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Abstract

 

—Accurate prediction of the generalization ability of a learning algorithm is an important problem in
computational learning theory. The classical Vapnik–Chervonenkis (VC) generalization bounds are too general
and therefore overestimate the expected error. Recently obtained data-dependent bounds are still overestimated.
To find out why the bounds are loose, we reject the uniform convergence principle and apply a purely combi-
natorial approach that is free of any probabilistic assumptions, makes no approximations, and provides an
empirical control of looseness. We introduce new data-dependent complexity measures: a 

 

local shatter coeffi-
cient 

 

and a nonscalar 

 

local shatter profile

 

, which can give much tighter bounds than the classical 

 

VC shatter
coefficient.

 

 An experiment on real datasets shows that the effective local measures may take very small values;
thus, the effective local VC dimension takes values in [0, 1] and therefore is not related to the dimension of the
space.
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The number of observations in data analysis prob-
lems is always finite. Nevertheless, the widely used
concept of 

 

probability

 

 is defined in terms of either an
infinitely large sample or a probability measure, which
are both unknown in practical situations. A.N. Kolmog-
orov pointed out that “getting rid of redundant probabi-
listic assumptions wherever possible seems to be an
important problem. In my lectures, I repeatedly
stressed the independent value of a purely combinato-
rial approach to information theory” [1]. In the preface
to the book [2], Yu.K. Belyaev wrote, “there is a strong
belief that in the theory of sampling methods one can
obtain meaningful analogs of the majority of basic
statements of probability theory and mathematical sta-
tistics, that by now have been obtained under the
assumption that the observations are independent.”
Thus, an idea has long been growing that one can con-
struct a meaningful theory that would deal only with
finite samples and would not be based on a hypothetical
set of “all conceivable objects” almost none of which
has ever been or will be observed in experiment.

In Section 1, we propose a weak probabilistic axiom
that is not based on measure theory and in which all
probabilities can be estimated directly in experiment.
This axiom agrees with the strong (Kolmogorov’s) axi-
oms; however, its application is restricted to the prob-
lems of data analysis. In Section 2, we introduce a gen-
eral statement of empirical prediction problem. In Sec-
tion 3, we consider a problem of predicting the
frequency of an event, which is closely related to the
law of large numbers. In Section 4, we consider a prob-
lem of learning from examples and the Vapnik–Cher-

vonenkis theory (VCT) under the weak axiom. In Sec-
tion 5, we analyze the main factors that are responsible
for overestimation of bounds in the VCT and propose
an empirical technique for measuring the degree of
overestimation due to each of these factors. In Section 6,
we construct a theory of generalization ability for logi-
cal rules and consider an algorithm that searches rules
in the form of conjunctions. In Section 7, we present the
results of empirical measurement of the VCT bounds
overestimation for a set of real classification problems
from the UCI repository.

1. WEAK PROBABILISTIC AXIOM

Suppose given a set of objects 

 

�

 

. Finite sequences
of objects are called 

 

samples from 

 

�

 

. Denote the set of
all samples from 

 

�

 

 by 

 

�

 

*. In any experiment, irrespec-
tive of past or future observations, one can observe only
a finite set of objects. Therefore, we will consider a
sample 

 

X

 

L

 

 = (

 

x

 

1

 

, …, 

 

x

 

L

 

), called a 

 

general

 

 or 

 

full

 

 sample
of length 

 

L

 

. Denote by 

 

S

 

L

 

 the group of all 

 

L

 

! permuta-
tions of 

 

L

 

 elements.

 

Axiom 1.1

 

 (on the independence of elements of a
sample). 

 

All permutations of a general sample

 

 

 

τ

 

X

 

L

 

, 

 

τ

 

 

 

∈

 

S

 

L

 

, 

 

have equal chances to realize.

 

Definition 1.1.

 

 Suppose given a predicate 

 

ψ

 

:

 

�

 

*  {0, 1} on a set of samples. The part of permu-
tations 

 

τ

 

X

 

L

 

 for which the predicate is true is called the

 

probability

 

 of event 

 

ψ

 

,

(1.1)Pτψ τXL( ) 1
L!
----- ψ τXL( ).

τ SL∈
∑=
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This probability depends on the sample 

 

X

 

L

 

. We
assume that only the sequence in which objects arise,
rather than the objects themselves, are random. The
symbol P

 

τ

 

 of probability should be interpreted as a
short notation of the average over all permutations 

 

τ

 

. In
the weak axiom, the term 

 

probability

 

 is meant only in
this sense—as a synonym for “part of permutations of
a sample.”

 

Definition 1.2.

 

 Let 

 

ξ

 

: 

 

�

 

*  

 

�

 

 be an arbitrary real
function of a sample. A function 

 

F

 

ξ

 

: 

 

�

 

  [0, 1] of the
form

(1.2)

is called a 

 

distribution

 

 of 

 

ξ

 

 on the sample 

 

X

 

L

 

.

 

Definition 1.3.

 

 The 

 

mathematical expectation

 

 of a
function 

 

ξ

 

: 

 

�

 

*  

 

�

 

 on the sample 

 

X

 

L

 

 is an average
over all permutations 

 

τ

 

:

(1.3)

Note that the probability and the mathematical
expectation are defined formally identically, as the

arithmetic mean: P

 

τ

 

 

 

≡

 

 E

 

τ

 

 

 

≡

 

 .

Consider an important particular case when the
predicate 

 

ψ

 

 is a function of two subsamples: 

 

ψ

 

(

 

X

 

L

 

) =

 

ϕ

 

(

 

X

 

l

 

, 

 

X

 

k

 

), where 

 

X

 

l

 

 

 

∪

 

 

 

X

 

k

 

 = 

 

X

 

L

 

, 

 

l

 

 + 

 

k

 

 = 

 

L

 

, and the value
of the predicate 

 

ϕ

 

 does not depend on the order of ele-
ments in the subsamples 

 

X

 

l

 

 and 

 

X

 

k

 

. Consider the set of

all 

 

N

 

 =  partitions of the general sample 

 

X

 

L

 

 into two

subsamples  and , where the subscript 

 

n

 

 = 1, …,

 

N

 

 denotes the partition number. Then, Axiom 1.1
implies that all partitions have equal chances of realize,
and the probability is defined as a part of partitions of
the sample 

 

X

 

L

 

:

 

Comparison with the strong probabilistic axiom.

 

In the classical (Kolmogorov’s) theory of probability, a
probability space 

 

〈

 

�

 

, 

 

Ω

 

, P

 

〉

 

 is introduced on the set of
objects 

 

�

 

; here, 

 

Ω is an additive σ-algebra of events on
�, and P is the probability measure that is defined on
elements of Ω and, as a rule, is unknown. One considers
samples of objects drawn independently from P and
analyzes some measurable functions of these samples.

Under the weak axiom, the probability measure is
introduced on a finite set of partitions, the probability
distribution being uniform. Nevertheless, these weak
probabilistic assumptions are sufficient for obtaining
many fundamental facts of probability theory and
mathematical statistics.

Fξ z( ) Pτ ξ τXL( ) z<[ ]=

Eτξ τXL( ) 1
L!
----- ξ τXL( ).

