In this recalcu-
lation process the lower bound (5) monotonically increases.

5.2 Local variational inference

Global variational methods are supposed to move from the hardly computable model ev-
idence to its lower bound. However, in many practical models (including p- and s-gridRVM)
this lower bound is still analytically intractable. The local variational approach (see Jaakkola
and Jordan (2000)) introduces a further bound on p(~θ,~t):

p(~θ,~t) ≥ F (~θ,~t, ~ξ) > 0.

This bound is tight for some particular value of ~ξ and so it is local. Substituting this bound
into (5) gives the following result:

log p(~t) ≥ L ≥ Llocal =
∫

q(~θ) log
F (~θ,~t, ~ξ)

q(~θ)
d~θ.

The last expression can be optimized w.r.t. q(~θ) and ~ξ for a sensible choice of a local
variational bound.

5.3 p-gridRVM

In a regression problem we wish to calculate

p(tnew|~xnew,~t,X) =
∫

p(tnew|~xnew, ~w, γ)p(~w, ~α, ~β, γ|~t, X)d~wd~αd~βdγ (7)

for any new object ~xnew. For the model p-gridRVR as well as for the model s-gridRVR this
integration is intractable and hence some approximation scheme is needed. Here we use the
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variational approach, which has been successfully applied for the conventional RVM model
in Bishop and Tipping (2000), and try to find a variational approximation q(~w, ~α, ~β, γ) of
the true posterior p(~w, ~α, ~β, γ|~t,X) in the following family of factorized distributions:

q(~w, ~α, ~β, γ) = q~w(~w)q~α(~α)q~β
(~β)q~γ(~γ). (8)

Then (7) can be reduced to the integration over the factorized distribution q:

p(tnew|~xnew,~t,X) '
∫

p(tnew|~xnew, ~w, γ)q(~w, ~α, ~β, γ)d~wd~αd~βdγ =∫
p(tnew|~xnew, ~w, γ)q~w(~w)qγ(γ)d~wdγ. (9)

Use of the global variational approach for the p-gridRVR model leads to the estimation
of the following lower bound of the model log-evidence:

log p(~t|X) ≥ L =
∫

log
p(~t|X, ~w, γ)p(~w|~α, ~β)p(~α)p(~β)p(γ)

q~w(~w)q~α(~α)q~β
(~β)qγ(γ)

×

q~w(~w)q~α(~α)q~β
(~β)qγ(γ)d~wd~αd~βdγ. (10)

Maximization of the criterion function (10) w.r.t. distributions q~w(~w), q~α(~α), q~β
(~β),

qγ(γ) using (6) leads to the following result:

q~w(~w) = N (~w|~µ,Σ), (11)

q~α(~α) =
M1∏
i=1

G(αi|ai, bi), (12)

q~β
(~β) =

M2∏
j=1

G(βj |cj , dj), (13)

qγ(γ) = G(γ|e, f), (14)

where

Σ =
(
diag(E~ααiE~β

βj) + EγγΦT Φ
)−1

,

~µ = EγγΣΦT~t, (15)

ai = a0 +
M2

2
, bi = b0 +

1
2

M2∑
j=1

E~β
βjE~ww2

ij , (16)

cj = c0 +
M1

2
, dj = d0 +

1
2

M1∑
i=1

E~ααiE~ww2
ij , (17)

e = e0 +
N

2
, f = f0 +

1
2
(~tT~t − 2~tT ΦE~w ~w + tr(ΦΣΦT ) + ~µT ΦT Φ~µ). (18)

The necessary statistics are calculated as follows:

E~w ~w = ~µ, (19)

E~ww2
ij = Sij,ij + µ2

ij , (20)

E~ααi =
ai

bi
, (21)

E~α log αi = Ψ(ai) − log bi, (22)
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E~β
βj =

ci

di
, (23)

E~β
log βj = Ψ(cj) − log dj , (24)

Eγγ =
e

f
, (25)

Eγ log γ = Ψ(e) − log d, (26)

where Ψ(a) = d
da log Γ(a) — digamma function. The lower bound (10) can be calculated

analytically.
Coming back to decision making (9) with (11) and (14) it can be shown that the inte-

gral (9) equals to∫
N (tnew|~µT ~φ(~xnew), γ−1 + ~φT (~xnew)Σ~φ(~xnew))G(γ|e, f)dγ.

