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Discovering hidden time patterns in behavior:
T-patterns and their detection

MAGNUS  S. MAGNUSSON
University of Iceland, Reykjavik, Iceland

This article deals  with the definition and detection of particular kinds of temporal patterns in be-
havior, which are sometimes obvious or well known, but other times difficult to detect, either directly
or with standard statistical methods. Characteristics of well-known behavior patterns were abstracted
and combined in order to define a scale-independent, hierarchical time pattern type, called a T-pattern.
A corresponding detection algorithm was developed and implemented in a computer program, called
Theme. The proposed pattern typology and detection algorithm are based on the definition and detec-
tion of a particular relationship between pairs of events in a time series, called a critical interval re-
lation. The proposed bottom-up, level-by-level (or breadth-first) search algorithm is based on a binary
tree of such relations. The algorithm first detects simpler patterns. Then, more complex and complete
patterns evolve through the connection of simpler ones, pattern completeness competition, and pat-
tern selection. Interindividual T-patterns in a quarter-hour interaction between two children are pre-
sented, showing that complex hidden T-patterns may be found by Theme in such behavioral streams.
Finally, implications for studies of complexity, self-organization, and dynamic patterns are discussed.

Hidden or nonobvious temporal patterns in behavior The present work began with a study of children’s so-
are of long-standing interest in various areas of behavioral cial interaction and was aimed at the detection of nonob-
research: “Behavior consists of patterns in time. Investi-    vious or hidden probabilistic interaction sequences, such
gations of behavior deal with sequences that, in contrast as had been discovered in both children’s and adult’s
to bodily characteristics, are not always visible” (Eibl-   dyadic interactions (see, notably, Duncan & Fiske, 1977;
Eibesfeldt, 1970, p. 1, emphasis added). Integrated stud- Montagner, 1978). With gradually improved pattern def-
ies of the structure of verbal and nonverbal behavior have initions and detection algorithms, unexpectedly complex
been repeatedly proposed (Pike, 1960; Skinner, 1957): and regular repeated patterns emerged (Magnusson, 1982,
“The activity of man constitutes a structural whole, in 1983, 1988, 1989, 1996, 1998). Different versions of the
such a way that it cannot be subdivided into neat “parts” or resulting software (Theme; see Appendix E) have already
“levels” or “compartments” insulated in character, content, been used in a number of studies (notably, Beaudichon,
and organization from other behavior. Verbal and nonver- Legros, & Magnusson, 199 1; Blanchet & Magnusson, 1988;
bal activity is a unified whole, and theory and methodol- Grammer, Kruck,  & Magnusson, 1998; Lyon, Lyon, &
ogy should be organized or created to treat it as such” Magnusson, 1994; Lyon & Magnusson, 1982; Magnusson
(Pike, 1960, p. 2). & Beaudichon, 1997; Montagner et al., 1990).

Such an approach requires sufficient knowledge about
recurrent patterns in observable behavior. However, these
patterns may be hidden and difficult to detect without ad-
equate tools. This paper concerns some of these method-
ological difficulties and proposes some solutions.

THE PROPOSED PATTERN TYPE

Even though unaided observers often perceive human
behavior in interactions as somewhat structured and repet-
itive, they find it difficult or impossible to specify what
kinds of patterns are being repeated or when. The approach
adopted here, therefore, assumes that the temporal struc-
ture of a complex system of behavior is largely unknown,
at least consciously. Thus, ideas or hypotheses are needed
concerning kinds of patterning for which detection meth-
ods must then be found, adapted, or created.
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95140,96058, and 97163. Special thanks for invaluable support go to
J. Beaudichon, IJniversity of  Paris V-Sorbonne; S. Duncan, University
of Chicago; R. Ghiglione, University of Paris XIII; A. Langaney,
M.N.H.N., Paris; H. Montagner, INSERM, France; and M. Lyon,
S. K. Moeller, and S. Ross, University of Copenhagen. A free executable
version (not source code) of the Theme program is available on line
(www.hi.is/-msm), but at the time of this writing, it is hoped that a
more powerful commercial version will soon be available from a com-
pany (PatternScope)  that is now being created by the author and Ice-
landic Venture Funds (see www.hi.is/-msm for up-to-date informa-
tion). Correspondence concerning this article should be addressed to
M. S. Magnusson, Human Behavior Laboratory, University of Iceland,
Sudurgata 26, IS-101 Reykjavik, Iceland (e-mail: msm@rhi.hi.is).

Roots and Application Possibilities
The kind of pattern proposed below is called a T-pattern,

to distinguish it clearly as being just one particular kind
of temporal pattern or configuration, which, together with
the corresponding detection algorithm, might be most
readily used in areas close to its conceptual and method-. .
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ological origin. Essential in this respect are the proba-
bilistic, real-time contingency, stimulus control (Skin-
ner, 1969), and mand concepts (Skinner, 1957) of radi-
cal behaviorism and the linguistic concept of syntactic
structure in the repeated surface patterns of speech (no-
tably, Chomsky, 1959, 1965). Neither of these authors,
however, provided a methodology for the integrated
study of complex verbal and nonverbal behavior and in-
teractions in natural settings.

The detection of hidden recurrent action patterns and
probabil is t ic  social  interact ion sequences in natural  or  rel-
atively unconstrained settings is a common goal of e t h o -
logical research (Dawkins, 1976; Montagner, 1978; Tin-
Tinbergen, 1963) and of human interaction research, such
as the analysis of turn taking (Duncan & Fiske, 1977).

Perceptual grouping of stimuli according to proximity
and form is well known from Gestalt psychology (Koh-
ler, 1947), but the ease with which such grouping breaks
down in the presence of noise (i.e., other concurrent
stimuli) is here a central issue (see below). In music, the
repetition (not necessarily cyclical) of rhythmic phrases,
melodies, and themes, sometimes undetectable (at least
consciously)  by untrained l is teners ,  confirms the possible
existence of such hidden patterns and, thereby, the im-
portance of time in human behavior organization.

A treatment of these relations is, however, outside the
scope of this paper.  Nor is  i t  absolutely necessary,  because
patterns in everyday behavior may serve directly as mod-
els for the definition of the T-pattern (and its derived
types)  without  necessary implicat ion of  other  viewpoints .
This is sometimes fortunate, since irrelevant or unnec-
essary theoretical considerations are avoided when the
method is  applied in other  areas.  Thus,  analysis  using this
method is objective and operationalized, so it requires no
prior commitment to a particular theoretical viewpoint.
The T-pattern type and detection algorithm will ,  therefore,
be explained and defined by using everyday pattern ex-
amples and in verbal, graphical, and formal ways, begin-
ning with looser definitions, which are gradually re-
stricted and formalized.