τ SL∈
∑=

1
L!
-----

τ SL∈
∑

CL
l

Xn
l Xn

k

Pτψ τXL( ) Pnϕ Xn
l Xn

k,( ) 1
N
---- ϕ Xn

l Xn
k,( ).

n 1=

N

∑= =

If probability (1.1) is calculated under the weak
axiom, Pτψ(τXL) = p(XL), then the result can easily be
translated into the strong axiomatics. Indeed, if we
assume that the sample XL is independent, then

ψ(XL) = ψ(τXL) for any permutation τ; hence,

The translation is performed by taking the mathe-
matical expectation E with respect to the sample XL of
the probability p(XL) obtained. When this probability
does not depend on the sample XL, the result is trans-
lated directly. Thus, the correspondence principle
holds: two theories lead to the same results whenever
both are applicable.

In the strong axiomatics, the distribution functions
and mathematical expectations are unobservable: they
are expressed either through the passage to the infinite
sample or in terms of the probability measure P, which
both are unknown in practical situations. Under the
weak axiom, one exclusively considers statistics—
functions of finite samples z: �*  Z. In data analy-
sis, the estimation of unobservable quantities seems to
be an artificial problem, detached from practice.

2. PROBLEMS OF EMPIRICAL PREDICTION

A problem of empirical prediction consists in the
following: having obtained a data sample, predict cer-
tain properties of similar data that will be known later
and estimate the accuracy of prediction.

Suppose given a set R and a function T: �* ×
�*  R. Consider an experiment in which one of
equiprobable partitions of the sample XL into two sub-

samples  and , n = 1, …, N, is realized. After the
realization of a partition n, an observer is communi-

cated to a subsample . Without knowing the hidden

subsample , the observer must predict the value of

Tn = T( , ) that essentially depends on . One
should also estimate the confidence of the prediction,
i.e., the probability that the unknown true value of Tn

does not strongly differ from the prediction made.

Problem 2.1. Construct a predicting function :

�*  R whose value  =  on the observed

subsample  approximates the unknown true value

Tn = T( , ) and estimate the confidence of the pre-
diction by providing a nonincreasing bound function
η(ε) such that

(2.1)

P
X

L P
X

L

P
X

Lψ XL( ) E
X

LPτψ τXL( ) E
X

L p XL( ).= =

Xn
l Xn

k

Xn
l

Xn
k

Xn
k Xn

l Xn
k

T̂

T̂n T̂ Xn
l( )

Xn
l

Xn
k Xn

l

Pn d T̂n Tn,( ) ε≥[ ] η ε( ),≤
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where d: R × R  � is a given function characterizing

the deviation d( , Tn) of the predicted value  from
the unknown true value Tn.

The parameter ε is called the accuracy, and the
quantity (1 – η(ε)) is the confidence of the prediction. If
equality holds in (2.1), then η(ε) is called an exact
bound. The bound η(ε) may depend on l and k, as well

as on the functions T and . Usually, it is assumed that
ε > 0 and 0 < η < 1. An empirical prediction is consis-
tent if (2.1) holds for sufficiently small ε and η.

Remark 2.1. If the function T(U, V) depends only
on U, then we will omit the second argument V. In some

problems, one sets T(U) = (U). Nevertheless, the

roles of the functions T and  are essentially different.
The function T is assumed to be defined a priori and
enters the statement of the problem, whereas the pre-

diction function  can be chosen by an observer on his
own will.

Remark 2.2. The prediction of a certain property of
a sample on the basis of the properties of another sam-
ple is called a transduction. It is believed that transduc-
tion is a more primitive and restricted form of reasoning
than induction. In our case this is not quite so. If one
succeeds in obtaining a bound η(ε) that is valid for any
sample XL or at least for a wide class of samples, then
transduction becomes as general as induction.

Examples of problems of empirical prediction.
Choosing a set R, functions T, , and a d, one can
obtain the statements of various problems of probabil-
ity theory, mathematical statistics, and machine learn-
ing.

Problem 2.2 (estimation of the frequency of an
event). Let S ⊆ � be a set of objects; we call it an event.
Introduce a function of the frequency of event S on a
finite sample U:

Set R = �, T(U) = (U) = νS(U), and d( , r) = |r –
|.

The problem is to predict the frequency of event S

on the hidden sample  by its frequency on the

observed sample  and estimate the confidence of the
prediction:

(2.2)

Sometimes, it is required to obtain a one-sided, say,
an upper, bound. Then one should set d( , r) = r – :

(2.3)

T̂n T̂n

T̂

T̂

T̂

T̂

T̂

νS U( ) 1
U
------- x S∈[ ], U

x U∈
∑ �*.∈=

T̂ r̂
r̂

Xn
k

Xn
l

Pn νS Xn
k( ) νS Xn

l( )– ε≥ η ε( ).≤

r̂ r̂

Pn νS Xn
k( ) νS Xn

l( )– ε≥[ ] η ε( ).≤

This problem is of fundamental importance for
probability theory and is closely related to the law of
large numbers and convergence theorems. Below, we
will obtain exact bounds for (2.2) and (2.3). These
bounds also arise in practical applications, for example,
in sampling quality control [2].

Problem 2.3 (estimation of the distribution func-
tion). For an arbitrary function ξ: �  � and an arbi-
trary finite sample U ∈ �*, define an empirical distri-
bution function Fξ: �  [0, 1]. This function shows
on which part of objects of the sample the value of ξ(x)
does not exceed z:

Take, as R, the set of all nondecreasing piecewise
constant functions F: �  [0, 1]. Introduce a uniform
distance d( , r) = (z) – (z)| on R. Set T(U) =

(U) = Fξ(z, U).
The problem is to predict the maximal deviation of

the distribution Fξ(z, ) on a hidden sample from the

known distribution Fξ(z, ) on an observed sample
and estimate the confidence of the prediction:

This problem is closely related to the convergence
of empirical distributions and is of fundamental impor-
tance for mathematical statistics. This bound underlies
the Smirnov criterion, which is used to testing whether
two distributions differ [3, 4]. There is an exact bound
for this problem as well; however, its analysis is beyond
the scope of the present paper.

Problem 2.4 (learning from examples). Suppose
given a set of admissible answers �. There exists an
unknown target function y*: �  � that assigns to
each object x ∈ � a correct answer y*(x). A loss func-
tion �: � × �  � is defined whose value �(y, y')
characterizes the error of answer y if compared with the
correct answer y'. Functions a: �  � admitting an
efficient computer implementation are called algo-
rithms. The average error of a function a: �  � on
a finite sample U is given by

Given an observed training sample  with known

answers yi = y*(xi), xi ∈ , a learning algorithm µ:

�*  �� constructs a function an = µ . When the

average error on the hidden testing sample ν(an, ) is

Fξ z U,( ) 1
U
------- ξ x( ) z≤[ ].

x U∈
∑=

r̂ |r
z �∈
max r̂

T̂

Xn
k

Xn
l

Pn Fξ z Xn
k,( ) Fξ z Xn

l,( )–
z �∈
max ε≥ η ε( ).≤

ν a U,( ) 1
U
------- � a x( ) y* x( ),( ), U

x U∈
∑ �*.∈=

Xn
l

Xn
l

Xn
l

Xn
k
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much greater than the average training error ν(an, ),
it is said that the function an is overfitted [5, 6].

Introduce the difference between the average errors
of the function an on two samples:

Definition 2.1. The difference δ(µ , , )

between the average errors of a function an = µ  on
the testing and training samples is called the overfitting
of this function.

