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Combinatorial framework for generalization bounds Over tting
Links to other approaches
Over tting and complexity measures

The central problem of Statistical Learning

A | a set of classi ers,
a=arg r;zig Err(a; X) | the empirical risk minimization,
or, more commonly,

a= (X)]a learning algorithm trains a classi era on a setX.

The Generalization Problem:

@ How to bound a testing erroErr(a; X), where
X = fxg;:0: ;xlﬁ’g is an independent testing set?

@ How to design learning algorithms that generalize well,
i.e. have a small testing errderr(a; X) almost always?
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Combinatorial framework for generalization bounds Over tting
Links to other approaches
Over tting and complexity measures

The classical approach to Generalization Bounds

In classical approach one nd the uniform convergence condgio

Px sup P(a) Err(a;X) " GenBound(; k; A;")
az2A

whereP(a) = Ex Err(a; X) [Vapnik, Chervonenkis, 1971].

The Problem:
o GenBound may be very loose: 10°::10' in realistic cases

To tackle the problem we
O modify the functional at the left-side of the inequality
© propose acombinatorial approacho get the right-side bound
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Links to other approaches
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Modifying the functional (step 1 from 4)

In classical approach one nd the uniform convergence condgio
Px sup P(a) Err(a;X) " GenBound(; k; A;")
az2A

In combinatorial approaclinstead of a probability of erroP (a)
we bound a testing error

Px.x sup Err(aX) Emr(agX) " GenBound(; k; A;")
a2A

Motivation:
o we bound an empirically measurable quantityafer tting :

(a; X;X) = Err(a; X) Err(a; X)

o we remove a redundant technical step ®fmmetrizationthat
weakens the bound without adding a sense to the result
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Modifying the functional (step 2 from 4)

In classical approach one nd the uniform convergence condgio
Px sup P(a) Err(a;X) " GenBound(; k; A;")
az2A

In combinatorial approaclinstead of supremum ovek
we use a learning algorithm:

Py.x Err( (X);X) Err( (X);X) " GenBound(k; ;")

Motivation:
@ we remove the most restrictive condition from the functional
@ we discard classi ers irrelevant to a given learning task
@ we take into account the learning algorithm
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Modifying the functional (step 3 from 4)

In classical approach one nd the uniform convergence condgio

Px sup P(a) Err(g;X) " GenBound(; k; A;")
a2A

In combinatorial approaclinstead of usual i.i.d. assumption

we use a uniform distribution over all partition$- = X t X:
1 X '

— Err( (X);X) Err( (X);X) "  GenBoundk"; ;")
CLX xL

iXj="

Motivation:

@ we make both sides of the inequality data-dependent and
empirically measurable

o we remove a redundant step of integration over object space
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Links to other approaches
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Modifying the functional (step 4 from 4)

In classical approach one nd the uniform convergence condgio

Px sup|P(a) Err(a;X)l " GenBound(; k; A;")
a2A

In combinatorial approaclinstead of two-side deviation
we rerrhovej j and estimate one-side deviiation

Py xt Err( (X);X) Err( (X);X) "  GenBoundk"; ;")

Motivation:
o we discard a non-interesting case of negative over tting

Finished: we de nedthe probability of large over tting )

Konstantin Vorontsov voron@forecsys.ru Combinatorial theory of over tting 8/44



Combinatorial framework for generalization bounds Over tting
Links to other approaches
Over tting and complexity measures

Learning with binary loss

I (a;x) = [classi er a makes an error on object] | binary loss

Error matrix of sizeL D, all columns are distinct:

aa & B v a8 & ap
X1 1 1 0o 0 o0 1 1 | X "| observable
b O o O o 1 1 1 | training sample
X O 0 1 0o o0 O 0 | of size®
2 | O 0 O 1 1 1 0 | X "| hidden
N O o O 1 o0 o 1 | testing sample
XL o 1 1 1 1 1 0 | odsizek = L

a7l I(axy);:::;1(ax.) | binary error vectorof classiera

P
(g X) = %xzx I(a;x) | error rateof a on a sampleX Xt

Konstantin Vorontsov voron@forecsys.ru Combinatorial theory of over tting

9/44



Combinatorial framework for generalization bounds Over tting
Links to other appr hes
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Example. The error matrix for a set of linear classi ers