From  Well-Known Patterns to T-Patterns
Behind the pattern definition lie the hypothesis that

both hidden and manifest behavior patterns may involve
similar relations among their parts. The T-pattern defini-
tion,  therefore,  at tempts to abstract  some of these relat ions
in order to create an-algorithm for the detection of hid-
den patterns. Examples of well-known patterns that may
serve as models are, for example, standard phrases, which
are sequences of words that,  in turn, are sequences of pho-
nemes. Verbal examples are “How do you do?’ or “If. . .
then . . . else . . . . ,” the latter with open slots (marked by
. . .) that may be filled in various ways. Patterns with
both verbal and nonverbal components include greeting
rituals and a multitude of other everyday ceremonies,
routines, and processes of work and play. For example, a
lunch is a pattern that typically involves simpler behav-
ioral components that are themselves patterns-that is,

s i t t ing  down at  a  table ,  eat ing the  main  course ,  having a
desert ,  drinking coffee,  and then s tanding  up from a table.
Each of the component patterns is again composed of
simpler  behavioral  components that  may also be patterns
of the same kind. Thus, for example, sitting down at a
table typically involves pulling a chair out from a table
(which includes reaching out  and pull ing),  moving in front
of the chair (which also includes a series of movements),
and then bending the knees to lower the trunk. Each of
these subpatterns may also occur alone or as part of var-
ious other patterns. (Other examples, from music perfor-
mance, are various repeated rhythmic phrases, melodies,
and themes, often composed of simpler ones and, finally,
of simple beats or nodes separated by time intervals.)

Between the components of a T-pattern,  the number and
type of behaviors that may occur may vary greatly from
instance to instance of the same pattern,  which makes the
detection of such patterns difficult with methods that de-
pend only on the order or sequence of events.

It is such recurring hierarchically organized patterns
(i.e. ,  patterns of patterns of patterns, etc.) of verbal and/or
nonverbal behaviors, whether intra- and/or interindivid-
ual,  that  are the principal  models for the proposed pattern
type.

Causality
Sometimes, a pattern of this kind involves a causal

relation-that is, an earlier part of the pattern may be
seen as a likely cause of a later part of the same pattern,
as, for example, in the interindividual pattern “How do
you do? Very well, thank you,” where the intraindividual
preceding part (“How do you do?“) is a likely cause of
the consequent occurrence of the other intraindividual
pattern (“Very well, thank you”) performed by a different
individual. In other cases, the relations may be more like
those between the words wi th in  an intraindividual  pat tern,
such as “Very well, thank you,” where an earlier word is
usually not considered to be a cause of any word follow-
ing it within the pattern.

The Critical Interval and Pattern Detection
Of essential interest here are some relations between

the distr ibutions of  components of  a T-pattern.  Thus,  over
the repeated occurrences of a particular T-pattern, i ts com-
ponents occur in the same order each time, and, moreover,
each of the consecutive t ime distances separating consec-
utive components remains relatively invariant-that is,
relative to an expectation assuming, as a null hypothesis,
that each component is independently and randomly dis-
tributed over time with its observed average frequency.

Making use of real-time information, the following
probabilistic real-time relation, which follows from this
T-pat tern defini t ion and nul l  hypothesis ,  here serves as  a
key to the detection of hidden T-patterns.  That  is ,  i f  A is  an
earlier and B a later component of the same recurring T-
pattern, then, after an occurrence of A at t, there is an in-
terval [t + d1, t + d 2 ]  (d2  2 d1 2 0) that tends to contain
at least one occurrence of B more often than would be
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Figure 1. The upper part of this figure shows a simple real-time behavior record con-
taining the occurrences of a few types of events-that is, A, B, C, . . .-with the lowercase
letters (a, b, c , . . .)  indicating their respective instances within the observation period [l,
NT].  The lower part (line) is identical to the upper one, except that all occurrences of K
and W have been removed. A simple T-pattern (ABCD) then appears, which was difficult
to see when the other events were present (even after it had been pointed out). One pos-
sible binary tree ((AB)(CD))  is shown, but others, such as ((A(BC))D)  or (A((B(CD)) are
possible (see the text).

expected by chance. This relation is here called a critical
interval (or CI, more precisely defined below) relation
between the distributions of A and B and is essential for
the more formal definitions of the T-pattern type and its
detection algorithm, given below.

Missing Components
The later component, B, need not be the one immedi-

ately following A within the pattern, so even when some
elements of a T-pattern are ignored (e.g., not coded or
unknown), it may still have the defining characteristics of
a T-pattern, albeit a less complete one. This is obviously
important when searching for hidden patterns in complex
behavioral streams with a largely unknown temporal
structure and may also help to explain why some detected
patterns can be hard to interpret (understand).

REASONS FOR FOCUSING
ON THE T-PATTERN TYPE

One reason for focusing on this pattern type is its wide-
spread occurrence in various kinds of behavioral streams
and at highly different time scales, suggesting its impor-
tance in the organization of behavior. A further reason is
that these patterns easily become invisible to the naked
eye when other behavior occurs in parallel with them, as
is typically the case (see Figure 1). Moreover, patterns of
this kind may often be hard or impossible to detect with
the well-known statistical methods that are found in
major statistical program packages and behavior research
software, such as The Observer (Noldus, 1991; Noldus
et al., 2000) or GSEQ (Bakeman & Quera, 1995). Taken
together, these reasons might partly explain why this par-
ticular pattern type has not received more attention.

METHOD

The proposed T-pattern detection algorithm is based
on a more precise and restricted T-pattern definition,

which refers to a particular data  structure and involves
the CI relationship, as well as a competition between pat-
terns in which only the most complete patterns survive.

THE BEHAVIOR RECORD OR DATA TYPE

Behavior is coded during an observation period [ 1, NT]
in terms of the discrete occurrence times of event types,
where each event type is the beginning or ending of some
particular behavior performed by a particular agent. The
behavior is described in terms of such categories as runs,
laughs, talks, stands, smiles, and so forth, with optional
qualifiers such a fast, slow, left, nonverbally, and so forth.
For example, bill,e,run,fast  (Bill ends running fast) and
sue,b,smile  (Sue begins to smile) are two different event
types (see also Appendix D).

Each event type occurrence is located at a time unit-
that is, is a point on a discrete time scale. Thus, its occur-
rence times series, S, is a series of integer values within
[ 1,  NT].  This kind of series is herein called a simple series.
Although each event type thus either occurs or not (0 or 1)
within each discrete time unit, any number of the differ-
ent event types may occur within the same time unit.

All the definitions below thus refer to behavior records
that consist exclusively of an arbitrarily ordered set of K
different event types, E1...K ,  each with its simple series,
Si, of discrete occurrence times observed within the ob-
servation period [ 1, NT].  That is, Data = D = ((E, S)1...K,
[ 1, NT]}  defines the data set completely.

Categories of Different Kinds
Categories are usually behavioral but may also be

physiological and/or environmental or any mixture of all
of these. But the choice of categories and time scale must
be based on a good understanding of the system being
studied, as well as of the T-pattern  type  and the detection
algorithm.