Set R = �, Tn = ν(an, ),  = ν(an, ), and d( ,

r) = r – . The problem is to predict the upper bound for
the overfitting and estimate the confidence of the pre-
diction:

(2.4)

Prevention of overfitting is a central problem in sta-
tistical learning theory [7].

Empirical estimation of probability. The results
obtained under the weak axiom can always be verified
experimentally. Suppose given a set of values ϕn =

ϕ( , ), n = 1, …, N. To estimate the value of the
sum

we replace the summation over all N partitions by the
summation over a certain subset of partitions N ' ⊂ {1,
…, N}, which is large enough to give an accurate esti-
mate but not too large to be computable in a reasonable
time:

For example, in the Monte Carlo method, the subset
N ' of partitions is chosen randomly and independently
of a uniform distribution on {1, …, N}. In this case, the
estimation of the accuracy of approximation |Q(N ') –
QN | reduces to Problem 2.2, except that now one con-
siders partitions as objects.

We will call  ≡  an empirical estimate of

probability.

Empirical estimation has a few significant draw-
backs. It requires the knowledge of the full sample XL

and therefore cannot be directly used for empirical pre-

Xn
l

δ an Xn
l Xn

k, ,( ) ν an Xn
k,( ) ν an Xn

l,( ).–=

Xn
l Xn

l Xn
k

Xn
l

Xn
k T̂n Xn

l r̂

r̂

Pn ν an Xn
k,( ) ν an Xn

l,( )– ε≥[ ] η ε( ).≤

Xn
l Xn

k

QN Pnϕn
1
N
---- ϕn,

n 1=

N

∑≡=

QN Q N '( )≈ P̂nϕn
1
N '

-------- ϕn.
n N '∈
∑≡=

P̂n
1
N '
-----

n N '∈
∑

diction. It does not allow one to obtain bounds in the
analytic form. Finally, it may require large computa-
tional expenditure.

Thus, the applicability domain of empirical estima-
tion is rather limited. In practice, this kind of estimation
is used for the experimental investigation of the depen-
dence of QN on some parameters of a problem (for
example, on the sample length). In problems of learn-
ing from examples, empirical estimation is called
cross-validation and is used for estimating the quality
of a learning algorithm µ rather than the quality of an
individual function. It is indispensable when theoretical
bounds QN are either unknown or overestimated. In this
paper, empirical estimation is applied to the analysis of
the tightness of theoretical bounds.

3. PROBLEM OF ESTIMATING
THE FREQUENCY OF AN EVENT

Consider Problem 2.2 on predicting the frequency
of event S ⊆ �. Suppose that the number of elements of
the event S in the entire sample XL is fixed and equals
m = LνS(XL). Then the number of elements of S in the

observed subsample lνS( ) and the number of ele-

ments of S in the hidden subsample kνS( ) obey a
hypergeometric distribution:

(3.1)

where s takes values ranging from s0(m) = max{0, m –
k} to s1(m) = min{l, m}.

Let us introduce contracted notations  = νS( )

and  = νS( ).

Theorem 3.1. The following exact bounds hold for
any ε ∈ [0, 1):

(3.2)

(3.3)

Xn
l

Xn
k

Pn lνS Xn
l( ) s=[ ] Pn kνS Xn

k( ) m s–=[ ]=

=  h
l s

L m⎝ ⎠
⎛ ⎞ Cm

s CL m–
l s–

CL
l

--------------------,=

νn
l Xn

l

νn
k Xn

k

Pn νn
l ε≤[ ] HL

l m, εl( );=

Pn νn
k ε≥[ ] HL

l m, m εk–( );=

Pn νn
k νn

l– ε≥[ ] HL
l m, sm

– ε( )( ),=

sm
– ε( ) l

L
--- m εk–( ) ;=

Pn νn
k νn

l– ε≥[ ] = HL
l m, sm

– ε( )( ) HL
l m,

sm
+ ε( )( ),+

sm
+ ε( ) l

L
--- m εk+( ) .=
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Remark 3.1. In the statement of the theorem, ⎣z⎦ is
the integer part (floor) of a real number z, i.e., the great-
est integer less than or equal to z. Similarly, ⎡z⎤ is the
least integer greater than or equal to z. If we change
nonstrict inequalities to the strict ones on the left-hand
sides, all the bounds remain valid with one reservation:
⎣z⎦ should be understood as the greatest integer less
than z; it differs from the floor only in that ⎣z⎦ = z – 1
for integer z. Correspondingly, ⎡z⎤ is the least integer
greater than z, so that ⎡z⎤ = z + 1 for integer z.

Proof. The first two inequalities are immediate cor-
ollaries to (3.1); therefore, we begin with the proof
of (3.2). Let us group all the terms with equal values of

s = l  and sum up them separately:

The greatest integer that satisfies the inequality

 –  ≥ ε is given precisely by (ε); therefore, the

expression obtained can be rewritten in a shorter form:

The two-sided bound (3.3) is proved analogously if
we divide the partition set into two disjoint subsets:

The theorem is proved.
Upper bound. The number of elements m of event

S in the full sample XL cannot be determined while the
hidden part of the data is unknown. At the same time,
the bound functions (3.2) and (3.3) depend on this num-
ber. The simplest solution of this problem is to take the
maximum over m and obtain an overestimated upper
bound instead of the exact bound:

(3.4)

Here, it is sufficient to take the maximum over all m
starting from ⎡εk⎤ to ⎣L – εl⎦, because the left-hand side
of the inequality vanishes for other values of m.

νn
l

Pn νn
k νn

l– ε≥[ ]

=  Pn νn
l s

l
--= m s–

k
------------ s

l
--– ε≥ .

s s0=

s1

∑

m s–
k

------------ s
l
-- sm

–

Pn νn
k νn

l– ε≥[ ] Pn νn
l s

l
--=

s s0=

sm
– ε( )

∑=

=  h
l s

L m⎝ ⎠
⎛ ⎞

s s0=

sm
– ε( )

∑ HL
l m, sm

– ε( )( ).=

Pn νn
k νn

l– ε≥[ ] Pn νn
k νn

l– ε≥[ ]=

+ Pn νn
l νn

k– ε≥[ ] HL
l m, sm

– ε( )( ) HL
l m,

sm
+ ε( )( ).+=

Pn νn
k νn

l– ε≥[ ] HL
l m, sm

– ε( )( )
m 0 … L, ,=

max ΓL
l ε( ).≡≤

There is a known asymptotic behavior of (ε) [5]:
for any ε > 0,

whence it follows that the probabilities Pn[  –  ≥ ε]

and Pn[|  – | ≥ ε] tend to zero as l and k tend simul-
taneously to infinity. This means that equalities (3.2)
and (3.3) represent an analog of the law of large num-
bers under the weak axiom.

4. PROBLEM OF LEARNING
FROM EXAMPLES

Let us refine the statement of Problem 2.4 on pre-
dicting the quality of learning from examples. We will
consider only binary loss functions, assuming

�(y, y') = [answer y is erroneous for a correct
answer y'].

The choice of a loss function depends on a specific
problem, first of all, on the set of admissible answers �.
In classification, � is a finite set of classes; then
�(y, y') = [y ≠ y']. In regression, where � = �, it is con-
ventional to use smooth loss functions, like �(y, y') =
(y – y')2. However, one can also introduce a binary loss
function: �(y, y') = [|y – y' | ≥ d], where d is a fixed
threshold value.