1 vector having no errors

no errors
X1 0

X
Q
[eleololololololole]
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Combinatorial framework for generalization bounds

Over tting
Links to other approaches
Over tting and complexity measures

Example. The error matrix for a set of linear classi ers

no errors
0

[eleololololololole]

[slelelolelolelela)

1 error

oo

[clelololololole) o]
[clelololeolele) )
[slelololela] Jeolele]

[elololofe] Jololole]
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Combinatorial framework for generalization bounds

Over tting
Links to other approaches
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Example. The error matrix for a set of linear classi ers

no errors
0

[eleololololololole]

[slelelolelolelela)

1 error

oo

[clelololololole) o]
[clelololeolele) )
[slelololela] Jeolele]

[elololofe] Jololole]
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1 vector having no errors
5 vectors having 1 error
8 vectors having 2 errors

2 errors
0

[elolololelelo) o]
[clelololele] ) Jole]
[slelelofe] o Jelele]
[elelole)l JJ Jeolole]

[clelolofe] Jolola)
[elololo] Jololole)
[elolol Jololo) Jole]
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Links to other approaches
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Probability of large over tting

XX training error rate
X; X testing error rate
(; X) X: X X;X | overtting of onX andX

Axiom (weaken i.i.d. assumption)

XL is not random, all partitionsX- = X t X are equiprobable,
X | observable training sample of a xed size,
X | hidden testing sample of a xed size k, L= "+ k

Def. Probability of large over tting

X
QG xH=P (X) "= G x)

: X 7' a| learning algorithm
|
|

1
CLX XL
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Bounding problems

o Probability of large over tting:
QG xH=pP GX) " 2
o Probability of large testing error:
R(; XH=P (X;X) " 2
o Expectation of OverFitting:
EOF(; XY =E (; X) 2
@ Expectation of testing error (Complete Cross-Validation):

cev; XxH=E X;X 2
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Links to other approaches
Over tting and complexity measures

Links to Cross-Validation

Expected testing error also called Complete Cross-Validation
(taking expectation is equivalent to averaging over all ptéotis):

1 X

ccv(; XhH=E X;X = c

X; X
L x xt
Usual cross-validation techniques (e.g. hold-otdfold, g t-fold,

partition sampling, etc.) can be viewed as empirical measurese
of CCV by averaging over a representative subset of partitions.

Leave-One-Out is equivalent to CCV for the cdse 1.

;) Combinatorial functional€)-, R+, CCV, EOF can be easily
measured empirically by generating10® random partitions.
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Combinatorial framework for generalization bounds Over tting
Links to other approaches
Over tting and complexity measures

Links to Local Rademacher Complexity

Def. Local Rademacher complexityf the setA on X-

o X +1; prob. 1
R(A; X)) =E sup = il(&x); i = P 7
. 1
a2A L., 1, prob. 3
1;::5; L | independent Rademacher random variables.

Expected over ttingis almost the same thing for the case= k:

2% +1; x 2 X
EOF(; X')=Esup = i@ x); P = ’
( ) azgl_i:1 il (&%) i 1 x2X

if we set to over tting maximization (very unnatural learning!):

X =—argmax aX aX
a2A

Konstantin Vorontsov voron@forecsys.ru Combinatorial theory of over tting



Combinatorial framework for generalization bounds Over tting
Links to other approaches
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Links to usual SLT framework

Usual probabilistic assumptions:
XL is i.i.d. from probability spacéX ; : Pi on in nite X

Transferring of combinatorial generalization bound to i.i.d.
framework rst used in (Vapnik and Chervonenkis, 1971):

@ Give a combinatorial bound on probability of large over tting:
Py o (5X) " =QGXYH  (5xhH
@ Take expectation orX':

Py x© (i X) " =EcQ( XY Ea (X
X XKk
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Combinatorial framework for generalization bounds Over tting
Links to other approaches
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(No) Links to Transductive Learning

In both cases data are partitioned on two subsets, but
(training t testing) 6 (labeledt unlabeled)

In transductive learning:
o the aim is to get a semi-supervised data clustering,
o labels for the second subset are unknown,
o learning algorithm uses both labeled and unlabeled data.

