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Abstract

The work investigates deep generative models, which allow us to use training data
from one domain to build a model for another domain. We propose the Variational
Bi-domain Triplet Autoencoder (VBTA) that learns a joint distribution of objects
from different domains. We extend the VBTAs objective function by the relative
constraints or triplets that sampled from the shared latent space across domains. In
other words, we combine the deep generative models with a metric learning ideas in
order to improve the final objective with the triplets information. The performance
of the VBTA model is demonstrated on different tasks: image-to-image translation,
bi-directional image generation and cross-lingual document classification.

1 Introduction

Learning distributed representations from data is one of the most challenging task in many machine
learning problems. Recent advances in probabilistic deep generative models allow us to specify a
model as joint probability distribution over the data and latent variable consider the representations
as samples from the posterior distribution on latent variables given data.

Variational autoencoders (VAEs) Kingma and Welling [2013] estimate the data using variational
inference with a few assumptions about data distribution and approximate posterior distribution. They
make it possible to use latent variables as our learned representation.

Inspired by works Karaletsos et al. [2015], Kingma et al. [2014], Suzuki et al. [2016] we propose
Variational Bi-domain Triplet Autoencoder (VBTA) that learns a joint distribution of objects from
different domains x and y having a similar structure (e. g. texts, images). VBTA allows using
distributed representations as samples from shared latent space z that captures characteristics from
both domains. In Section (3) similar to Liu et al. [2017] we make assumptions about shared-latent
space, in which the paired objects (images, sentences) from different domains are close to each
other. In Section (4) we define the joint probability of the proposed model. Our domains x and y
have similar structures and dimensions, and we suppose approximate posterior distributions will be
represented in form of qφx(zx|x)(zx|x) and qφy(zy|y)(zy|y). The proposed model builds the joint
probability p(x,y) of domains x and y that are conditioned independently on latent variable z (joint
representation in the shared latent space).

Like Karaletsos et al. [2015] we propose to use relative constraints or learning triplets t to help our
model catch domain characteristics and similarity between domains better. We sample these triplets
from the shared latent space. We argue that the use of this implicit knowledge about the data provides
slight regularization of the proposed model and improve the performance. We sample negative triplets’
examples by using Jensen-Shannon divergence as distance function between distributions during
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training and we suppose that on each training epoch the information from the triplets regularizes our
objective.

We use the approximate posterior in the form of qφ(z|x) and qφ(z|y) because we want to solve the
translation tasks — in images and languages. If we have a mapping between domains f : x→ y and
inverse mapping g : y → x, then f and g should be inverse of each other. We want g(f(x)) ≈ x̂
and f(g(y)) ≈ ŷ, where x̂ and ŷ are reconstructed input. At Zhu et al. [2017] these conditions are
called cycle consistency loss.

It is worth to be mentioning that either in image-to-image translation or in machine translation tasks
paired (or parallel) data is not always in sufficient quantities and obtaining such data can be difficult
and in some tasks, like artistic style transfer, quite ambiguous. So we argue that the proposed model
can translate between domains with slight supervision provided by triplets. We proved this in (6.3),
where we do not use parallel corpora for our algorithm.

In Section (6) we describe the results on several different datasets and different tasks. The first
dataset is MNIST LeCun et al. [1998], the second dataset is CelebA Liu et al. [2015], the third is
RCV1/RCV2 corpora Lewis et al. [2004]. We show that our method is comparable with the previous
methods on these datasets. We also show that it outperformes some of these methods methods. The
main contributions of this paper are the following:

• We introduce the Variational Bi-domain Triplet Autoencoder (VBTA) — new extension
of variational autoencoder that trains a joint distribution of objects across domains with
learning triplet information. We propose negative sampling method that samples from the
shared latent space purely unsupervised during training.

• We demonstrate the performance of the proposed model on different tasks such as bi-
directional image generation, image-to-image translation, cross-lingual document classifica-
tion.

2 Related work

In this Section we consider some previous works that are close to ours, both in theoretical and
practical sense.

Deep Generative Models Various Deep Generative Models were proposed recently for many deep
architectures. Kingma and Welling [2013] introduced Variational Autoencoder, where it is assumed
that the data is generated using some latent continuous random variable z. In paper Kingma et al.
[2014] extended the approach for semi-supervised settings. Chung et al. [2015] presented a Recurrent
Latent Variable Model for Sequential Data. Kulkarni et al. [2015] presented Deep Convolution
Inverse Graphics Network and Goodfellow et al. [2014] proposed Generative Adversarial Nets.