Data may, of course, be collected either automatically-
for example, from Skinner boxes or physiological mea-
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Figure 2. This figure shows four observation periods, [1,  NT],  numbered 1 to 4, each
with  two occurrences of each of two event types, A and B. The only possible critical in-
tervals (CIs)  are shown, but in Case 2, it covers nearly half the observation period and is
far from significant. In Case 3, only a free CI is present, whereas in Case 4, a fast CI is
also present. gee Appendix B for calculations.

curred, the higher NT value could make the same interval
significant, a CI which may seem strange, because the tem-
poral distances have not changed (see Appendix A). More-
over, A and B might even represent, respectively, the be-
ginning and the ending of the same behavior-such as, for
example, running-but within a particular, time horizon
(observation period), the occurrence of B may still not be
more predictable from A than from a randomly chosen
time point. That is, if the duration of the observed instances
of running varies too much, relative to the length of the ob-
servation, no CI relation is present, even if the two event
types are logically strongly related. Figure 3 shows a CI re-
lation, identical to that of Figure 4 (see below).

Narrowing the T-Pattern Definition
To facilitate a bottom-up detection strategy (see

below), a recursive binary tree condition is added to the
T-pattern definition. That is, for any T-pattern, there must
be at least one way of splitting it into two consecutive T-
patterns, QLeft (QL) and QRight (QR); where QL precedes 
or is concurrent with QR, with a CI  relationship between
the simple ending series of QL (written QLi2; i = 1. . .NQL) 
and the simple beginning series of the concurrent or
following QR (written QRj1;  j= 1 . . .NQR).  Moreover, it
must be possible to continue this splitting process recur-
sively for both  QL and QR until only pseudo-patterns (event
types) are reached.

., a II a b,
1

a        b. -1 I

a b. -, I
NT

Figure 3. This figure illustrates the critical interval relation between the simple oc-
currence series A and B. A short interval located at a fixed distance after occurrences
of A contains at least one occurrence of B more often (here, only twice) than would be
expected, assuming independent occurrences of A and B and a constant probability
P(B)  = NB/NT  of B occurring at each discrete time unit and assuming that NT  is not
too small (e.g., NT >>100).
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Either Cyclical or Irregular Occurrences
Although T-patterns may occur cyclically, this is not a

part of their definition, and the distances between their
occurrences may just as well be irregular.

T-PATTERN DETECTION AND
STANDARD STATISTICAL METHODS

Despite the common everyday occurrence of T-patterns,
statistical methods and software for their detection have
been hard to find, since most available methods have been
developed for different tasks. A treatment of the possibil-
ities offered by such methods (alone or in combination) is
obviously outside the scope of this paper, but some of their
general characteristics, relative to the detection of T-
patterns, will be shortly noted below (at the risk of some-
times stating the obvious). It is assumed that the reader is
familiar with behavioral analysis using statistical meth-
ods (see, e.g., Bakeman & Gottman, 1997; Bakeman &
Quera, 1995; Colgan, 1978; Monge & Cappella, 1980;
Sackett,  1978; Scherer & Ekman, 1982; Watt & Vanlear,
1996).

Since the type of behavioral data in question is the oc-
currence times series of a multitude of qualitative phe-
nomena, in very general terms, their multivariate character
might suggest the use of standard multivariate statistics.
However, these methods are generally aimed at the iden-
tification of clouds of points in multidimensional space,
rather than of hierarchically ordered interval structures,
such as T-patterns.

The temporal aspect of T-patterns might suggest the use
of standard time series analysis for their detection, but
these methods generally deal with cycles, waves, or trends
and are, therefore, clearly not relevant for T-pattern detec-
tion, since they do not relate to any of their defining aspects.

The sequential and time lag aspect of T-patterns might
suggest the use of standard lag sequential analysis tech-
niques. But those using predefined fixed (time) lag win-
dows are clearly not applicable when the temporal struc-
ture of a complex behavioral stream is largely unknown,
and they do not deal well with the hierarchical, syntacti-
cal, or multi-ordinal aspect of T-patterns. Moreover, even
if multi-ordinal sequential relations and automatically
adapted time windows were added to these methods (going
well beyond standard methods), a concept of repeated
patterns similar to the T-pattern would still be missing.
Therefore, in the presence of complex T-patterns, such
methods might detect various sequential relations re-
flecting their existence, but without detecting them as such,
which happened in the earliest versions of the algorithm-
that is, before the T-pattern concept was defined and pat-
tern evolution through competition and selection could be
incorporated into the Theme algorithm (see below).

T-PATTERN DETECTION

The T-pattern detection algorithm described below
mostly relies on extensive repetition of a few fast com-

puter operations, and only simple statistics are involved
(i.e., only elementary binomial probability theory), mak-
ing the algorithm and its results relatively transparent. A
similar wish for transparency is behind the creation of a
special kind of diagram that, for each pattern, shows all
the series (data) involved and how some of their points are
connected to form the pattern (see below).

The number of possible T-patterns, even in a moderate
data set, is very high. For example, when the number of
event types is 100, the number of T-patterns involving up
to 10 event types is many orders of magnitude greater
than 1O11  if all possible time windows are also considered.
Considering each separately is, thus, an impossible task,
even for supercomputers. This is why, in accordance with
the assumed hierarchical structure of T-patterns, a bottom-
up, level-by-level (or breadth-first) detection strategy is
used by which simpler patterns are detected first, whereas
more complex patterns are detected as patterns of simpler
ones.

The two-stage bottom-up detection algorithm reverses
the binary splitting procedure described above and is
aimed at the detection of the longest possible T-patterns-
that is, those involving the highest number of event types.
The first stage deals with CI search and the construction
of new patterns. The second stage deals with complete-
ness competition, where all detected patterns that are less
complete versions (i.e., one ore more components are
missing) of some other detected pattern are dropped (see
below).

Stage 1: Search and Construction
Beginning with the initial behavior record, the algorithm

treats all possible pairs of the pseudo-patterns (i.e., the
event types in the input data) as potential QL and QR parts
of longer patterns. If it detects a CI relation, [d1, d2]  be-
tween QL and QR (i.e., between the simple ending series
of QL and the simple beginning series of QR), it constructs
a new pattern, Q = (QLQR).

An instance (occurrence) of the new pattern, Q, occurs
each time an instance of QL  ends at t  and an instance of QR
begins within the following detected critical window-
that is, within [t + d1, t + d2].    Such instances of QL and QR
are, therefore, connected to form an instance of the new
larger pattern, Q, which begins where the QL  instance be-
gins and ends where the QR instance ends. The double
series of Q is thus determined.

Therefore, if QL =X1 ... Xm  and QR = Y1  .... Yn , then
Q = X1 .... Xm [d1,d2] Y1 ... Yn = Z1 ... Zm+n  (see Fig-
ure 4). The new pattern thus inherits all the behavioral
terms of QL and QR and their temporal structure. Only a
(possibly very small) subset of the instances of either QL
or QR may be involved-that is, QL and/or QR may occur
much more often than Q. The detection of the critical in-
terval relating the simple series in Figure 4 is described in
Appendix C.