This is the one-dimensional integral and hence it can be easily estimated using the Monte
Carlo technique. However, if N is large enough we can use the following estimate (see Bishop
and Tipping (2000)):

p(tnew|~xnew,~t,X) ' N
(

tnew

∣∣∣∣~µT ~φ(~xnew),
1

Eγγ
+ ~φT (~xnew)Σ~φ(~xnew)

)
.

In contrast to the p-gridRVR model, the use of the global variational approach for
the p-gridRVM model for classification leads to the evidence lower bound that can’t be
computed analytically. Here we follow the variational method for the conventional RVM
model presented in Bishop and Tipping (2000) and use the local variational approach by
introducing the Jaakkola-Jordan inequality (see Jaakkola and Jordan (2000)) for the data
likelihood function:

p(~t|X, ~w) ≥ F (~t,X, ~w, ~ξ) =
N∏

n=1

σ(ξn) exp
(

zn − ξn

2
− λ(ξn)(z2

n − ξ2
n)

)
, (27)

where σ(y) = 1/(1+exp(−y)) — sigmoid function, λ(ξ) = tanh(ξ/2)/(4ξ), zn = tn ~wT ~φ(~xn).
This bound is tight for ξn = zn and is illustrated on Fig. 2, left. Then substituting the
inequality (27) into the evidence lower bound we obtain:

log p(~t|X) ≥ Llocal =
∫

log
F (~t,X, ~w, ~ξ)p(~w|~α, ~β)p(~α)p(~β)

q~w(~w)q~α(~α)q~β
(~β)

×

q~w(~w)q~α(~α)q~β
(~β)d~wd~αd~β. (28)

It can be shown that maximization of the criterion function (28) w.r.t. the distributions
q~w(~w), q~α(~α), q~β

(~β) and the variational parameters ~ξ leads to formulae (11), (12), (13),
where the corresponding parameters are calculated using (16), (17) and

Σ =
(
diag(E~ααiE~β

βj) + 2ΦT ΛΦ
)−1

, Λ = diag(λ(ξn)),

~µ =
1
2
ΣΦT~t, (29)

ξ2
n = ~φT (~xn)E~w ~w~wT ~φ(~xn). (30)
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Figure 2: Left: Jaakkola-Jordan bound (27) for case N = 1, right: one-dimensional projec-
tion of the bound (31) for parameters (y, η, ζ) = (3, 2, 4).

The necessary statistics are computed using (19)-(24). The decision making scheme for this
case is the following:

p(tnew|~xnew,~t,X) =
∫

p(tnew|~xnew, ~w)q~w(~w)q~α(~α)q~β
(~β)d~wd~αd~β =∫

p(tnew|~xnew, ~w)q~w(~w)d~w =
∫

σ(tnew ~wT ~φ(~xnew))N (~w|~µ,Σ)d~w =∫
σ(z)N (z|tnew~µT ~φ(~xnew), ~φT (~xnew)Σ~φ(~xnew))dz.

The last integral is one-dimensional one and thus can be effectively estimated using the
Monte Carlo technique. The useful analytical approximation for this integral is proposed
in MacKay (1992): ∫

σ(z)N (z|m, s2)dz ' σ

 m√
1 + πs2

8

 .

5.4 s-gridRVM

Similar to the previous case we propose to apply the variational approach for the s-gridRVM
model. In this way we try to find a variational approximation q to the true posterior
p(~w, ~α, ~β, γ|~t,X) in the family of factorized distributions (8) by optimizing the lower bound (10).
However, in the case of the s-gridRVM model the criterion function (10) becomes intractable
and we need a further lower bound in sense of the local variational methods. For this rea-
son let us consider the function f(x, y) = log(x + y). This function is strictly concave.
Now let us substitute the variables x1 = log(x), y1 = log(y) and consider the function
f1(x1, y1) = f(exp(x1), exp(y1)) = log(exp(x1) + exp(y1)). The function f1 is convex and
hence satisfies the following inequality:

f1(x1, y1) ≥
∂f1

∂x1
(η)(x1 − η) +

∂f1

∂y1
(ζ)(y1 − ζ) + f1(η, ζ)
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for arbitrary η and ζ. This inequality is just a relation between the function and its tangent
line and becomes equality when x1 = η, y1 = ζ. Moving back to initial variables x, y, we
obtain the following variational bound:

log(x + y) ≥ log(η + ζ) +
η(log(x) − log(η)) + ζ(log(y) − log(ζ))