Joint Models Several works investigate joint models based on variational autoencoders in the
similar way but in different training settings and tasks. VCCA objective was presented by Wang
et al. [2016] for multi-view representation learning. Suzuki et al. [2016] introduced JMVAE model
to represent different modalities, that are independently conditioned on joint representation. Also, the
sampling process from qφ(z|x,y) and qφ(z|x) was showed, when x and y were different modalities.
Vedantam et al. [2017] presented an extension of joint VAE for multimodal setting and introduced the
TELBO objective. However, Suzuki et al. [2016] and Vedantam et al. [2017] considered the task for
modalities with different kind of structures (e.g. images and text attributes for this images).

Triplet learning Many works investigate the metric learning approach, see Bellet et al. [2013],
especially constructing the objective with the learning triplets: T = (xi, xj , xk), where xi should
be more similar to xj than to xk in the sense of some distance function. Karaletsos et al. [2015]
proposed the OPBN model with the VAEs objective extension with triplets. Norouzi et al. [2012]
sampled the triplets that are close to each other by Hamming distance. Wieting et al. [2015] sampled
triplets from the training batches using combination of some strategies. The triplet loss for face
recognition has been introduced by the paper Schroff et al. [2015]. They describe a new approach for
training face embeddings using online triplet mining with different strategies.
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Distributed representation learning Mikolov et al. [2013] demonstrated the potential of dis-
tributed representations for crosslingual case. In works Su et al. [2015], Zhang et al. [2016] bilingual
autoencoder was demonstrated. Recent works by Wei and Deng [2017], Su et al. [2018b] described
the Variational Autoencoder for distributed representation learning, where variational distribution
depends on both domains (languages) qφ(z|x,y).

Image-to-image translation In our work we also consider image-to-image translation problem,
where the goal of which to learn a mapping between an image from one domain to an image from
another. The most common approach for this task is GAN modification Isola et al. [2016] using
Cycle-Consistent Adversarial Networks Zhu et al. [2017], DualGANs Yi et al. [2017], Coupled
GANs Liu et al. [2017], Triangle GANs Gan et al. [2017].

3 Assumptions

Consider dataset (X,Y) = {x,y}Nn=1 consisting of N i.i.d. objects from different domains. We
assume that these objects are generated independently by the random process using the same latent
variable z. We make an assumption that for each pair (x, y) there exists a shared latent space variable
z, from which we can reconstruct both x and y. Latent space variable z is built from the domain space
variables hx, hy according to equations: z = E(hxi) = E (Ex(xi)), z = E(hyj ) = E

(
Ey(yj)

)
,

where hxi and hyj are produced from xi and yj accordingly: hxi = Ex(xi), hyj = Ey(yj). We
define a shared intermediate variable h, which is used to obtain corresponding domain variables x̂i,
ŷj from yj , xi through z: h = D(z) = D (E(Ex(xi))) = D

(
E(Ey(yj))

)
.

ŷj = Dy(z) = Dy (D(E(Ex(xi)))) = f(xi) ≈ yj , x̂i = Dx(z) = Dx (D(E(Ey(xi)))) = g(yj) ≈ xi.

The necessary condition for f and g to exist is the cycle-consistency constraint. That is, the proposed
assumptions requires the cycle-consistency assumption. The following diagram on Figure 1 presents
VBTA generative process. Objects zi, zi and zk form triplet.
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Figure 1: VBTA generative process

4 Variational Bi-domain Triplet Autoencoder

The marginal likelihood defined by this model is:

p(x,y, t) =

∫
z

pθx(x|z)pθy(y|z)p(ti,j,k|zi, zj , zk)p(z)dz (1)

We can assume the following generative process:

• generate z from prior distribution p(z) = N (0, I),
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• value x is generated from some conditional distribution pθx(x|z),

• value y is generated from some conditional distribution pθy(y|z).