Patterns with double series (line section series) iden-
tical to already detected patterns are treated in a special
way, as will now be explained.
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Figure 4. This figure shows NQL =  4 occurrences of a pattern QL = X1 .... Xm  and
NQR= 3  occurrences of pattern QR = Y1 .... Yn  within observation period [ l, NT ]  The
location and duration of pattern instances are also indicated with line segments. The
two critically  related simple series (QL.2 and QR.1  see the text) are indicated with us
and bs, respectively. The two pairs of values (t1, t2)  are the double series of the result-
ing pattem Q=(QLQR) = X1 ... Xm Y1 ... Yn = Z1 ... Zm+n.

Redundant Detection
and Identical Double Series

More than one binary tree of CI relations may corre-
spond to the same underlying T-pattern, which may, thus,
be completely detected as different T-patterns, all with
identical double series but different trees. For example,
((A B) (C D)) and (A ((B C) D)). Moreover, various in-
complete versions (i.e., those with missing parts) of the
same complete pattern may also be detected, and if their
beginnings and endings are identical to the complete pat-
tern, they will also have the same double series-for ex-
ample, (A (C D)) and ((A B) D). The double series of a pat-
tern completely determines which CI relationships it will
form; so, for patterns with identical double series, the first
one detected may represent all those detected later. On the
other hand, a pattern like (A (BC)), with a different dou-
ble series, might grow into a pattern more complete than
((A B) (C D))-for example, ((A (B C)) (R D)). This can
only be known after Stage 1.

Therefore, if the double series of the new pattern is not
identical to that of any already detected pattern, it is added
to the data and considered as a potential QL or QR part
of still longer patterns. Otherwise, it is stored away until
the competition for completeness begins.

Stage 2: Completeness Competition
This last stage deals with the elimination of detected

patterns that are partial or redundant versions of other de-
tected patterns. Pattern Qx is thus considered less com-
plete than Pattern Qy if Qx  and Qy occur equally often

and all events that occur in Qx  also occur in Qy .  If the re-
verse is also true, Qx, and Qy are considered equivalent,
and one is arbitrarily selected, and the other dropped. Thus,
the more or less arbitrary binary tree structure imposed
for detection purposes is disregarded, making indifferent
the order in which series pairs are considered during the
search.

,
Adjusting Search Parameters

When searching for T-patterns with the Theme pro-
gram, some search parameters can be adjusted. The prin-
cipal ones are a, the significance level used by the critical
interval tests, and Nmin, the minimum number of times a
pattern must occur. Although patterns occurring at least
twice may, in principle, be detected, any higher minimum
number can used and is a powerful way to reduce the num-
ber of detected patterns. The choice of a is not auto-
matic, but the default value .005 often works quite well.
However, the rule of thumb is to do repeated analysis,
starting with a very low value, such as .00001,   at which no
patterns or only very few and short patterns are detected.
When the value is gradually increased, longer patterns
start to appear. But when a certain approximate level has
been reached, most of the longest and most interesting
patterns have appeared, and increasing the a value leads
to a decreasing difference in number and complexity of
patterns, as compared with an analysis of the same data
after their randomization (see the next section). Deciding
which a value to use is, thus, somewhat like adjusting a
microscope’s amplification level.
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Patterns Formed by Chance
In fairly large data sets, the use of a null hypothesis

means that some T-patterns are expected to occur by
chance, even in randomized data. Therefore, detecting
some T-patterns in such data is not an error. But this calls
for an evaluation of the validity of the results, and three
approaches are proposed. The first is external validation,
which considers how well the detected patterns correspond
to prior knowledge about the behavior. The second, purely
statistical approach is to compare the results with those
obtained by using the same search parameters after the data
have been randomized. To randomize data, the Theme
program replaces each occurrence series in the original
data with a series containing the same number of random
time points within the same observation interval, [1, NT]. 
This can be done repeatedly, analyzing the randomized
data with the same search parameters as those used when
analyzing the initial (nonrandomized) data. A search for
T-patterns is considered successful when considerably
more and/or longer T-patterns are found in the original data
than in any of its randomized versions. How much differ-
ence is required may depend on various factors, such as
external validation and the type of research. By specifying
very strict search parameter values, it is usually possible
to exclude practically all detection in randomized data, but
this may hinder the detection of interesting patterns in the
original data, which might be validated in other ways.

The third kind of validation is graphical, since looking
at the pattern diagrams can provide important information
about the detected regularity (see Figures 7, 8, and 9).

DERIVED TERMS

Transition Probabilities
For each critical interval, there are two transition prob-

abilities (relative frequencies), NAB/ NA  and NAB/NB -   I 
that is, respectively, the  forward conditional probability
that, given an occurrence of A at t, it is followed by an
instance of B within the critical interval [ t + d1, t + d2 ] 
and the backward  conditional probability that, given B at
t, an instance of A occurs within [t - d 1, t - d 2]    (where
NA, NB, and NAB are the number of occurrences of Pat-
terns A, B, and AB, respectively). Either one or both of
these forward and backward transition probabilities can be
near zero (see the CI test in Appendix A), which under-
lines the importance of time - that is, the CI relation -
in T-patterns. The Theme program calculates these con-
ditional probabilities, as well as the conditional probability
of a T-pattern occurrence, given an occurrence of any one
of its event types.

Markers
If the probability that a particular pattern, Q, is occur-

ring is higher than some preset value (k), given an occur-
rence of a particular event type E that is a component of
Q- that is, if (NQ/NE)  >  k - then E is called a (k ) marker
for Q (Magnusson & Beaudichon, 1997).

CHILDREN’S DYADIC OBJECT PLAY:
AN EXAMPLE STUDY

This study concerns an interaction between two 5-
year-old girls playing together with one toy for as long as
they wanted (i.e., here, for 13 min and 52 sec). An exist-
ing list of (ethological)  categories of children’s behavior
(McGrew, 1972), with minor modifications, was used for
the coding (see Appendix D) on the basis of the implicit
assumption that these behaviors were relevant in this sit-
uation. The only explicit hypothesis was that complex be-
havior and interactions at least sometimes involve hidden
T-patterns that can be detected with the proposed algo-
rithm. No hypotheses were formulated regarding any par-
ticular pattern that might be found.

Setting
The observation setting was a large room (5 X 6 m)

split into two equal halves with a thin 1.5-m-high  parti-
tion. It had an approximately 2-meter-long  section made
of transparent plastic that did not quite reach the floor,
leaving a 15-cm-high  opening, through which the children
could exchange the toy, a hand-held picture viewer with
a few picture cards (calledpictcard below). The children
were brought into the room, one on each side of the par-
tition, and one child was given the viewer and the picture
cards. The children were told they could play with the
viewer as long as they wanted.

Video Recording
The video recording started as one of the children

began manipulating the viewer and ended when the chil-
dren spontaneously stopped playing and left the room.
Two video cameras were used, each hidden about 2.5 m
from each side of the transparent wall section behind and
slightly above one child and facing the other. Each cam-
era thus provided a frontal view of one child (and a view
from behind of the other). The image from each camera
was recorded on one side of the video screen, using a split-
screen technique. The video recording was then digitized
at 15 frames per second, which was also the time resolution
used for coding and was more than was needed to separate
all the occurrences of the most frequent event type.

