Dependency detection with Bayesian Networks

M V Vikhreva

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State
University, Leninskie Gory, Moscow, 119991

Supervisor: A G Dyakonov

E-mail: vkhvmr@gmail.com

1. Introduction

Most methods aimed to detect dependency between two variables do not consider interventions
with numerous other variables and often make groundless assumptions about relation form.
Bayesian networks help to despise of the drawbacks. Bayesian networks allow one to learn
about causal relationships. Bayesian networks can consider prior knowledge. Bayesian networks
can readily handle incomplete data sets.

A Bayesian network is a probabilistic graphical model (a type of statistical model) that
represents a set of random variables and their conditional dependencies via a directed acyclic
graph (DAG). For a long time Bayesian networks were used as a representation for encoding
uncertain expert knowledge in expert systems. Recently, methods were developed to learn
Bayesian network from data. Nowadays data analysis bring up a problem of learning a Bayesian
network structure. This work is dedicated to finding the scope of data dependencies modern
applied algorithms can detect with Bayesian networks. Specifically, experiments aimed to detect
dependency between two variables were done with the use of pebl library[2].

In section 2, there are a few more words about what a Bayesian network is. In section 3, we
present a Python package pebl and discuss pebl implemented tools for structure learning and
probabilities learning in a fixed Bayesian-network structure. In section 4, testing of pebl tools
and experiments on how well pebl detects dependencies are presented.

2. Bayesian Network graphical model

Formally, Bayesian networks are DAGs whose nodes represent random variables. Edges represent
conditional dependencies; nodes that are not connected represent variables that are conditionally
independent of each other. That also means that absence of an edge between two nodes doesn’t
really mean actual independence between corresponding variables, because they can influence
each other through other variables. Each node is associated with a probability function that
takes, as input, a particular set of values for the node’s parent variables, and gives the probability
distribution of the variable represented by the node. For example, if m parent nodes represent
m Boolean variables then the probability function could be represented by a table of 2™ entries,
one entry for each of the 2" possible combinations of its parents being true or false (see example
on Figure 1).

In order to fully specify the Bayesian network it is necessary to define the joint probability
distribution of the statistical model, thus to specify for each node X the probability distribution
for X conditional upon X’s parents. It may have any form. In this work discrete distribution is
used since it simplifies calculations. In a situation when only constraints on a distribution are

SPRINKLER RAIN

F 0.4 0.6 @ 0.2 0.8
T 001 099
@ Figure 1. A simple Bayesian

network and its conditional

GRASS WET

SPRINKLER H.AIN| T F probability tables. The joint
F F (oo 10 probability is P(G, S, R) =
F T |o&8 o2 P(G|S, R)P(S|R)P(R), where
T F |os o1
N G correspond to Grass Wet

variable, S — Sprinkler, R — Rain.

known, the principle of maximum entropy can help to determine the distribution. It will be a
distribution that both maximizes entropy and meet the constraints.

Often these conditional distributions include parameters which are unknown and must be
estimated from data, sometimes using the maximum likelihood approach. Direct maximization
of the likelihood (or of the posterior probability) is often complex when there are unobserved
variables. A classical approach to this problem is the expectation-maximization algorithm which
alternates computing expected values of the unobserved variables conditional on observed data,
with maximizing the complete likelihood (or posterior) assuming that previously computed
expected values are correct.

In the simplest case, a Bayesian network is specified by an expert and is then used to perform
inference. But commonly the task of defining the network is too complex for humans. Then the
network structure and the parameters of the local distributions must be learned from data.

The common approach to structural learning is to introduce a statistically motivated scoring
function that evaluates each network with respect to the training data and to search for the
optimal network according to this score. For a scoring function posterior probability of the
structure given the training data can be used. The exhaustive maximization of the score is
known to be an NP-hard problem. Thus heuristic search is often used.

3. Pebl library

In this paper, we introduce pebl, a Python library and application for learning Bayesian network
structure from data. Although learning the structure of BNs from data is now common, there are
still a few high-quality open-source softwares that can meet the needs of various users. End users
require software that is easy to use; supports learning with different data types; can accommodate
missing values and hidden variables; and can take advantage of various computational clusters
and grids. Pebl is the Python Environment for Bayesian Learning to meet these needs.

3.1. Functionality
pebl:

e can work with continuous, discrete and categorical variables (with different type variables
simultaneously);

e can perform maximum entropy discretization (that is when single variable values are
compressed into fixed number of bins according to maximum entropy criterion);

e uses the BDe metric for scoring networks and handles interventional data using the method
described in [4];

e can handle missing values and hidden variables using exact marginalization and Gibbs
sampling [1];

BANJO BNT Causal Explorer Deal LibB PEBL

License Academic GPL Academic GPL Academic MIT
Scripting language | Matlab Matlab Matlab R N/A Python
Interventional Data | No Yes No No No Yes
Dynamic BN Yes Yes No No No No
Structural Priors Yes No No No No Yes
Missing Data No Yes No No Yes Yes
Parallel Execution | No No No No No Yes

Table 1. Popular Bayesian network structure learning software.

e supports structural priors over edges specified as "hard” constraints or ”soft” energy
matrices (see [5] for details, this option was not used in our experiments) and arbitrary
constraints specified as Python functions or lambda expressions.