The lower bound of the log-likelihood:

LV BTA = Eqφx (zx|x) log
pθx(x,y, t, zx)

qφx(zx|x)
+ Eqφy (zy|y) log

pθy (x,y, t, zy)

qφy (zy|y)
=

= −
[
KL

(
qφx(zx|x)(zx|x) ‖ pθx(zx)

)
+KL

(
qφy(zy|y)(zy|y) ‖ pθy(zy)

)]
︸ ︷︷ ︸

Penalty

+

+
[
Eqφx (zx|x)

[
log pθx(x|zx)

]
+ Eqφy (zy|y)

[
log pθy(y|zy)

]]
︸ ︷︷ ︸

Reconstruction

+

+
[
Eqφx (zx|x)

[
log pθx(y|zx)

]
+ Eqφy (zy|y)

[
log pθy(x|zy)

]]
︸ ︷︷ ︸

Cycle-consistency

+

+ Eqφx (zx|x)
[
log p(t|zx)

]
+ Eqφy (zy|x)

[
log p(t|zy)

]︸ ︷︷ ︸
Triplet likelihood

(2)

Both qφx(zx|x)(zx|x) and qφy(zy|y)(zy|y) are encoders, pθx(x|zx) and pθy(y|zy) are decoders,
modeled by the deep neural networks. Similar to Liu et al. [2017] our decoders and encoders use the
common functions E and D, see (3). We apply the Stochastic Gradient Variational Bayes (SGVB)
and optimize the variational parameters θx, θy, φx and φy.

5 Learning Triplets

Based on the metric learning approach and similar to Karaletsos et al. [2015] we extend our model by
relative constraints or triplets: T = {(zi, zj , zk) : d(zi, zj) < d(zi, zk)}, but in our case we sampled
triplets across domains X and Y. We define the conditional triplet likelihood in the following form:

p(ti,j,k = True|i, j, k) =

∫
z

p(ti,j,k|zi, zj , zk)p(zi)p(zj)p(zk)dzidzjdzk, (3)

that was modelled by Bernoulli distribution over the states True and False parametrized with the use
of softmax-function

p(ti,j,k|i, j, k) =
e−d(zi,zj)

e−d(zi,zj) + e−d(zi,zk)
(4)

Triplets — three objects from shared latent space z. zi, zj — shared latent representation of objects
from X and Y domains. The third object zk is sampled from domain y with the minimal distance
function to the corresponding objects from domain x (and vice versa):

zk = arg min
z
i
′∈Sb\(zi,zj)

d(zi, zi′ ), (5)

where Sb ∈ S — current mini-batch, zi and zj — the paired objects from different domains. As d
we use approximate form of JS-divergence, like Karaletsos et al. [2015]. In other words, we want to
choose an example zk that is similar to zi according to the current model parameters.

6 Experiment and Results

We presented the results on an image-to-image translation task: MNIST LeCun et al. [1998] and
CelebA Liu et al. [2015]. We presented results on cross-lingual text classification task on RCV1/RCV2
corpora Lewis et al. [2004].
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6.1 Image-to-image translation for MNIST dataset

We evaluated our approach on MNIST-transpose, where the two image domains x and y are the
MNIST images and their corresponding transposed ones. We used one-layer network of 512 hidden
units with ReLU for decoder D and encoders Ex, Ey. For the modeling shared encoder E and
decoder Dx, Dy the linear mappings are used. The shared latent space dimension was set to 64.
Training set consist 50,000 objects and the test set consist 10,000.
Similar to Gan et al. [2017] we used the classifier that trained on MNIST images as a ground-
truth evaluator. For the classification evaluation we set pθx(x|zx) and pθy(y|zy) to be Gaussian
distribution. For all the transposed images we encoded them via the model encoder E ◦ Ey and
decoded via decoder Dx ◦D. Then we classified it. The results of the classification are shown in
Table 1, where n is the number of objects used for triplets sampling and cycle-consistency.

Table 1: Classification accuracy (%) on the MNIST-transpose dataset. The DiscoGAN, Triple GAN
and ∆-GAN results are taken from Gan et al. [2017]

Model n = 0 n = 10 n = 100 n = 1000 All
DiscoGAN - - - - 15.00 ± 0.20
Triple GAN - - 63.79 ± 0.85 84.93 ± 1.63 86.70 ± 1.52
∆-GAN - - 83.20 ± 1.88 88.98 ± 1.50 93.34 ± 1.46
VBTA 18.89 ± 3.59 86.57 ± 6.338 90.44± 0.3 90± 0.26 95± 0.06

The intermediate results of the proposed method are illustrated in Figure 2. Figure 3 shows PCA
vizualization on MNIST dataset. The right Figure shows the projection of the translated version of
MNIST-transpose projected using the same PCA model. As we can see, the translation function f(x)
preserves the latent information of the dataset.

Figure 2: Intermediate results of training model
for 10 epochs. As we can see, the digit “2” is
purely reconstructed and similar to “3”. There-
fore the corresponding negative sample from do-
main y is chosen to distinguish them.