The form of a binary function is unimportant for fur-
ther analysis. The main results are valid for a wide class
of problems, including both classification and regres-
sion.

The Classical Vapnik–Chervonenkis theory [8, 9,
5] (VCT) is based on the Kolmogorov’s probabilistic
axiomatics. It is assumed that the set of objects � is a
probability space with some unknown probability mea-
sure, and that all the samples considered are i.i.d. (inde-
pendent identically distributed).

Suppose given a set of functions A = {a: �  �}.
Among these functions, we choose one a* that makes
the minimum number of errors on a given training sam-
ple Xl:

This method is called empirical risk minimization
(ERM). There may exist several functions in the set that
minimize the empirical risk. It is assumed that any of
these functions can be chosen as a solution. Other
learning algorithms are not considered in the classical
variant of the VCT.

The quality of a function a* is characterized by the
probability of error P(a*). A sufficient condition of
learnability is that the deviation of the empirical error
ν(a, Xl) from its probability P(a) should be small for
any a ∈ A. More precisely, the following bound must

ΓL
l

ΓL
l ε( ) 2ε2 lk

l k+
----------–⎝ ⎠

⎛ ⎞ , lexp k ∞,,∼

νn
k νn

l

νn
k νn

l

a* ν a Xl,( ).
a A∈
minarg=
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hold for sufficiently small values of accuracy ε and con-
fidence η:

(4.1)

The introduction of the supremum yields a guaran-
teed bound, which is valid irrespective of what function
a* will be obtained as a result of learning. If the right-
hand side of (4.1) tends to zero as l, k  ∞, then it is
said that the error rate converges uniformly to the error
probability.

One can also characterize the quality of function a*
by the error rate ν(a*, Xk) on an i.d.d. test sample Xk.
Then, one gets more accurate bounds in view of the
main lemma proved in [9, p. 219] for l = k:

(4.2)

Later, this bound was refined [5]:  on the right-

hand side was replaced by ε – .

If the right-hand side tends to zero as l, k  ∞,
then it is said that the error rates of two samples con-
verge uniformly.

It is quite sufficient to take into account only posi-
tive deviations of frequencies, because negative devia-
tions ν(a, Xk) – ν(a, Xl) < 0 testify to good learnability.
In this case, the accuracy increases again by a factor of
two, and we arrive at a functional of uniform one-sided
deviation of frequencies in two samples:

(4.3)

When l = k, the following bound for the uniform
convergence rate is valid for any probability distribu-
tion on � and any target function y* [9]:

(4.4)

where ∆A(L) is the growth function of the set of func-
tions A. The growth function is introduced as follows.

Definition 4.1. Functions a and a' are indistinguish-
able on the sample XL if they make errors on the same
objects: �(a(xi), yi) = �(a'(xi), yi) for any xi ∈ XL.

Indistinguishability is an equivalence relation on the
set A.

Definition 4.2. A shatter coefficient ∆(A, XL) of the
set of functions A on the sample XL is the number of

Pε A( ) P P a( ) ν a Xl,( )–
a A∈
sup ε>

⎩ ⎭
⎨ ⎬
⎧ ⎫

η ε( ).≤=
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⎩ ⎭
⎨ ⎬
⎧ ⎫

≤ 2P a Xk,( ) ν a Xl,( )–
a A∈
max

1
2
---ε>

⎩ ⎭
⎨ ⎬
⎧ ⎫

.

1
2
---ε

1
l
---

Pε A( ) P ν a Xk,( ) ν a Xl,( )–( )
a A∈
max ε>{ }.=

Pε A( ) ∆A 2l( ) 3
2
---e ε2

l– ,⋅≤

equivalence classes induced on the set A by the relation
of indistinguishability of functions on the sample XL.

We can reformulate this definition as follows: a shat-
ter coefficient is the number of different binary vectors

[�(a(xi), y*(xi))  generated by all possible func-
tions a ∈ A on a given sample XL. In problems of clas-
sification into two classes, the shatter coefficient is
equal to the number of different dichotomies (partition-
ings into two classes) realized by all possible functions
from the set A. 

Definition 4.3. A growth function of the set of func-
tions A is the maximal value of the shatter coefficient
∆A(XL) over all possible samples of length L:

The growth function depends neither on the sample
nor on the learning algorithm and characterises a com-
plexity of the set of functions A. The upper bound
∆A(L) ≤ 2L is obvious.

The minimal number h for which ∆A(h) < 2h is
called the Vapnik–Chervonenkis dimension (VC
dimension) of the set of functions A. If such an h does
not exist, then it is said that the dimension of A is infi-
nite. It was proved that if A has a finite dimension h,
then its growth function depends polynomially on L:

(4.5)

In this case, the uniform convergence takes place,
and the set A is learnable. Thus, in VCT, to obtain an
upper bound of overfitting, it is sufficient to know the
sample length and the VC dimension of the set of func-
tions.

The practical application of the approach described
is hampered by the fact that bound (4.4) is highly over-
estimated. To verify this, it suffices to calculate numer-
ically the required length of the training sample l as a
function of (h, η, ε). This length is on the order of 105–
109, which is much greater than the number of objects
which one usually deals with in practice [7].

The reason why the values of bounds in the VCT are
overestimated lies in their extreme generality. They are
valid for any probability distribution on �, any target
function y*(x), and any learning algorithm µ. There-
fore, the bounds are pessimistically related to the worst
case, which is hardly ever encountered in practice.

The introduction of the concept of learning algo-
rithm µ makes obvious that even the functional of uni-
form convergence itself represents an overestimated
upper bound:

(4.6)

]i 1=
L

∆A L( ) ∆ A XL,( ), L
X

L
max 1 2 3 …., , ,= =

∆A L( ) CL
0 CL

1 … CL
h+ + +

3
2
--- Lh

h!
-----.≤ ≤

P δ µXl Xl Xk, ,( ) ε>{ } P δ a Xl Xk, ,( )
a A∈
max ε>{ }.≤
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It is the small value of the left-hand rather than the
right-hand side of this inequality that one should have
taken as the definition of learnability from examples. In
the VCT, a lot of attention is paid to the necessary and
sufficient conditions for uniform convergence. How-
ever, according to (4.6), the uniform convergence is
only a sufficient condition for learnability. If the VC
dimension is infinite and there is no uniform conver-
gence, it is too early to make a conclusion that there is
no learnability. A common error in interpreting the
VCT is the conclusion that one should restrict the com-
plexity of the set of functions. This conclusion would
be correct if the bounds of the VCT were sufficiently
exact.

The Vapnik–Chervonenkis theory under the
weak axiom. Suppose that, in Problem (2.4) (learning
from examples), an algorithm µ yields the same fixed
function a for any sample. In this simplified statement,
the problem reduces to estimating the frequency of a
fixed event S = {x ∈ � |�(a(x), y*(x)) = 1}, and (3.4)
implies the following proposition.

Proposition 4.1. The following bound holds for any
a: �  � and any ε ∈ [0, 1):

(4.7)

In this case the law of large numbers applies: the fre-
quency of event S on the test sample can be predicted
by its frequency on the training sample, and the accu-
racy of prediction increases with the sample length.

Now, consider the general case when algorithm µ
yields different functions on different training samples.