η + ζ
, (31)

which is tight when x/y = η/ζ. One-dimensional projection of this bound is illustrated in
Figure 2, right. Inequality (31) leads to the following bound on log p(~w|~α, ~β):

log p(~w|~α, ~β) =
1
2

M1,M2∑
i,j=1

[log(αi + βj) − (αi + βj)w2
ij ] −

M1M2

2
log 2π ≥

G(~w, ~α, ~β, ~η, ~ζ) =
1
2

M1,M2∑
i,j=1

[
log(ηij + ζij) +

ηij(log(αi) − log(ηij))
ηij + ζij

+

ζij(log(βj) − log(ζij))
ηij + ζij

]
− 1

2

M1,M2∑
i,j=1

(αi + βj)w2
ij −

M1M2

2
log 2π.

This bound is tight if ηij = αi and ζij = βj . Substituting this inequality into (10) we obtain:

log p(~t|X) ≥
∫

log
p(~t|X, ~w, γ)G(~w, ~α, ~β, ~η, ~ζ)p(~α)p(~β)p(γ)

q~w(~w)q~α(~α)q~β
(~β)qγ(γ)

×

q~w(~w)q~α(~α)q~β
(~β)qγ(γ)d~wd~αd~βdγ. (32)

Maximization of the criterion function (32) w.r.t. distributions q~w(~w), q~α(~α), q~β
(~β),

qγ(γ) and variational parameters ~η, ~ζ leads to the formulae (11)-(14), where the corre-
sponding parameters are calculated using (15), (18) and

Σ =
(
diag(E~ααi + E~β

βj) + EγγΦT Φ
)−1

,

ai = a0 +
1
2

M2∑
j=1

ηij

ηij + ζij
, bi = b0 +

1
2

M2∑
j=1

E~ww2
ij , (33)

cj = c0 +
1
2

M1∑
i=1

ζij

ηij + ζij
, dj = d0 +

1
2

M1∑
i=1

E~ww2
ij , (34)

ηij = exp(E~α log αi), ζij = exp(E~β
log βj). (35)

Use of the variational approach for the s-gridRVM model for classification requires both
local variational bounds (27) and (31). In this case the optimal distribution q is obtained
using (11)-(13), where the corresponding parameters are computed using (29), (30), (33)-
(35) and

Σ =
(
diag(E~ααi + E~β

βj) + 2ΦT ΛΦ
)−1

, Λ = diag(λ(ξn)).
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Figure 3: Sinc results. Color legend: black – p-gridRVR, dark grey – s-gridRVR, light grey –
RVR. RMSE for train set is shown by dotted line, for test set – by solid line.
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Figure 4: Results for Mixture dataset. Color legend: black – p-gridRVM, dark grey – s-
gridRVM, light grey – RVM. Train error is shown by dotted line, test error – by
solid line.

89



Kropotov, Vetrov, Wolf, Hassner

-3 -2 -1 0 1 2 3
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5: Artificial datasets. Left: noisy sinc, right: classification problem Mixture.

6. Experiments

We start with artificial regression and classification problems and then consider a real-world
problem, for which tabular representation of data is natural.