Figure 3: PCA projection of the dataset y (left)
and the translation of Y, i.e. g(y) (right). In
both cases the PCA model was optimized only
using the dataset y.

We evaluated the marginal log-likelihood of our model on binarized versions of MNIST and MNIST-
transpose. The results are listed in Table 2. For the comparison to JMVAE model we set pθx(x|z)
and pθy(y|z) to be Bernoulli. We set model of JMVAE to the same configuration.

Table 2: Marginal log-likelihood for MNIST as logp(x) and MNIST-transpose datasets as logp(y).

Model < logp(x) < logp(y)
VAE Kingma and Welling [2013] -81.13 -81.01
JVMAE Suzuki et al. [2016] -85.35 -85.44
VBTA −80.92 −80.91

6.2 Qualitative results for CelebA dataset

CelebA consists of 202,599 face images with 40 binary attributes. In this section we considered this
dataset as a union of two domains: faces of men X and faces of women Y. Similar to Suzuki et al.
[2016] we cropped and normalized the images and resized them to 64x64. Since we did not have
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any paired men and women in CelebA dataset, we considered that the object y (women) is similar to
object x (men) if they had the largest matching of their attributes.

We used encoders Ex, Ey with two convolution layers and a flattened layer with ReLU. For the
shared encoder E and decoder Dx, Dy we used linear mapping into 64 hidden units. For the decoder
D we used a network with one dense layer with 8192 units and a deconvolution layer. We considered
pθx(x|z) and pθy(y|z) as a Gaussian distribution. Figure 4 shows the face images from datasets and
their translation into different domains.

Figure 4: Results of image-to-image translation for CelebA dataset. The first row corresponds to the
original images that were considered as similar because of high amount of matching attrbutes. The
second row shows the reconstruction of the images. The third row illustrates the image translation
from domain X into domain Y and from Y into X.

Figure 5 shows faces generated from Gaussian distribution. We found that our algorithm works rather
well and can reproduce similar faces for both domains from one sample in latent space.

Figure 5: Results of image generation from the common shared space. Each column corresponds
to the faces generated from one sample of z. The latent variable z was sampled from Gaussian
distribution: z ∼ N (0, I).

6.3 Cross Lingual Document Classification

We use experimental setup similar to introduced in Klementiev et al. [2012]. Given a classifier trained
on documents in language A (X domain), one should use that classifier to predict labels of documents
in language B (Y domain).

Previous work Chandar et al. [2014], Wei and Deng [2017] and Gouws et al. [2015] used Europarl
v7 parallel corpus Koehn [2005] to pretrain embeddings and then utilize it to classify subset of
RCV1/RCV2 corpora Lewis et al. [2004]. To handle this task we need to construct meaningful
bilingual text representations. For train and test we used RCV1/RCV2 corpora, where documents are
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assigned to one of four predefined topics: CCAT (Corporate/Industrial), ECAT (Economics), GCAT
(Government/Social), MCAT (Markets). In contrast to previous work, we do not use parallel data
at all. We artificially paired documents according to their topics. We select 15000 documents from
both English and German for classification experiments. The other part of RCV corpora was used to
construct training triplets. Algorithm was trained for approximately 300K iterations with batch size
equals to 50. We use Moses Koehn et al. [2007] preprocessing tools to lowercase and tokenize texts.
Bag-of-words was used as an initial document representation. We keep 30000 top-frequency words
for each language as a vocabulary.
For classification experiment, 10000 documents in English was used to train classifier and test it
on 5000 documents in German and vice versa. We train logistic regression using low-dimensional
representation obtained by our algorithm as features. Classification results are in Table 3.

Table 3: Text classification accuracy

Model en→ de de→ en

Majority Baseline 46.8 46.8
MT Baseline 68.1 67.4

Klementiev et al. [2012] 77.6 71.1
Gouws et al. [2015] 86.5 75.0
Chandar et al. [2014] 91.8 74.2
Wei and Deng [2017] 92.7 80.4
Su et al. [2018a] 91.3 77.8

This work 94.3 82.8

7 Conclusion

In this paper we proposed the Variational Bi-domain Triplet Autoencoder (VBTA) that learns a joint
distribution of objects from different domains with the help of the learning triplets that sampled
from the shared latent space across domains. We demonstrated the performance of the VBTA model
on different tasks: image-to-image translation, bi-directional image generation and cross-lingual
document classification.
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