Denote by  the set of functions generated by the

algorithm µ on all possible subsamples  ⊂ XL:

The cardinality of the set  is no greater than N =

. It may even be less than N if the learning algorithm
µ generates identical functions on different subsam-

ples. The shatter coefficient of the set  may be still
less if some functions, which do not coincide as maps
�  �, are indistinguishable on the sample XL.

Definition 4.4. The shatter coefficient of the set of

functions (µ, XL) is called a local shatter coefficient
of the learning algorithm µ on the sample XL and is

denoted by  ≡ (µ, XL) = ∆( (µ, XL), XL).

The set of functions  is divided into L + 1 subsets
of functions Am that make a fixed number of errors
m = 0, 1, …, L on the general sample XL:

Pn ν a Xn
k,( ) ν a Xn

l,( )– ε≥[ ] ΓL
l ε( ).<

AL
l

Xn
l

AL
l AL

l µ XL,( )≡ an µXn
l n 1 … N, ,= ={ }.=

AL
l

CL
l

AL
l

AL
l

∆L
l ∆L

l AL
l

AL
l

Definition 4.5. A sequence of shatter coefficients

Dm ≡ (µ, XL) = ∆( (µ, XL), XL), m = 0, 1, …, L,
is called a local shatter profile of the learning algorithm
µ on the sample XL.

The sets Am are disjoint, and their union yields .
Therefore,

(4.8)

Recall that, in Problem 2.4 (learning from exam-
ples), we are interested in the upper bounds of func-
tional (2.4):

where δn = δ(an, , ) is the overfitting of the func-

tion an = .

Let us divide the functional Qε into L + 1 terms
Qε, m ≡ Qε, m(µ, XL) with respect to the parameter m:

Theorem 4.2. The following bound holds for any
ε ∈ [0, 1) and m = 0, 1, …, L:

(4.9)

Proof. The indistinguishability relation of functions
on the sample XL divides the set of functions Am into
equivalence classes Amd, where d = 1, …, Dm is the
index of a class among all Dm classes whose functions
make m errors. Let us express Pn in terms of a sum of
partitions taken separately for each equivalence class:

The value of the functional is not changed if we

replace the function an = µ  by an arbitrary element
amd from the equivalence class Amd. Let us apply the
same technique as in the proof of Theorem 3.1, i.e.,
regroup the terms according to the number of errors s in
the training sample:

Am AL m,
l µ XL,( )≡

=  an µXn
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Let us obtain an upper bound for the inner sum
γ(m, s), replacing [an ∈ Amd] by unity. Reasoning along
the same lines as in the proof of Theorem 3.1, we obtain

γ(m, s) ≤ . This quantity does not depend on d;

therefore, we can factor it out from the sum over d:

The theorem is proved.

Theorem 4.3. The bound Qε ≤ (ε) holds for
any ε ∈ [0, 1).

Proof. The proof follows immediately from the pre-
vious theorem:

(4.10)

The theorem is proved.

Bound (4.10) differs from (4.7) by a factor of ;
i.e., the confidence of prediction may become worse
compared to the law of large numbers by a factor equal
to the number of classes of distinguishable functions

contained in the set . As is shown in the proof, this
bound may be significantly overestimated.

In a specific problem, the target function y*(x), the
training sample Xl, and the learning algorithm µ are
fixed. Therefore, as a result of learning, one can obtain
only those functions from the set A that are considered
appropriate for this problem by the learning algorithm
µ. Other functions remain idle. This effect is called the
localization of a set of functions. One should not neces-
sarily restrict the complexity of the set to guarantee the
learnability. It suffices to apply a learning algorithm
capable of adapting to a problem by choosing an appro-
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priate local subset (µ, XL) in the set A. This property
of localization ability of an algorithm µ is an important
ingredient of its generalization ability.

The classical VCT bound (4.4) is obtained by apply-
ing the operation of mathematical expectation  to

(4.10), estimating from above the mathematical expec-
tation of the shatter coefficient by the growth function,
and estimating the hypergeometric tail by an exponen-
tial function:

where the last inequality is valid under the assumption
that l = k.

On the other hand, by analogy with Theorems 4.2
and 4.3, one can easily prove a full analog of the Vap-
nik–Chervonenkis bound (4.4) under the weak axiom:

(4.11)

Thus, the upper bounds of the functionals Pε(A) and
Qε(µ, XL) coincide. However, the functional Qε more
accurately formalizes the concept of learnability.

Note that the idea of the proof of Theorems 4.2 and
4.3 is largely the same as that of Theorem P2 in [9,
p. 221]; however, here the proofs are cleared of redun-
dant probabilistic assumptions. It is these theorems that
contain the core of the VCT. Many concepts and con-
structions of the VCT turn out to be redundant under the
weak axiom. These are the set of functions, the uniform
convergence of frequency to probability, the uniform
convergence of frequencies in two subsamples, the
main lemma (4.2), and the necessary conditions for uni-
form convergence. Bounds (4.10) and (4.9) are still
overestimated; there are two reasons for this.

First, the shatter coefficient does not take into
account the degree of similarity between the functions.
Two indistinguishable functions make a total contribu-

tion of 1 to . Two functions that are distinguishable
on a half of objects of the sample XL make a total con-
tribution of 2. Two functions that are distinguishable
only on one object also make a total contribution of 2,
although this situation is much closer to the case of
indistinguishable functions. As a rule, learning on sim-

ilar subsamples  results in many similar functions.
Each of these functions makes a contribution of 1 to

, which leads to the overestimated value of the shat-
ter coefficient.

Second, the shatter coefficient does not take into
account that the functions obtained as a result of learn-
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ing are not equiprobable. Denote by Nmd a subset of par-
titions for which one obtains functions from the equiv-
alence class Amd:

If |Nmd | � 1, then functions from the class Amd are
called typical. If the cardinality |Nmd | is close to unity,
then the functions from the class Amd are called atypi-
cal. Most probably, there are functions of relatively law
quality among them, which are obtained under nonran-
dom partitions of the sample, although the fraction of
these functions is small and is bounded by the comfi-
dence η. However, the number of these functions may
turn out to be comparable with the local shatter coeffi-
cient. Each atypical function makes a contribution of 1

to , although these functions might not need to be
taken into account at all.

5. EMPIRICAL ANALYSIS 
OF BOUNDS OVERESTIMATION

The main factors responsible for VCT bounds over-
estimation can be seen from the proofs of Theorems 4.2
and 4.3. The weak axiom allows one to estimate the
contribution of each of these factors empirically, by
measuring functionals Qε and Qε, m via cross-validation.

Let N ' ⊂ {1, …, N} be a subset of partitions and  ≡

 be an empirical estimate of probability.

Accordingly,

where an = µ  is a function learned by an algorithm µ

from the training subsample  and δn = ν(an, ) –

ν(an, ) is its overfitting.

The question arises: what values should the local
shatter profile take in order that bound (4.9) be not
overestimated?

Definition 5.1. The sequence of values

is called an effective local shatter profile.

Definition 5.2. The value (ε) = (ε) + (ε) +

… + (ε) is called an effective local shatter coeffi-
cient.

Nmd n 1 … N, ,{ } an Amd∈ ∈{ }.=
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1
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----------------------------, m 0 … L,, ,= =

∆̂L
l

D̂0 D̂1

D̂L

This is an inverse problem: knowing empirical esti-

mates of functionals  and , we should estimate

the shatter profile Dm and the shatter coefficient .
Naturally, such estimates cannot be used for solving the
main (direct) problem. The reason why they are intro-
duced is to separate and compare various factors
responsible for overestimation and to show what values
of the shatter coefficients should be obtained theoreti-
cally.