Coding
Three categories were specially defined, since they

seemed particularly relevant for the situation-that is,
“have-viewer,” “view,” and, the only verbal behavior cat-
egory, “order,viewer.”  Others have been qualified by their
focus, such as “glance-at,partner”  and “look-at,viewer”
(see Appendix D).

Categories Versus Event Types
For each child, here called X and Y, both beginnings

(B) and endings (E) were coded for most of the cate-
gories, so the event types  used in coding are, for example,
X,B,LOOK-AT,VIEWER, meaning X begins to look at
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the viewer, and Y,E,LOOK-AT,VIEWER, meaning Y
ends looking at viewer (see Appendix D). Consequently,
the number of event types is much greater than the number
of categories, and each event type has its own occurrence
times series, whereas the same category may be involved
in a number of event types. The coding here resulted in
the set of event type occurrence series (behavior record)
shown in Figure 5.

Pattern Diagrams for Longer Patterns
When many types of events are involved, the type of

presentation in Figure 1 is replaced by the kind of diagram
shown in Figures 7 and 9 (see below). These are more
closely related to that of Figure 5, in that they show, in a
similar format, all those series from the behavior record
that are involved in the pattern.

To facilitate the reading of the pattern diagrams below,
Figure 6 shows the correspondence between the two types
of diagrams (Figure 1 vs. Figure 9). Regarding diagram
types, Figure 7 corresponds to the two middle boxes of
Figure 6, whereas Figure 9 corresponds to its two lower
parts. The top box of Figure 8 is a horizontally stretched
copy (longer time axis) of the right box in Figure 7, while
its bottom box is like those of Figures 6 and 9. (Diagrams
like those in Figures 5, 7, 8, and 9 are automatically pro-
duced by Theme; see below.)

RESULTS

After a few search parameter values had been tried,
the T-pattern shown in Figures 7 and 8, described below,
was detected with a = .005 and Nmin  = 4, using the free
CI algorithm (see Appendix C).

With these parameters, 341 different patterns of vary-
ing length and content were found, the longest one being
of length m = 25 (the number of event types involved).
It, moreover, corresponded with prior knowledge, since
it corresponded perfectly with play and exchange of a toy
between two children, which is what the whole situation
was about.

Randomization and analysis with the same search pa-
rameter values repeated 50 times produced, at best, pat-
terns that were about 3 times fewer and 3 times shorter-
that is, 40-120 different nonsense patterns of maximum
length varying from 5 to 8. The fact that some of the
event types in the real data were logically connected may
play some role in this big difference, but these were too
few to account for much of the difference. In any case,
the strong external validation and the regularity seen in
the pattern diagram make remote the possibility of the
pattern’s being produced by pure chance.

The many different patterns detected in the real data
provided complementary insights, but the one shown in
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hha!Tl  nml
ab cd b cd bb c d  abed
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Figure 6. This figure has three main parts, each involving the same [ l, NT ]  observation
period. The uppermost part (see the text and Figure 1) and the middle part (two boxes)
contain the same information. The middle-left box shows the hierarchical construction of
the pattern, whereas the middle-right box shows the occurrence time points of each of its
event types and the connection of points to form pattern occurrences. In the uppermost
part, concurrent events appear on top of each other, whereas in the right and bottom
boxes, their connection branch becomes a simple line whereby the binary tree becomes
partly invisible. The bottom box is like the uppermost part, but with no letters and with
only complete pattern instances showing.

Figure 7 (and Figure 8) was the longest, and it gives both
a global and a reasonably detailed view of the interaction.
Note, however, that this particular pattern occurs cyclically
and that each new occurrence even begins where the last
one ends (about the possibility of discovering cyclical
organization in data by first detecting T-patterns, see Mag-
nusson, 1989). Most T-patterns are shorter, occur more
often, and, with irregular distances between instances,
cover a much smaller percentage of the observation pe-
riod, as is, for example, the case with some of the subpat-
terns in Figures 7 and 9.

The pattern shown in Figure 7 (and Figure 8) starts right
at the beginning of the interaction, and its four occurrences
cover, continuously, nearly 100% of the observation time.
It is repeated four times, with very similar time distances
between its parts each time. Some of the relations are log-
ical necessities, so they should appear together in the pat-
tern, and they do. Referring to the numbers in the top left
box, this process or pattern may be expressed in words in,
for example, the following way. (1) Y gets the viewer to
her side of the screen and, then, (2) stops looking at it
and instead (3) starts looking into the viewer. (4-8) X then
begins a series of automanipulations. Then (9-10), Y
loses the viewer, and X gets it and (11) immediately be-
gins manipulating it. (12-15) X then twice views the pic-
tures in the viewer for more than 3 sec. (16-18) Y ends
being immobile and begins and ends looking at her part-
ner. (19-20) Y then begins and ends looking at a picture

card and then (2 l-22) begins and ends automanipulation.
(23-24) X then stops having and manipulating the viewer.
(25) Y gets the viewer again.

Once this long pattern had been performed, it was im-
mediately repeated in full--three times. Note that the
last pattern occurrence-that is, just before the children
stopped playing-lasted longer (was performed more
slowly) than the others.

Head Tilts, Immobility, Glances, and Commands
The pattern shown in Figure 9 was detected in the

same data but captured a somewhat different aspect of the
organization of this interaction. New behaviors were in-
volved-that is, “order, viewer,” and “headtilt’‘-but ini-
tially, no verbal acts were included in the coding of this
interaction. Then category “order, viewer” (see Appen-
dix D) was added, to see whether it would turn up in any
patterns. As may be seen in Figure 9, it did. Moreover, it
fell almost right into the longest pattern (Figure 7), which,
however, tells the same general story about the interaction,
but without it. This suggests the possible danger of taking
a narrow look at the structure of such interactions, which
easily happens if, for example, only “order,viewer”  and
“have-viewer” had been coded, thus ignoring the larger
scheme, where such highly different behaviors as “au-
tomanipulate,” “order,viewer,”  “immobile,” “view,long,”
“glanceat,partner,”  and “headtilt” (see Appendix D) all
occur again and again (four times) at nearly exactly the
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(01) Y,B,HAVEVIEWER