In our combinatorial approach:
o the aim is to get generalization bounds,
@ labels for both training and testing subsets are known,
@ learning algorithm can not use the testing set.
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Vapnik-Chervonenkis bound

Theorem
For anyX:, , Aand" 2 (0;1)
ug]iforré] l:L)mior:j
oun oun
Q(; xh Psup (X) " Q- (a; X"
approxi-  a2A a2A
i
"N A Sexp "¥; for’ =k

jAj | Shattering Coe cient,
jAj C2+cl+ +CP h=vCdim(A)

Usually this bound is overestimated by 10°{10* times. Why?
1) uniform bound is loose iA is splitby (a; X%)

2) union bound is loose if most classi ers asenilar or connected
3) approximation bound is not so loose
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Monotone chain of classi ers

One-dimensional threshold classi er (decision stump):

ag(x)=[x 4l d=0;::::D

Example:
2 classes ;g X2 X5 X X1 X2 X3 x//
6 objects
0 1 2 3
Loss matrix:
& A & &

x| 0 1 1 1

X2 0 0 1 1

xs | 0 0 0 1

x| 0 0 0 O

xs | 0 0 0 O

s | 0 0 0 0
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Experiment with monotone chain of classi ers

~

= k =100, " =0:05, N =1000 Monte-Carlo partitions.

Probability of overfitting

not split 10 4
] ]
o 0.9 :
Eerd M
Q 0.8 1
< ]
[y 0.7 4
c ]
(&S] b
0.5
S 04
2 :
Hg 03 ]
o2 02 §
s 01 ;
8 aEl 4

0 20 40 60 80 100 120 140 160 180 200 |A|

o With both splitting and connectivity a huge set does not over
e With no splitting and connectivity 30 classi ers may over t
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Experiment with monotone chain of classi ers

~

= k =100, " =0:05, N =1000 Monte-Carlo partitions.

Complete Cross-Validation

not split
= 0.09 1
= 0.08 1
5] )
8 007 4
c
o 0.06 1
o
0.05 1
ko]
o] 0.04 A
L
4_-8 0.03 4
Oc
cc 002 |
o
o 0.01 1

0 50 100 150 200 |A]

o The local complexity measure should depend on both splitting
and connectivity properties of the set
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Splitting-Connectivity bounds
Combinatorial theory of over tting Model sets (overview)
Bound computation and usage

Splitting-Connectivity graph (1-inclusion graph)

De ne two binary relations on classi ers:
partial order a b: I1(a;x) 1(b;x) for all x 2 X*;
precedence a b: a b and Hamming distancé&b ak =1.

De nition (SC-graph)

Splitting and Connectivity (SC-) grapA; Ei:
A | a set of classi ers with distinct binary error vectors;
E= (ab):a b.

Properties of the SC-graph:
e each edged;b) is labeled by an objecka, 2 X such that
0= 1(a Xab) < 1(b;Xap) = 1;
o multipartite graph with layers
An= a2A: (aXh)=T, m=0;:::;L+1;
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Splitting-Connectivity
Combinatorial theory of over tting Model sets (overvi
Bound computation and usage

Example. Error matrix and SC-graph for a set of linear classi ers

layer O

x
=
o

x
&
[elelolololololole]
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Splitting-Connectivity bounds
Model sets (over
Bound computation and usage

Example. Error matrix and SC-graph for a set of linear classi ers

layer O layer 1

oo
oo

[clelolololo]lole)]
[slelelolelolelela)
[clelololololole) o]
[clolololelele)
[elo]loloola] Jeolele]
[elololofe] Jololole]
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Splitting-Connectivity nds
Combinatorial theory of over tting Model sets (overv
Bound computatio usage