Effective shatter coefficients may take noninteger
values. Moreover, they depend on the accuracy ε. For a
reasonable choice of ε, we first define the value of con-
fidence η0 or the range [η1, η2] (in our experiments,
these are 0.05 and [0.01, 0.1]). The accuracy and confi-
dence are related by a nonincreasing function η(ε) =

Qε ≈ . This fact allows us to calculate an appropriate
value of accuracy ε = η–1(η0) or the range of values of
accuracy [ε1, ε2] = [η–1(η2), η–1(η1)], which, in turn,
determine the range of the shatter coefficient:

Now, consider the main factors responsible for over-
estimation and the methods of their empirical measure-
ment. The degree of overestimation is a ratio indicating
how much the upper bound is overestimated.

1. Neglect of the localization effect. A local shatter

coefficient  may turn out to be much less than the
global shatter coefficient ∆(A, XL) and, especially, the
growth function ∆A(L). The degree of overestimation
can be calculated as the ratio

provided that both a theoretical bound of the growth

function ∆A(L) and the local coefficient  are known.
The number of partitions |N '| is a trivial and, as a rule,

strongly underestimated bound of .

2. Factorization of the shatter coefficient. In the
proof of Theorem 4.2, the upper bound is calculated
only once, to factor out the shatter coefficient Dm. The

effective local profile (ε) determines the values of
the factors Dm necessary for the bound not to be overes-
timated. The degree of overestimation is determined by
the ratio

Q̂ε m, Q̂ε
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3. Convolution of the shatter profile 
into a scalar complexity characteristic—the shatter

coefficient  = . This step was made when

proving Theorem 4.3. The degree of overestimation is
determined by the ratio

4. Exponential approximation of a hypergeomet-
ric tail is motivated only by a desire to obtain a more
elegant formula. When all the calculations are per-
formed on a computer, the exponential approximation
becomes inexpedient. The degree of overestimation is
determined by the ratio

The product of the ratios obtained gives the degree
of overestimation of the VCT bound:

Effective VC dimension. The effect of localization
is caused by fixing a target function y*, a learning algo-
rithm µ, and a sample XL. In [11, 12], the concept of
effective VC dimension is introduced, which takes into
consideration µ and XL but does not take into consider-
ation y*. Hence, the ratio of the effective growth func-
tion to the effective local shatter coefficient gives the
degree of overestimation r1 related only to the target
function y*.

Following [11], we restrict ourselves to a classifica-
tion problem with two classes, � = {0, 1}, when the
loss function is �(y, y') = [y ≠ y'] and l = k.

An effective growth function is defined as the value
of ∆A(L) for which bound (4.11) becomes exact (not
overestimated):

An effective VC dimension h is defined as a param-
eter related to the effective growth function by formula

(4.5): (L) = . To measure h, the authors of

[11] suggest that one should estimate  for various L
and then choose a value of h such that the function
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1.5Lh/h!

∆̂eff
A

 provides the most accurate approximation of

the function (L). Sufficiently high accuracy of
approximation obtained in [11] indicates that the
method works properly.

A search for a function  ∈ A that maximizes δ(a,

, ) is equivalent to minimizing the empirical risk

ν(a, ) using a modified full sample : on all

objects xi ∈ , a correct answer yi is replaced by an
erroneous answer 1 – yi:

To obtain a function , one applies the same learn-

ing algorithm µ to the modified full sample . The
algorithm actually learns to make errors on a random
half of objects. This removes the fixation of the target
function y* and the related part of the localization
effect.

The degree of overestimation related to the neglect
of the target function y* is given by

Consider two interpretations of the coefficient
(ε).

1. Experiments with a linear threshold classifier
described in [11] have given a quite expected result: the
effective VC dimension is approximately equal to the
dimension of the subspace in which the sample is con-
centrated. The coefficient (ε) shows how much this
bound is overestimated.

2. The effective growth function is determined in
terms of the uniform convergence functional Pε, which
itself represents a certainly overestimated bound. The
effective local shatter coefficient is determined in terms
of the complete cross-validation functional Qε, which
provides a more accurate formalization of the concept
of learnability. This implies the second interpretation:

(ε) is the degree of overestimation caused by the
application of the uniform convergence principle.

6. GENERALIZATION BOUNDS OF RULES

Rule induction classifiers are especially convenient
for carrying out an empirical measurement of the
degree of overestimation. First, for these classifiers, the
growth function is well known. Second, they are based
on an explicit search through a large number of elemen-
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tary classifiers (rules), which allows one to efficiently
estimate local shatter coefficients. Third, these classifi-
ers are widely used in practice; therefore, the problem
of overfitting of both the classifier itself and the rules
constituting this classifier is of great practical interest.

Consider classification problems; let � be a finite
set of class labels.

A predicate ϕ: �  {0, 1} is said to cover an
object x if ϕ(x) = 1. The predicate ϕ is characterized by
two values with respect to a class y ∈ � and a sample
Xl: the number of positive examples py (covered objects
of class y) and the number of negative examples by

(covered objects of other classes y):

A rule of a class y ∈ � is a predicate ϕy: X 
{0, 1} that covers a sufficiently large number of objects
of class y and a sufficiently small number of objects of
all the other classes: py(ϕy , Xl) ≥ py0 and by(ϕy , Xl) ≤ by0,
where py0 and by0 are prescribed threshold constants.

The quality of a rule is characterized by a rule eval-
uation heuristic I(py , by). In practice, the heuristic can
be introduced in different ways; in particular, an
entropy criterion of information gain, statistical criteria
ξ2 and ω2, Fisher’s exact test [13], boosting criterion

I(py , by) =  –  [14], and other criteria are
applied.

A rule-based classifier is a linear combination of
rules:

where (x) are rules from the class y,  are the
weights of the rules, and Ty is the number of rules of
class y. Many rule-based classifiers can be represented
in this form: weighted voting of rules [14], decision
lists [15], decision trees [16], set covering machines
[17], etc.

It is convenient to measure empirically the degree of
overestimation for rules rather than for classifiers. To
this end, one should slightly change the basic defini-
tions. The modifications are quite technical; the formu-
lations of the main theorems remain virtually the same.

A rule learning algorithm of class y is a map µy that
generates a set of rules from the training sample Xl:

py ϕy Xl,( ) # xi Xl ϕy xi( )∈ 1 yi, y= ={ },=

by ϕy Xl,( ) # xi Xl ϕy xi( )∈ 1 yi, y≠={ }.=

py by

a x( ) wy
t ϕy

t x( ),
t 1=

Ty

∑y Y∈
maxarg=

ϕy
t wy

t

µyXl ϕy
t x( ) t 1 … Ty, ,={ }.=

The error rate of a rule ϕy on a sample Xl is given by

(6.1)

where Py is the number of objects of class y on the sam-
ple Xl. When ϕy(xi) = 0 and yi = y, the rule makes an
error of kind I: it does not cover an object of a positive
class. When ϕy(xi) = 1 and yi ≠ y, the rule makes an error
of kind II: it covers an object of a negative class. Usu-
ally, errors of kind I are less dangerous, because a miss-
ing object can be covered by other rules.