6.1 Toy examples

First consider an artificial regression dataset. The training set consists of 100 points sampled
from one-dimensional sinc function on the interval [−10, 10] with additional uniform noise on
the interval [-0.2,0.2]. The testing set consists of 600 points without noise. The normalized
dataset is shown in Figure 5, left. In this experiment we add up to 20 normally distributed
noisy features and investigate the behaviour of the conventional variational RVR (see Bishop
and Tipping (2000)), p-gridRVR and s-gridRVR with 3 types of basis functions. In the
first case we take initial features, i.e. φj(~y) = y(j) (total d features). This corresponds
to a linear regression function. In the second case we take Gaussian RBFs of the form
φj(~y) = exp(−δ‖~y−~xj‖2), where ~xj are training objects (total N features). In the third case
we take separate RBFs calculated for each dimension, i.e. φij(~y) = exp(−δ(y(i) − xj(i))2)
(total Nd features). In the first two cases we have a standard vector representation of
objects, M2 = 1 for both gridRVRs and hence gridRVRs are very similar to standard RVR
here. In the last case we may treat objects’ representation both as matrix of size N × d
for gridRVRs and as a vector of length Nd for RVR. The experimental results (root mean
squared error, RMSE) are shown in figure 3 (case a for initial features, case b for standard
RBFs and case c for RBFs calculated for each dimension). In all cases δ = 5.55. In the first
case both train and test RMSE are above 0.4 because linear regression is inadequate for
explaining non-linear data. In the second case there is no tabular representation of feature
space and hence all three methods show almost similar performance that quickly degrade
with the addition of noisy features. In the third case conventional RVR begins to overfit
starting from several noisy features while both gridRVR methods show stable performance
even with 20 additional noisy features. This is because gridRVR methods require tuning
only 100 + d regularization parameters compared to 100d for conventional RVR. Figure 3,d
shows the number of the relevant basis functions (the ones with weights with absolute values
more than 0.1) for the third type of basis functions. We can see that s-gridRVR gives less
sparse solution compared to p-gridRVR.
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Comparing training time for gridRVRs and conventional RVR methods we observed
that per iteration training time were almost similar. Hence training times of all methods
fully depends on number of iterations for convergence. Although this number may differ
for various methods the resulting divergence in training time was at most 50% and in many
situations was almost zero.

Now consider an artificial classification dataset1 taken from Friedman et al. (2001) (see
Figure 5, right). This is a 2-class problem with 200 objects in the training set and 5000
objects in the test set. The feature space is two-dimensional and the data are generated from
a specified distribution with Bayesian error rate 19%. The optimal discriminative surface
is sufficiently non-linear. Here we again add up to 30 normally distributed noisy features
and consider behaviour of conventional variational RVM, p-gridRVM and s-gridRVM with 3
types of basis functions: initial (corresponds to a linear hyperplane) (see fig. 4,a), standard
Gaussian RBFs (see fig. 4,b) and Gaussian RBFs calculated for each dimension (see fig. 4,c).
In all cases δ = 5.55. Here in the first case we have more than 27% error rate for all three
methods because linear hyperplane is inadequate for this non-linear data. For the second
case all methods show similar performance and quickly overfit with the addition of noisy
features. However, the overfit speed for gridRVM methods is less than for RVM. In the last
case, where the tabular representation of data is appropriate, gridRVM methods show stable
performance resulting in 22–23% of errors even for 30 noisy features while RVM definitely
overfits starting from several noisy features. The number of the relevant basis functions for
the last type of basis functions is shown on fig. 4,d. We can see that again the s-gridRVM
model gives less sparse solution compared to p-gridRVM.
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Figure 6: LFW results. Please see the text for more details

6.2 Face image pair-matching

We test our method on the Labeled Faces in the Wild (LFW) pair-matching benchmark
(see Huang et al. (2007)). The LFW data set provides around 13,000 facial images of
5,749 individuals, each having from 1 to 150 images. These images were automatically
harvested from news websites and thus represent faces under challenging, unconstrained
viewing conditions. The goal of the benchmark is to determine, given a pair of images from

1. http://www-stat.stanford.edu/̃ tibs/ElemStatLearn/datasets/mixture.example.data to download
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the collection, whether the two images match (portray the same subject) or not. To this
end, 6,000 image pairs have been selected, half labeled “same” and half “not-same”. For
the purpose of testing, these pairs were further divided into ten, cross-validation “splits”.2