(02) Y,E.LOOKAT,VIEWER

(03) Y,B,VIEW,LONG

(04)  X,E,AUTOMANIPULATE

(05)  X,B,AUTOMANIPULATE

(06) X,E,AUTOMANIPULATE

(07) X,B,AUTOMANIPULATE

(08) X,E,AUTOMANIPULATE

(09) Y,E,HAVEVlEWER

[10) X,B,HAVEVIEWER

(11) X,B,MANIPULATE,VlEWER

(12) X,B,VIEW,LONG

(13) X,E,VIEW,LONG

(14) X,B,VIEW,LONG

(15) X,E,VIEW,LONG

(16) Y,E,IMMOBILE

(17) Y,B,LOOKAT,PARTNER

( 1 8 ) Y,E,LOOKAT,PARTNER

(19) Y,B,LOOKAT,PICTCARD

(20) Y,E,LOOKAT,PICTCARD

(21) Y,B,AUTOMANIPULATE

(22) Y,E,AUTOMANIPULATE

(23) X,E,HAVEVlEWER

(24) X,E,MANIPULATE,VlEWER

[25) Y,B,HAVEVIEWER

.
l . . . . . I e.  . .
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Figure 7. Optimized for the readability of the many event type names, this figure shows a T-pattern composed of 25 event types, num-
bered 1 to 25, gradually detected by the bottom-up, level-by-level (breadth-first) algorithm of the Theme program. For each event type
in the left box, its occurrence series, as in the behavior record, appears immediately to its right in the right box. The first connected
event types (left box)-that is, those at Level One-are (right box occurrences of) event types (1 and 2), (6 and 7), (8 and 9), (11 and
12), (14 and 15), and so forth. At Level Two,  they are ((1 and 2) and 3), (5 (6 and 7)), (13 and (14 and 15)), and saforth. Time distances
involved at each Cl connection appear in the horizontal part of point connections, which appear, for example, clearly at the last (7th)
level, where subpattern (1. . . 16) is connected to subpattern (17.... 25). See also the caption to Figure 6.

same temporal  posit ions relat ive to each other.  One could
get  the impression that  “order,  viewer” is  s imply the cause
of the following “b,have-viewer,” whereas any effect of
“order,viewer” may depend on its timing relative to vari-
ous other  components  of  the pat tern.

DISCUSSION

Perceiving the Detected Patterns
Observers who watched the video record very care-

fully in normal and slow motion overlooked the pattern
shown in Figure 7, and its regularity and much of its be-
havioral content, as well as its coverage of nearly 100%
of the observation time, came as a complete surprise.
Even after it has been detected, following it through a
13:52-min  video recording requires intense concentration

and is  hardly possible without  much pract icing.  Theme al-
lows finding and playing the video sections correspond-
ing to each occurrence of a detected pattern. But when so
many other things are happening (see Figure l), for so
long and at  so many different  temporal  scales at  the same
time, this may not be enough to “see” a pattern even when
i t  has  been pointed out .

Although the patterns presented above are mostly non-
verbal,  structurally very similar patterns have been found
in studies in which dyadic interact ions were coded mostly
in terms of verbal acts (Beaudichon & Magnusson, 1999;
Blanchet  & Magnusson, 1988; Magnusson & Beaudi-
chon, 1997). This suggests that T-patterns capture some
important characteristics of the temporal organization of
at least  some behavioral  s treams,  and in a way that  is  both
in accordance with and complements previous knowledge.
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Figure 8. Optimized for easier reading of temporal information, this figure concerns the same pattern as that in Figure 7, and the
upper box of this figure is exactly that of Figure 7, except that time axis is drawn longer. The lower box diagram type is explained in
the caption for Figure 6.

Recurring Critical Intervals
and Inverse Relations

Figure 3 shows the simple series of Figure 4 and the
occurrences of the detected CI. Notice that, whether
empty or not, it has become an entity with its own time
locations (occurrences).  In the present T-pattern definit ion,
the focus is  on the nonempty  cases. But what happens after
empty ones-that is, when B does not occur within the
CI? And especially when the A + B transition probabil-
ity is high, as, for example, when a greeting that is usu-
ally returned is sometimes ignored? A definition and an
algorithm are being prepared for this inverse relation-
sh ip .

What Do T-Patterns Mean?
The question of what T-pattern mean has often been

asked, and there is no single answer. It might be some-
what like asking, generally, What do phrases mean? Ob-
viously,  the answer would,  at  least ,  depend on the content
of the phrase, how it is performed, and the general con-
text. Some verbal phrases even have different meanings
to different listeners and may also be hard to interpret or
understand for most,  which, again,  is  often true when the

same word occurs within different phrases and general
contexts .

Why Do T-Patterns Happen?
No single theory seems to predict or explain the emer-

gence of T-patterns in behavior and interactions.  Sugges-
tions may, however, be found within the area of dynamic
patterns and complexity studies (e.g., Holland, 1998;
Kelso, 1997; Watt & Vanlear, 1996)  since key terms de-
scribing complex dynamic and self-organizing sys-
tems-that is, mechanism, agents, interaction, recurring
patterns, and hierarchical organization (Holland, 1998,
p. 9) - also  surround the definition and detection of T-
pat terns .

A particularly interesting case is the well known Game
of Life, a cellular automaton invented by the Cambridge
mathematician John Conway (see, e.g., a famous account
by Gardner, 1970). In this game, a fairly high number of
entities interact according to very few and simple rules.
However, self-organization happens-that is, obvious
complex repeated patterns emerge (and others may have
been overlooked?). It is, thus, tempting to think of T-pat-
terns as characteristic emergent phenomena in complex
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(04) X,B,ORDER,VIEWER
(05) Y,E,HAVEVlEWER
( 0 6 )  X,B,HAVEVIEWER
(07)  X,B,MAMlPULATE,V
(08) X,B,VIEW,LONG
(09)  X,E,VIEW,LONG
(10) X,B,VlEW,LONG
(11)  Y,E,lMMOBILE
(12)  X,E,VIEW,LONG
(13)  X,B,GLANCEAT
(14)  X,E,GLANCEAT,

~(19)  Y,B,HEADTILT
(16)  Y,E,HEADTILT

..**  . .

i
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Figure 9. This figure describes a T-pattern including 16 event types. For the reading of this kind of diagram, see the caption for Fig-
ure 6, as well as for Figure 7 and the text.

dynamic systems involving one or more agents capable of
a number of different behaviors and governed by interact-
ing (sets of) rules (many or few, simple or complex). The
T-patterns found in the dyadic interaction above might,
thus, be seen as self-organization phenomena, under par-
ticular constraining conditions, emerging from the inter-
action of  two populat ions of  rules (or  memes,  more gener-
ally).  (About heuristic rules that guide behavior,  see,  e.g. ,
Todd & Gigerenzer, 1999. About memes see, e.g., Black-
more, 1999.) In this view, it is only natural that novel pat-
terns appear in every human interaction and make i t  unique.

T-Associates and T-Packets
The following derived definitions indicate the kind of

conceptual  development that  the definit ion of pattern types
such as the T-pattern may lead to.

Positive (or negative) associates of a T-pattern, Q, are
T-patterns that  are not components of Q but occur signif-
icantly more (or less) often during a particular time zone,
called Q’s attraction/repulsion (a/r) zone. This zone may
extend from somewhere before to somewhere after the oc-
currences of Q.

When a posit ive associate always  occurs with Q wi th in
its a/r  zone, it is called a T-satellite of Q.  A negative as-

sociate of Q that  never occurs within Q’s a/r  zone is  called
a T-taboo relative to Q.  A T-pattern that has associates
is, together with its associates and a/r zone, called a T-
packet. A well-known example of a T-packet is, for ex-
ample, the business dinner, where, apart form the normal
dinner pattern, certain behaviors are especially likely and
others especially unlikely to happen; some might even
be satellites-for example, talking business-and there
might be some taboos, too. (Definitions and detection al-
gorithms, similar to those for CIs, are being tested.)