The overfitting of a rule ϕ ∈ µyXl for a given test
sample Xk is the difference of its error rates on the test
and training samples:

The functional of complete cross-validation Qε(µy ,
XL) is defined as a part of overfitted rules, among all
rules of class y, generated by the rule learning algorithm

µy on all possible subsamples  ⊂ XL:

Predicates ϕ, ϕ': X  {0, 1} are said to be indistin-
guishable, or equivalent, on a sample XL if ϕ(x) = ϕ'(x)
for any x ∈ XL. The shatter coefficient ∆(Φ, XL) of a set
of predicates Φ on a sample XL is the number of equiv-
alence classes induced on Φ by the indistinguishability
relation. Consider the set of rules obtained by the algo-
rithm µy on all possible training subsamples:  =

. The shatter coefficient  = ∆( , XL) of

this set is called a local shatter coefficient of the algo-

rithm µy on the sample XL. The set of rules  is parti-
tioned into L + 1 subsets Φm that consist of rules with a
fixed number m of errors on the full sample XL:

A local shatter profile of the algorithm µy on the
sample XL is a sequence of shatter coefficients Dm =
∆(Φm, XL), m = 0, …, L.

It is obvious that  = D0 + … + DL.
Along with the functional Qε, we define a functional

Qε, m as a part of overfitted rules that make m errors on XL:

νy ϕy Xl,( ) 1
l
--- ϕy xi( ) yi y=[ ]≠[ ]
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l
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In this notation, Theorems 4.2 and 4.3 remain valid
for the case of rules. The modification has mainly con-

cerned the definition of a local set of functions ; now

the role of this set is played by the local set of rules .
The meaning of the modification is quite simple: one

should take into consideration all the rules (x) learned
from all partitions n. The method of empirical measure-

ment of Qε, Qε, m, , and  remains the same.

Note that all these quantities are determined for each
class y ∈ � separately and may be different for differ-
ent classes.

The method proposed essentially refines the earlier
variants [18, 19].

The rule learning algorithm applied in our experi-
ments is based on three essential heuristics: breadth-
first search [20], boosting the rules [14], and Fisher’s
exact test as a rule evaluation criterion [13]. The algo-
rithm was realized by D. Kochedykov and A. Ivakh-
nenko and is applied in the Forecsys ScoringAce® sys-
tem [21, 18, 19]. Here we present a simplified descrip-
tion of this algorithm.

Suppose that objects x ∈ � are described by n dis-
crete features fj: �  Dj , j = 1, …, n. Nominal fea-
tures give rise to elementary predicates (terms) of two
types: βj(x) = [ fj(x) = c] and βj(x) = [ fj(x) ≠ c] for all
possible c ∈ Dj . In addition, order features generate two
more types of terms: βj(x) = [ fj(x) ≤ c] and βj(x) =
[ fj(x) ≥ c], c ∈ Dj . Denote by �j the set of all terms
generated by a feature fj . The search of rules is per-
formed among conjunctions of rank at most K that are
composed of terms:

Algorithm 6.1 starts the search from a set of con-
junctions of rank 1. To this end, at most T1 terms are
chosen that have the best values of evaluation criterion.
At all subsequent steps, one term is added to each con-
junction in all possible ways. Again, at most T1 con-
junctions from this extended set are chosen that have
the best values of evaluation criterion. The extension of
conjunctions stops either on reaching the maximal rank
K or when none of the conjunctions can be improved by
adding a term. The best conjunctions collected from all
steps are included in the lists Ry. The parameter T1 con-
trols the breadth of the search and allows one to trade
off between the quality of rules and the time efficiency
of the algorithm.

AL
l

ΦL
l

ϕy
t

∆̂L
l

D̂m

Φ K[ ] ϕ x( ) β j x( )
j J∈
∧ β j � j,∈=

⎩
⎨
⎧

=

---J 1 … n, ,{ }⊆ J, K≤
⎭
⎬
⎫

.

The quality of a predicate ϕ(x) with respect to the train-
ing sample Xl and the class y is evaluated by two criteria:

a part of erroneously covered objects Ey(ϕ) =  and

the informativity Iy(ϕ) =  – , where
Py is the number of positive objects and By is the num-
ber of negative objects in Xl.

After a run of Algorithm 6.1, there may remain
objects in the sample that either have not been covered
by any rule from the lists Ry or have been erroneously
covered by the rules of wrong classes. These objects
receive larger weights according to the boosting for-
mula [14], and Algorithm 6.1 is restarted. The weights
of objects are taken into consideration when calculating
the rule evaluation criterion Iy(ϕ), which allows one to
find new rules that essentially differ from those found
at previous iterations.

Algorithm 6.1. Learning conjunctions by a breadth-
first search algorithm

Input:
Xl is a training sample, y ∈ � is a class for which

conjunctions are constructed, K is the maximal rank of
conjunctions, T1 is the number of best conjunctions
chosen at each step, T0 is the number of best conjunc-
tions chosen at the last step, Imin is the informativity
threshold, and Emax is the admissible number of errors;
Output:

the list of conjunctions Ry = { (x)|t = 1, …, Ty};

1: Ry := ∅;
2: for any β ∈ �j , j = 1, …, n
3: addtothelist (Ry , β);
4: for any k = 2, …, K
5: for any conjunctions ϕ ∈ Ry of rank (k – 1)
6: for any β ∈ �j , j = 1, …, n
7: if a feature fj is not used in conjunction ϕ and

Iy(ϕ ∧ β) ≥ Imin, then
8: addtothelist (Ry , ϕ ∧ β);
9: leave at most T0 conjunctions with the maximal Iy(ϕ)
and Ey(ϕ) ≤ Emax in Ry;

10: PROCEDURE addtothelist (Ry , ϕ);
11: if |Ry | < T1, then
12: Ry := Ry ∪ {ϕ}
13: else
14: find the worst conjunction in the list: ψ :=
         (ψ);

15: if Iy(ϕ) > Iy(ψ), then
16: replace the worst conjunction ψ by ϕ in the list Ry.

by

py by+
----------------

CPy By+
py by+

ln CPy

pyCBy

byln

ϕy
t

Iy
ψ Ry∈
minarg
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The growth function ∆Φ[K](L) of the set Φ[K] does
not exceed its cardinality. Suppose that the jth feature
generates dj = |�j | terms, j = 1, …, n. Then the number
of conjunctions of rank r constructed from the features
of the subset J = {1, …, j} does not exceed

The numbers Hr, j can be calculated effectively, in
O(Kn) operations, if one applies the following recur-
rence formulas: H0, j = 1, Hr, j = 0 for r > j, and

The growth function does not exceed the total num-
ber of conjunctions with ranks from 1 to K:

Local shatter coefficient  is estimated by the
total number of conjunctions that fall into the lists Ry

over all training samples , n ∈ N ':

This bound may be underestimated since |N ' | � N.

A more adequate bound is given by the number  of
analyzed conjunctions that satisfy the criteria of high
informativity Iy(ϕ) ≥ Imin and low errors Ey(ϕ) ≤ Emax.
This number can easily be calculated during the search
process.