Our tests build on the ones described in Wolf et al. (2008), where state-of-the-art results
were obtained on the LFW benchmark. The results reported here employ the best perform-
ing descriptors for face-images and classifiers used in Wolf et al. (2008). Although other
descriptors have been proposed for general classification of images (e.g., the SIFT (Lowe
(1999)) and GIST (Oliva and Torralba (2001)) descriptors), the ones described next have
been tailored for images of faces and are therefore used here. Specifically, we use the fol-
lowing four image descriptors: Local Binary Patterns (LBP) Ojala et al. (2001), Center
Symmetric LBP (CSLBP) Heikkilä et al. (2006), and the Three and Four Patch LBP de-
scriptors (TPLBP and FPLBP resp.) Wolf et al. (2008). Each face image was subdivided
into 63 non-overlapping blocks of 23× 18 pixels centered on the face. A separate histogram
of codes was computed for each block, with 59 values for the uniform version of the LBP
descriptor, 16 values for each of the CSLBP and FPLBP descriptors, and 256 values for the
TPLBP descriptor.

Each pair of images to be compared is represented by one table of similarity values. The
rows of the tables correspond to types of similarities values, and the columns correspond to
the 63 facial regions depicted in Figure 1(a). The types of similarity values are all possible
combinations of the four image representation above, and four histogram distances and
similarities.

These four different histogram distances/similarities are computed block by block be-
tween the corresponding histograms of the two images. They are the L2 norm, the Hellinger
Distance obtained by taking the square root of the histogram values, the so called One-Shot
Similarity (OSS) measure (see Wolf et al. (2008)) (using the code made available by the
authors), and OSS applied to the square root of the histogram values. To compute OSS
scores we used 1,200 images in one of the training splits as a “negative” training set.

We report our results in Figure 6 where the pair-matching performance of s-gridRVM
and p-gridRVM is compared against two baseline methods. Both figures plot classification
scores across the ten-folds of the LFW benchmark, along with standard error values for
different amounts of training (measured as the percentage of nine splits used as a training
set). Figure 6(a) presents results using an 8 × 63 features of L2 and Hellinger distances
between the four image descriptors; in Figure 6(b) we add also the four OSS scores and
four OSS scores applied to the square roots of the histogram values.

As baseline methods we take linear SVM and standard RVM. We note that although
non-linear SVM may be used to obtain even better results, we follow here the experiments
reported in Wolf et al. (2008) and prefer linear SVM instead. As can be seen, the gridRVM
methods show a clear advantage over both baseline methods. This is particularly true when
only a small amount of training data is available. Although this advantage diminishes as
more training is made available, both grid methods remain superior. Note that the results
improve the ones reported in Wolf et al. (2008), where the same features were used for the
whole image and the reported accuracy was 0.7847. p-gridRVM and s-gridRVM showed
0.7934 and 0.7942 of correct answers respectively. Note that since the publication of Wolf

2. Here we use the aligned version of the image set made public at
http://www.openu.ac.il/home/hassner/data/lfwa
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et al. (2008), higher performance rates were reported on this benchmark. These, however,
required additional training information, were obtained through a different protocol, or
made possible by further processing of the images.

7. Conclusions

The experiments allow us to draw some conclusions. The first observation is that in some
learning scenarios gridRVM is significantly more robust w.r.t. overfitting than standard
RVM. This is particularly true for the case of small training samples with large amount
of basis functions. It is important to stress that in case of large samples both standard
and gridRVMs show almost identical results, so gridRVMs are not affected by underfitting
although we reduced the number of adjustable regularization coefficients. The second obser-
vation is that both gridRVMs are sparse both in terms of regularization coefficients (many
of them having large values) and in terms of the weights (many of whom are close to zero).
Therefore, this useful and important property of standard RVM is kept. Comparing p- and
s-gridRVM methods we may say that they show comparable performance with slight ad-
vantage of s-gridRVM. Also s-gridRVM is more robust to overfitting. However, p-gridRVM
should be preferred in cases when sparsity is important.

Note that the grid approach can be straightforwardly generalized for the case of ten-
sors (multidimensional tables). For example, we could treat the blocks in Figure 1 as
a two-dimensional array hence obtaining a third dimension (together with the descriptor
dimension) in the objects’ description.
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