Example. Error matrix and SC-graph for a set of linear classi ers

layer 2
layer 1
layer O
layer O layer 1 layer 2
X1 0 1 0 0 0 0|2 0O O O O 1 1 o0
X2 0 0 1 0 0 0|1 1 0 O O O O O
X3 0 o 01 0 0|0 1 12 0 O O 0 1
X4 0 0O 0 01 0J]O O 1 1 0 O O O
X5 0 o 0 0 0 210 0 0 1 1 1 0 O
X6 0 0O 0 0 0 0J]0O O O O 1 0 1 O
X7 0 0O 0 0 0 0|]0O O O O O O O 1
Xg 0 0O 0 0 0 0J]0O O O O O O O o
Xg 0 0O 0 0 0 0J]0O O O O O O O O
X10 0 o 0 0 0 0J]0O O O O O O o0 o
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Splitting-Connectivi
Combinatorial theory of over tting Model sets (overvi
Bound computation and usage

Connectivity and splitting coe cients of a classi er

Def. Connectivity coe cient of a classi era2 A:
u(@ =# xa2 X-:a b | up-connectivity,
d(@ =# xpa2 X-:b a | down-connectivity.
Def. Splitting coe cient (inferiority) of a classiera2 A
q@)=# xp2X-:9bc b a

Splitting coe cient:

d@ q@ L (&xh NN N SN

X \<x2 x5>:<<4 XSXXB X >/x8
m+1 -
Example' x5  x2 x3 x4 x1 X6
u(a) =# fx3;x4g=2 m -

d(a) =# fx1;x2g=2 X3 x2  xL x4
q(a) =# fx1,x2g=2 m-1-
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Splitting-Connectivity bounds
Combinatorial theory of over tting Model sets (overview)
Bound computation and usage

The Splitting{Connectivity (SC-) bound

Empirical Risk MinimizatiofERM) | learning algorithm
. - 1 . X
X2 AX);  AX)=Argmin (& X)

Theorem (SC-bound)
For anyX:, A, ERM , and" 2 (0;1)

X C g v
Q- CE’ R OF
a2A L

where m= L (a;X'), u=u(a), g= q(a),
b(m Xk)‘:Lc Cs C‘ s

HL; m () = mTU“ | hypergeometric tail function.
s=0 L
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Splitting-Connectivi

Combinatorial theory of over tting Model sets (ove
Bound computz usage

The properties of the SC-bound

X CL LLJI q usm g /n
Q" C‘ |_ u q ( )
a2A L

@ If jAj =1 then SC-bound gives an exact estimate of testing
error for a single classi er:

Q=P (aX) (xX)>" = HI‘_?m(")‘ e

@ Substitutionu(a) q(a) 0 transforms the SC-bound into
Vapnik{Chervonenkis bound:

X Mmoo \:k.

Q" H|_’ ( ) J

a2A
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Splitting-Connectivi
Combinatorial theory of over tting Model sets (ove
Bound computa usage

The properties of the SC-bound

X CL LLJI q usm g /n
Q C‘ |_ u q ()
a2A L

@ The probability to get a classi efa as a result of learning:

o
PpX=a -—-449
CL

© The contribution ofa 2 A decreases exponentially by:
u(a) ) connected sets are less subjected to over tting ;
g(a) ) only lower layers contribute signi cantly to  Q-.

© The SC-bound iexact for some nontrivial sets of classi ers.
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Splitting-Connectivity bounds
Combinatorial theory of over tting Model sets (overview)
Bound computation and usage

Sets of classi ers with known combinatorial bounds

Model sets of classi ers with exact SC-bound:
@ monotone and unimodah-dimensional lattices (Botov, 2010)
@ pencils of monotone chains (Frey, 2011)
@ intervals in boolean cube and their slices (Vorontsov, 2009)
@ Hamming balls in boolean cube and their slices (Frey, 2010)
o sparse subsets of lattices and Hamming balls (Frey, 2011)

Real sets of classi ers with tight computable SC-bound:

@ conjunction rules (lvahnenko, 2010)

@ linear classi ers (Sokolov, 2012)

o decision stumps or arbitrary chains (Ishkina, 2013)
Real sets of classi ers with exact computable CCV bound:

@ k nearest neighbor classi cation (Vorontsov, 2004; lvanovQgp
@ isotonic separation (Vorontsov and Makhina, 2011; Guz, 2011)