Seeing Aid and Measurement Tool
The principal aim of the Theme software has been to

provide aid in discovering and understanding the structure
of behavioral  streams and, in that  sense,  to serve as a kind
of seeing aid-a specialized structure or pattern scope
(see Appendix E). But, for example, the number of differ-
ent T-patterns detected in a behavioral stream or their  av-
erage and/or maximum length may be used as measures
of, for example, complexity or overall synchrony. Such
measures may then be found to correlate with various ex-
ternal variables (see, e.g., Grammer’et al., 1998). Theme
has been used both as a structure scope and as a complex-
ity measurement tool in a number of doctoral  research pro- 
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jects  (Bensalah, 1992; Casagrande, 1995; Feron, 1992; EIBL-EIBESFELDT,  I. (1970). Ethology:  The biology of behavior. New
Sevre-Rousseau, 1999; Sigurdsson, 2000; Tardif, 1996). York: Holt, Rinehart &  Winston.

Theme is, moreover, being used in research on strate- EKMAN, P.,  & FRIESEN,  W.  V. (1978). Facial action coding system: A

gies in social interaction (Duncan, 1998), in sport research technique for the measurement of facial movement. Palo Alto, CA:

(Jonsson, 1998),  and in research on relations between
Consulting Psychologists Press.

FERON, C. (1992). Les comportements  socio-sexuels  des souris  stag-
self-esteem and social interaction (Jonsson, 1997), as well gerers males: Caracteristiques et effets  de 1 ‘experience sociale. Un-
as in research on animal feeding behavior (Martaresche, published doctoral thesis, Universite de Paris XIII, Paris.
Le Fur, Magnusson, Faure, & Picard,  1999). GARDNER, M. (1970, October). Mathematical games: The fantastic

combinations of John Conway’s new solitaire game, Life. Scientific
A m e r i c a n ,  pp. 120-123.

Pattern Concepts and Detection Tools Needed   GRAMMER, K., K RUCK, K. B., & MAGNUSSON, M. S. (1998). The
Finally, the following striking observation seems in courtship dance: Patterns of nonverbal synchronization in opposite-

place: “Only about 8% of all psychological research is sex encounters. Journal of Nonverbal Behavior, 22, 3-29.

based on any kind of observation. A fraction of that is pro- HAYES-ROTH, F., WATERMAN, D. A., &  LENAT,  D. B. (EDs.) (1983).

grammatic  research. And, a fraction of that is sequential
Building expert systems. London: Addison-Wesley.

HOLLAND, J. H. (1998). Emergence:  From  c h a o s  t o  o r d e r .  Reading,
in its thinking” (Bakeman & Gottman, 1997, p. 184). Pos- MA: Addison-Wesley.
sibly, the still relatively limited offer of domain-specific JONSSON, G. K. (1997). Self-esteem, friendship and verbal and nonver-

methods and tools is a part of the explanation. In any case, bal interaction [Abstract]. In A. Schmitt, K. Atzwanger, K. Gram-

it seems that useful types of hidden patterns in behavior
mer, & K. Schafer (Ed.), New aspects of human ethology (p.  206).
New York: Plenum.

need to be formally defined and methods adapted or cre-
ated for their detection.
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APPENDIX A
The Critical Interval Test

The CI test is based on the null hypothesis that A and B are
independently and purely randomly (Poisson) distributed over
the observation period [ 1, NT] with a constant probability of
B’s occurring within the basic time unit of P(B) = NB/NT  and,
thus, of not occurring of P(-B)  = 1 - P(B). The probability of
B’s not occurring within any interval, [d1, d2] of length d = d2 
- d1 + 1, is therefore, P(~B)d, and the probability of one or more
occurrences of B (i.e., of at least one occurrence of B) within an
interval of that length is 1 - P(~B)d.

The statistically expected number of the NA intervals follow-
ing the NA occurrences of A that contain one or more occurrences
of B is thus NA * [ 1 - p(~B)d]. (To simplify, the possible over-
lapping of intervals is not taken into account.)

The a priori probability p = P( 5 NAB ) of NAB  or more of the
NA intervals containing one or more occurrences of B is thus 1 -
P(<  NAB).   This p value is the probability that NAB  or more cases
of A occurring at t  will be followed by B within [t+d1, t+d2]. 
Thus, it is calculated by using the binomial distribution with NA

as the number of trials and 1 - P(~B)d as the probability of suc-
cess (i.e., of one or more occurrences of B within each of the NA
intervals of length d). This probability is, thus, one minus the sum
of the probabilities of all possible lower values of NAB -that is, all
values from 0 to NAB - l.Thatis,p=P(?N,,)=l  -zbino-
mlal(N*,i,l -P(-B)d);i=O...N,,  - 1. Consequently, p is
compared with the specified significance level.

Note that p is a function of NT, NA, NB, d = d2-d1+1 , and
NAB  but that, for a given pair of series A and B within a given
observation period, only d and NAB can vary and thatp increases
with d and decreases with NAB.   So, if d (the CI size) is suffi-
ciently small, the value ofp may be significant, even if NAB is
very small relative to either NA or NB . Inversely, if the CI is large
( QL to QR distances vary significantly), p may not be significant
for any NAB  value.

(When conditions allow, the Poisson and normal approxima-
tions, respectively, to the binomial distribution are used to avoid
extreme values and consequent value overflow in the computer.)

APPENDIX B
Examples of Critical Interval Testing

This section refers to the four minimal behavior records in
Figure 2. Since the only possible (AB) patterns are obvious, a
search algorithm (see Appendix C) is not involved, but the use

of the CI test (see Appendix A) is illustrated (calculations may
contain slight rounding errors). The following calculations as-
sume that NT = 100.

Common to all four cases is that A and B occur only twice
each, and the probabilities of B occurring and not occurring, are
thus, respectively, P(B) = NB/NT = 2/100  = .02  and P(~B) = 1
- P(B) = 1 - .02  = .98.

Case 1
Here, A is followed by B only once, so no CI relationship can

be calculated.

Case 2
Here A occurs at 5 and at 40, whereas B occurs at 20 and 95.

The distances from each A to the closest following or concurrent
B are, thus, 15 and 55, respectively. The  only possible CI is
therefore [15, 55] and its length is d=  [(55 -15) + 1] =41. This
means that there is a window of length d = 41 following occur-
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sulting in a sideways reclining posture with the main body axis
horizontal to the ground. Alternatively, the legs are fully flexed,
then the trunk is tilted forward into a prone reclining posture.
From a seated position, the trunk is extended at the waist either
sideways (preceded by extended arms), or backwards (not so pre-
ceded)” (p. 91).

LOOK-AT,PARTNER. Derived form McGrew’s  Look-that
is, “The head is moved, re-orienting the face, and this orientation
is maintained for at least three seconds” (p. 62). Here the target
of the look is added (see also glance-at,partner).