Denote by  the number of all conjunctions ϕ for
which one calculates the characteristics py(ϕ, Xl) and
by(ϕ, Xl) during the search. A trivial and slightly over-

estimated bound is given by  ≤ |N ' |(T1K – T1 +

Hr j, d j.
j J '∈
∏

J ' J⊆
J ' r=

∑=

Hr j 1+, Hr j, d jHr 1– j, ,+=

j 1 … n, r, , 1 … K ., ,= =

∆Φ K[ ] L( ) H1 n, … HK n, .+ +≤

∆L
l

Xn
l

∆L
l µyXn

l

n N '∈
∑ N ' T0.≤=

∆L
l

–

∆L
l

∆L
l

1)(d1 + … + dn). The exact number of all analyzed con-
junctions can also be calculated easily during the
search.

For Algorithm 6.1, there is another way to estimate
the degree of overestimation related to the localization
of the target function y*. This is the ratio of the number
of all analyzed conjunctions to the number of conjunc-
tions that turned out to be rules:

Since Algorithm 6.1 performs a directed search of
the best conjunctions, this ratio may be slightly under-
estimated.

7. EXPERIMENTS, RESULTS, 
AND CONCLUSIONS

The rule learning algorithm was tested on seven
two-class classification problems from the UCI reposi-
tory [23]. The sample was partitioned randomly
20 times into two equal parts, l = k, with stratification
of classes. In each partitioning, the first half of the sam-
ple was used as a training sample and the second half as
a test sample; then, these halves changed places. Thus,
|N ' | = 40. Table 1 shows the characteristics of the prob-
lems and the mean error on test data. The data on algo-
rithms C4.5, C5.0, RIPPER, and SLIPPER are bor-
rowed from [22, 14] and show that the quality of the
algorithm implemented is comparable with that of its
analogs (we do not aim to prove the advantages of our
algorithm in this paper).

Table 2 shows the bounds for the shatter coefficients
calculated during running Algorithm 6.1. The two right
columns present the bounds for the effective local shat-
ter coefficient calculated according to Definition 5.2.

Figure 1 represents the graphs of the coefficient 
as a function of accuracy ε. The decaying curve shows

the confidence  as a function of ε. To determine the

r1'' ε( ) ∆L
l

∆L
l

------.=
–

∆̂L
l

Q̂ε

Table 1.  Characteristics of problems: sample length L; number of features n; the number of generated terms dj , where the
expression 205 indicates that there are five features each generating 20 terms; test error (in percent) for four standard algo-
rithms according to [22, 14]; and test error rate for Algorithm 6.1

Problem L n d1…dn C4.5 C5.0 RIPPER SLIPPER Forecsys

crx 690 15 24324191141206 15.5 14.0 15.2 15.7 14.3 ± 0.2

german 1000 20 22334355101111205 27.0 28.3 28.7 27.2 28.5 ± 1.0

hepatitis 155 19 213648191 18.8 20.1 23.2 17.4 16.7 ± 1.7

horse-colic 300 25 2332465562207 16.0 15.3 16.3 15.0 16.4 ± 0.5

hypothyroid 3163 25 218207 0.4 0.4 0.9 0.7 0.8 ± 0.04

liver 345 6 121205 37.5 31.9 31.3 32.2 29.2 ± 1.6

promoters 106 57 574 18.1 22.7 19.0 18.9 12.0 ± 2.0
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range of possible values of (ε), we first fix the range

of reasonable values of confidence  ∈ [0.01, 0.1] (on
the right vertical axis); for this range, we determine the
range of accuracy (on the horizontal axis), and, on this
range, we determine the minimal and maximal values

of (ε).

Table 3 presents the bounds for the degrees of over-
estimation calculated for a fixed value of confidence of

 = 0.05.

Interpretation and conclusions. Among four fac-
tors responsible for overestimation, the first two prove
to be most significant: r1, neglect of the localization
effect, and r2, factorization of a shatter coefficient. A
large amount of work on data-dependent bounds have
been devoted to the elimination of the first factor [24,
25, 6]. However, all these bounds contain a multiplier
that describes the complexity of a certain set of func-
tions, even though a local set. The large values of r2
indicate that the “curse of overestimation” is inherent in
all complexity bounds.

The coefficients  and  estimate the contribution
of the target function y* localization to the degree of
overestimation of r1. Both these coefficients are under-
estimated; therefore, we can argue that the correspond-

∆̂L
l

Q̂ε

∆̂L
l

Q̂ε

r1' r1''

ing loss of accuracy amounts to two orders of magni-
tude or greater. The concept of effective dimension
introduced by Vapnik does not take into account this
factor because it is based on the uniform convergence
principle.

In all problems, the effective local shatter coefficient
does not exceed the sample length L. Attempts to use
this coefficient for determining the effective local
dimension by formula (4.5) lead to a degenerate result:
in practice, such a dimension does not exceed one. This
again means that complexity bounds (even local ones)
are intrinsically extremely overestimated. To substanti-
ate the learnability, one should introduce some other,
much finer, characteristics of a learning algorithm.

The factor r3 is relatively small in most cases. For
the error numbers m = Lνy(ϕ, XL), typical for rules, the

values of H(m) =  are close to the maxi-
mum (see Fig. 2). However, as m  0, the function
H(m) tends to zero faster than a geometric progression.
Therefore, for conventional classifiers and “good”
problems with error rate (approximately) less than
10%, the factor r3 may reach considerable values.

The factor r4 shows that the exponential approxima-
tion of the hypergeometric tail is loose and should not
be used in practice.

HL
l m, sm

– ε( )( )

Table 2.  Parameters of the algorithm: search breadth T1, maximal rank of conjunctions K, and the class label in UCI encod-

ing. Bounds for shatter coefficients: growth function |Φ[K] |, average number of analyzed conjunctions , average num-

ber of informative conjunctions , average number of conjunctions chosen by the rule learning algorithm , and

effective local shatter coefficient  corresponding to the range of  ∈ [0.01, 0.1] and a value of  = 0.05

Problem T1 K y |Φ[K] |

crx 50 4 0 1.4 × 107 2.1 × 104 380 5 [10; 41] 24

1 490 6 [11; 180] 12

german 50 5 1 5.2 × 108 3.0 × 104 1370 14 [38; 530] 54

2 330 3 [1.0; 2.2] 1.9

hepatitis 50 4 0 5.6 × 105 0.9 × 104 570 7 [11; 148] 83

1 240 3 [12; 27] 15

horse-colic 50 5 1 1.9 × 106 3.8 × 104 630 7 [2; 9] 7

2 330 3 [3; 6] 6

hypothyroid 100 5 0 5.3 × 108 6.3 × 104 210 7 [3; 220] 21

1 80 3 [2; 44] 30

liver 50 4 0 1.9 × 106 1.1 × 104 700 7 [4; 21] 12

1 650 7 [3; 12] 5

promoters 50 3 0 1.0 × 108 2.2 × 104 480 5 [36; 230] 72

1 300 3 [9; 22] 18

1
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Conclusions and further work:

–Under the weak probabilistic axiom, the generali-
zation bounds are obtained for the functionals based on
complete cross-validation. This facilitates the empirical
analysis of theoretical bounds and allows one to esti-
mate empirically the factors responsible for the overes-
timation of bounds.

–It is interesting to apply the proposed empirical
method to other learning algorithms to investigate their
localization ability.

–When obtaining numerically tight generalization
bounds, one should take into account not only the local-
ization but also the nonuniformity of distribution and
the degree of difference of algorithms. In tightest com-
plexity bounds, the shatter coefficients would be on the
order of 101–102.
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