Konstantin Vorontsov voron@forecsys.ru Combinatorial theory of over tting 31/44



Splitting-Connectivity bounds
Combinatorial theory of over tting Model sets (overview)
Bound computation and usage

The Local Complexity Regularization

Main steps to use combinatorial Splitting-Connectivity baoii
@ Calculate SC-bound anyway (e.g. via random walks):

P X:X X;X SCboundf; A; X%)
@ Invert the SC-bound: with probability at least 1
X; X XX+ AXY)

@ Use"( ;A;XL) as a penalty for features or model selection

Vorontsov K. V., lvahnenko A. A.Tight Combinatorial Generalization Bounds
for Threshold Conjunction Rules // LNCS. PReMI'11, 2011. Pp66{73.
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Splitting-Connectivity bounds
Combinatorial theory of over tting Model sets (overview)
Bound computation and usage

Splitting gives an idea of e ective SC-bound computation

All classi ersA

g
(global complexg)

IW ©

Really used classi ers,
lowest layers of
' (local complexity)

w
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Splitting-Connectivity bounds
Combinatorial theory of over tting Model sets (overview)
Bound computation and usage

SC-bound computation via Random Walks

1. Learn a good classi er
2. Run a large number of shorlpwalks to get a subget A

3. Compute a partial sun@- summande)
a2B

Special kind of Random Walks for multipartite graph:
1) based on Frontier sampling algorithm

2) do not permit to walk in higher layers of a graph
3) estimate contributions of layers separately

Simple random walk: Random walk with gravitation:

320 265

300 260

255
280
250

260

240
0 500 1000 1500 2000 0 500 1000 1500 2000
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Splitting-Connectivity bounds
Combinatorial theory of over tting Model sets (overview)
Bound computation and usage

Making bounds observable

SCbound(, X%) depends on a hidden sé¢, then we use
SCbound(; X) instead.
Open problems: is it correct? why? may be not always?

Really EOF(; X) is well concentrated near to EOE(XY):
Experiments on model datd, = 60, testing sample siz& = 60

L=K=60
o

EOF(; X%) o ot
0.70 *

0.65 <

0.60
0.55 o
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 EOF( X)
’
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Ensembles of Conjunction Rules
Ensembles of low-dimensional Linear Classi ers
Applications to learning algorithms design Comparing with state-of-art PAC-Bayesian bounds

Ensemble learning

2-class classi cation problem:
(Xi;¥i), | training set, x 2 R", y; 2f 1,+1g

Ensemble | weighted votingof base weak classi erbg (x):

X
a(x) = sign Wi by (X)
t=1

Main idea is to apply generalization bound
as features selection criterion in base classi ers

Our goals:
1) to reduce over tting of base classi ers
2) to reduce the complexity of compositioh
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Ensembles of Conjunction Rules
Ensembles of low-dimensional Linear Classi ers
Applications to learning algorithms design Comparing with state-of-art PAC-Bayesian bounds

ComBoost: Committee boosting

Instead of objects reweightinGomBoosttrains each base classi er
on the training subseX® X in order to augment margins of the
ensemble as much as possible:

X%= x 2 X:Mp Margin(i) M;

X
Margin(i) = yi ~ weby(xi):
t=1

Distribution of margins

08 ]
06 ]
04 ]
02 |

01
02 ]
04 1
06 1

0 20 40 60 80 100 120 140 160 180 200
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Ensembles of Conjunction Rules
Ensembles of low-dimensional Linear Classi ers
Applications to learning algorithms design Comparing with state-of-art PAC-Bayesian bounds

Learning ensembles of Conjunction Rules

Conjunction ruleis a simple well interpretable 1-class classi er:
N

()= )7 j;
j23
wherefj(x) | features

j | thresholds
7 | one of the signs  or
y | the class of the rule

Weighted votingof rule setsRy, y 2 Y:

X
a(x) = arg max Wi r (X)
y2Y
r2Ry

We use SC-bounds to reduce over tting of rule learning
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Ensembles of Conjunction Rules
Ensembles of low-dimensional Linear Classi ers
Applications to learning algorithms design Comparing with state-of-art PAC-Bayesian bounds