LOOK-AT,PICTCARD. See look-a&partner.
LOOK-AT,VIEWER. See look-at,partner. The child looks at

the viewer (which may be anywhere) but not into it, as in View
(below).

MANIPUL,VIEWER.  The child holds the viewer (toy) in her
hands .

ORDER,VIEWER. Child verbally orders the other to give it
the viewer (for example, “Give it to me!“). This behavior was
observed very clearly from time to time in one of the children
and seemed particularly relevant to the situation. Its highly pre-
dictable position in the temporal structure came, however, as a
surprise. Only beginnings of this short behavior were coded.

PULL. “The arms are flexed toward the body, usually the
chest, thus drawing an object or person toward the body or vice
versa” (p. 80).

SIT. “The trunk is lowered by hip and knee flexion;  the result
is that the body rests primarily on the buttocks. While seated the
legs may be extended horizontally, partially flexed with only the
feet on the ground, or dangled. The neck is held extended with
the head upright. Sitting may be maintained during locomotion,
for example, when the buttocks are scooted along the ground”
(p. 93).

STAND. “The trunk is raised by extension of the hips, knees,
and back; the resulting posture is upright with both feet sup-
porting the body’s weight, about a shoulder’s width apart. The
arms usually hang free and the head is erect” (p. 95).

HEAD-TILT. “The head is moved sideways to an angle of
approximately 45 degrees so the ear is closer to the shoulder”
(p. 59).

VIEW,LONG.  Look into the viewer for 3 set  or more.
VIEW,SHORT. Glance into the viewer for less than 3 sec.
WALK. “The body moves bipedally forward at  a moderate

rate, alternating legs during each stride so that one foot is placed
firmly on the ground before the other leaves the ground. The
trunk is upright, and the arms swing forward and backward in
unison with the opposite legs” (p.  112).
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APPENDIX D
Category Definitions, Mostly From McGrew (1972)

AUTOMANIPULATE. “(Ini t ial ly divided into Finger and
Fumble). Fingering is the use of the fingers, particularly thumb
and forefinger, to manipulate part of one’s body. It usually com-
prises scratching, rubbing, pinching, or otherwise handling the
mouth, nose, ears, or hair. Finger is also oriented to the hands,
arms, genitals, or anal region. Fumbling is similar movements
directed to a small object (e.g., a jigsaw puzzle piece) or to a
limited aspect of a large object (e.g., a screw on a wagon han-
dle) . . . . Auto-manipulat ion has two characterist ic  aspects:
(1) it appears “unconnected” to other simultaneous body move-
ment . . . . ; (2) addit ional  sensory modali t ies appear “disen-
gaged.” For example, the auto-manipulating child seldom looks
at the fingered point” (p. 69).

CRAWL. “The body moves quadrupedally, usually forward,
with the ventral surface off the ground. Various combinations
of the limbs may touch the ground: palms, forearms, knees and
toes, soles” (p. 108).

GLANCE-AT,PARTNER. Derived from McGrew’s Glance,
defined as “A rapid head movement which orients the face is
followed by another head movement within three seconds reori-
enting the face” (p. 56).

GLANCE-AT,PICTCARD. See glance-a&partner (pictcard =
picture card; see above).

GLANCE-AT,VIEWER. See glance-at,partner.
HAVE-VIEWER. The viewer is on the actor’s side of the

wall. Only beginnings are coded.
IMMOBILE. “Gross movement of the trunk, limbs, and head

ceases for at least three seconds. Often the gaze is fixed. The
fingers may continue to move, often in automanipulation, but
the movements are restrained and inconspicuous” (p. 89).

KNEEL. “The trunk is lowered and tilted forward by hip and
knee flexion,  resulting in its resting on the knees (one or both)
and feet (both). After assuming the posture, the trunk may be
upright or maximally flexed at the hips with the head vertical and
facing forward, or horizontal and facing down. When used as a
resting position, the buttocks rest on the heels while flexion  is
45 degrees or less.  The forelimbs need not perform any sup-
portive function” (p. 9 1).

LAUGH. “The characteristic sound is produced by a series of
short ,  rapidly repeated,  spasmodic,  expiratory movements
through the open mouth. This may be stylized into similar ver-
balizations of “Ha, ha, ha.” It occurs in bouts, and individual el-
ements are difficult if not impossible to define” (p. 60).

LIE. “The legs are fully flexed at the knees, then the arms are
extended toward the ground and the trunk is tilted sideways;
from the resulting seated position the trunk is further tilted, re-
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APPENDIX E
The Theme Program

The Theme program has evolved over nearly 20 years (from
a Fortran  IV version to a Delphi version) and now consists of
nearly one hundred thousand lines of source code. Therefore,
no source code is included in this paper, but a free copy of the
executable program for Windows 95 /98/NT  can be down-
loaded (www.hi.is/~msm).  In addition, at the time of this writ-
ing,  a more powerful commercial  version is  being developed
and will be announced at the above site.

Theme (first  called Melody) takes i ts  name from musical
themes, but its development was also inspired by the so-called
Expert Systems based on Artificial Intelligence (see, e.g.,
Hayes-Roth, Waterman, & Lenat,  1983). It was initially partly
intended for the analysis of existing parallel recordings (video
+ polygraph) of verbal, nonverbal, and physiological reactions
(Cosnier, 1971,  p. 93),  as well as of facial action data scored with
the FACS system (Ekman & Friesen,  1978),  but the first such
study has just been reported (Schwab, 1999).

Theme is involved in a new multimedia course on the obser-
vational analysis of behavior (Dickins  et al., in press).

Data Col lect ion
The Theme software  includes a specialized multimedia mod-

ule for interactive coding of Theme type data (see the text) from
digitized video recordings, so pattern detection can begin im-
mediately after coding. This multimedia module can also find
and play the video sections at which a selected pattern occurs.
Moreover, the relevant types of data files collected by The Ob-
server (Noldus, 199 1; Noldus, Trienes, Hendriksen, Jansen, & &

Jansen, 2000) program are also being analyzed with Theme.
Various other data formats have been easily transformed into
Theme format for analysis.

Pattern Detection
Here is where all the T-pattern detection occurs, but this hap-

pens automatically, and only a few simple parameters are spec-
ified, such as the significance level and the minimum number of
occurrences of detected patterns. The search algorithm is fast,
so most of the time is usually spent with the next part of the
software.

Selecting and Analyzing Detected Patterns
Patterns may be selected according to a number of criteria,

such as their frequency, length (number of event types involved),
or behavioral content-that is, the categories and/or event types
it contains. And, for any selected (sub-) set of detected patterns,
summary statist ics can be obtained concerning, for example,
the percentage of detected patterns that contain particular cate-
gories and/or event types or even combinations or sequences of
categories and/or event types.  This corresponds to asking
whether such patterns were found in a way somewhat similar to
the consultation of an Expert System, but such questions can,
of course, be formulated as hypotheses. If any are found, the
structure and behavioral content of these patterns can then be
further inspected and analyzed. Note that this search/selection
is quite different from the pattern detection phase, which must
precede i t .

(Manuscript received December 18, 1998;
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