Experiment on UCI real data sets. Results

\ | tasks \

Algorithm austr | echo| heart | hepa| labor | liver
RIPPER-opt 155 | 297 | 19.7 | 20.7 | 18.0 | 32.7
RIPPER+opt || 15.2 | 553 | 20.1 | 23.2 | 18.0 | 31.3
C4.5(Tree) 142 | 551 | 20.8 | 18.8 | 14.7 | 37.7
C4.5(Rules) 155 | 6.87 | 20.0 | 18.8 | 14.7 | 37.5

C5.0 14.0 | 430 | 21.8 | 20.1 | 18.4 | 31.9
SLIPPER 157 | 434|194 | 174|123 | 32.2
LR 14.8 | 430 ] 19.9 | 18.8 | 14.2 | 32.0
| our WV | 149 | 437201 [ 19.0 | 14.0 | 32.3|

|our W +CS 141 [ 32 [19.3 [18.1[13.4 [30.2]

Two top results arehighlighted for each task.

Vorontsov K. V., lvahnenko A. A.Tight Combinatorial Generalization Bounds
for Threshold Conjunction Rules // LNCS. PReMI'11, 2011. Pp66{73.
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Ensembles of Conjunction Rules
Ensembles of low-dimensional Linear Classi ers
Applications to learning algorithms design Comparing with state-of-art PAC-Bayesian bounds

Liner classi ers and ensembles

Linear classi er:a(x) = signhw; Xi
Ensemble of low-dimensional linear classi ers

a(x) = sign tanhwy ; Xi
t=1
Random Walks for SC-bound computation
1) nd all neighbor classi ers in the dual space:

2) lookup along random rays
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Ensembles of Conjunction Rules
Ensembles of low-dimensional Linear Classi ers
Applications to learning algorithms design Comparing with state-of-art PAC-Bayesian bounds

Experiment 1: ComBoost ensemble of linear classi ers

| | statlog | waveform | wine | faults |

ERM + MCCV 85,35 87,56 71,63 | 73,62
ERM + SC-bound| 85,08 87,66 71,08 | 71,65
LR + MCCV 84,04 88,13 71,52 | 70,86
LR 80,77 87,34 71,49 | 71,09
PacBayes DD 82,13 87,17 64,68 | 67,67

The percentage of correct predictions on testing set (averaged
over 5 partitions). Two top results for every task are shownbiold.

Feature selection criteria:
@ ERM | learning by minimizing error rate from subset
of classi ers sampled from random walks
@ LR | learning by Logistic Regression
@ MCCV | Monte-Carlo cross-validation
o DD | PAC-Bayes Dimension-Dependent bound (Jin, 2012)
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Experiment 2: comparing bounds for Logistic Regression

All bounds are calculated from subset generated by random walk
@ MC | Monte-Carlo bound (very slow)
@ SC | Splitting-Connectivity bound
e VC | Vapnik{Chervonenkis bound
o DD | Dimension-Dependent PAC-Bayes bound (Jin, 2012)

UCI Task MC SC VC PAC DD
glass 0.115 | 0.146 | 0.356 0.913
liver 0.095 | 0.533 | 0.595 1.159
ionosphere|| 0.083 | 0.149 | 0.238 1.259
wdbc 0.052 | 0.070 | 0.136 0.949
australian 0.043 | 0.244 | 0.277 0.798
pima 0.045 | 0.373 | 0.410 0.823
Conclusions:

1) combinatorial bounds are much tighter than PAC-Bayes bosind
2) SC-bound initially proved for ERM t well for Logistic Reggsion
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Conclusions

Combinatorial framework
@ gives tight (in some cases exact) generalization bounds
o that can be computed approximately from Random Walks
@ and gives more accurate base classi ers in Ensemble Learning

Restrictions:
o binary loss
@ computational costs
o low sample sizes, low dimensions

Further work:
@ more e ective approximations
@ bigger sample sizes, bigger dimensions
@ more applications
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Questions?

Konstantin Vorontsov
vokov@forecsys.ru

www.MachineLearning.ru/wiki  (in Russian):

o User:Vokov
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