3.2. pebl interface use
e In the input data file type of variables should be specified;

e Apply pebl.data.discretize(num_bins) to compress unique values of continuous or
discrete variables to num_bins number of values (so pebl sees continuous variables as
discrete);

e For parallel calculations use pebl.multiprocess;

e pebl.result.post[:10] is made to access top score network configurations and
pebl.result.cons to access its consensus matrix C' (where Cj; is a p-value referring to
an edge from i-th to j-th node).

3.83. Convenience and Scalability

While many tasks related to Bayesian learning are embarrassingly parallel in theory, few software
packages take advantage of it. pebl can execute learning tasks in parallel over multiple processors
or CPU cores.

With appropriate configuration settings and the use of parallel execution, pebl can be used
for large learning tasks. Although pebl has been tested successfully with datasets with 10000
variables and samples, BN structure learning is a known NP-Hard problem [6] and analysis using
datasets with more than a few hundred variables is likely to result in poor results due to poor
coverage of the search space.

3.4. Related Software Comparison

While there are many software tools for working with BNs, most focus on parameter learning and
inference rather than structure learning. As shown in Table 1, the ability to handle interventional
data, model with missing values, use soft and arbitrary priors and exploit parallel platforms are
unique to pebl. pebl, however, does not currently provide any features for learning Dynamic
Bayesian Networks (a Bayesian Network which relates variables to each other over adjacent time
steps). Also pebl can be slower than software written in C/C++ or Java, because it uses Python
libraries, but still pebl benefits from parallel learning and edge prior implementation, making
itself applicable to a wider range of problems than other software.

4. Experiments
In the section there are different tests of pebl dependency detection abilities. To check if a
program detects dependency between two variables or not we use as input features reflected

Feature Name Values
main feature X N(2,10)
dependency f(x) f(x)

independable feature y N(2,10)

Table 2. Features to detect dependency = — f(x).

in Table 2. Since an output of pebl learner consists of top scoring networks and a consensus
matrix, we use minimum p-value of edges we expect to be present and maximum p-value of all
edges connecting independent features to verify algorithm answer. An edge p-value is a rate of
top scored networks containing the edge. Best p-value an edge can have is 1 and the lowest is
0. So p-value represents probability of the edge presence in the optimal structure of BN for the
variables.

Bayesian network do not comprise cycles, so dependencies like linear relation can be
represented with two structures (see Figure 2).

Figure 2. For most
@ ° functions f(x) these are
equivalent structures.

Maximum entropy discretization plays an important role in dependency detection. Given
z, y and f(x 4+ n1) + na2, n1 ~ N(0,0.2), na ~ N(0,0.1) we variate num_bins and check how
p-values of ”true” edges (those connecting dependable features) change. Our dataset consists
of 100 objects. On Figure 3 p-values of "true” edges exceed p-values of ”false” edges (those
connecting independable features) in the (35; 38) and (50, 75) num_bins intervals, that is where
dependency x — f(x) is detected. 765" value seems the most certain.

How to detect optimal num_bins value without knowing true edges?

e On Figure 3 p-values of "false” and ”true” edges are reflected. The regions where ”false”
p-values are nonzero is where network fails to recognise independence. So it will be best
to select num_bins value, where network is more confident in "true” edges than in ”false”
ones (for example, num_bins € [55, 75]).

Finally we noise data with normal distributed variable to inspect limits of pebl linear
dependency detection ability. The dependency is recognised quite well (Figure 4), see example
of noised data in Figure 5.

Polynomial dependency detection is reflected on Figures 6, 7.

On Figures 3 and 6 it is worth noticing that 0.5 is a frequent value for ”true” edges p-value
and also it’s upper limit. Dependency configurations — f(z) and f(z) — z appear in top
score networks same number of times and each of their p-value will be 0.5. That proves our
assumption about equivalence of the configurations.

5. Conclusion

We introduced Bayesian network library pebl, reviewed it’s implemented tools and made several
suggestions on how to work with pebl. Experiments show that for two variables dependency
detection it works much better than a man’s eye. With the use of parallel calculations Bayesian
networks structure-learners can be a powerful dependency detection tool.

1.0

— true edges
— false edges

0 20 40 60 80 100
num_bins

Figure 3. Edges p-values (varying num_bins) for linear dependency dataset.

0.6 HETuE R — false edges (]
; ; : — true edges : : :] :

Q
e
T
z %
O P2 e i e e =
—(3.] | SU—————— S SN S ——————
0 5 10 15 20 25 30
sigma
X
Figure 4. Edges p-values (varying noise~
N (0, sigma)) for linear dependency dataset. Figure 5. Linear dataset with noise sigma=10.
0.6 o _____ ________ ... — false edges 300
— true edges 3000
i 8] : : 2500
0‘4..........5.E..... :, ARy PR | ..:..
8 o [U BRIERE VLN S e 2000 et N Sk
g =
& 02 X 1500
01 1000
0.0 500
—(0.1 [PINRERE U SRR N S SR U U S —— 0
0 1 2 3 4 s 6 7 8 9 e i i ; i i
sigma -30 —20 -10 0 10 20 30
X
Figure 6. Edges p-values (varying
noise~ N(0,sigma)) for polynomial de- Figure 7. Polynomial dataset with noise

pendency dataset. sigma=>.

References

[1] Heckerman D 1998 A tutorial on learning with bayesian networks. The MIT Press

[2] Abhik Shah, Peter Woolf 2009 Python Environment for Bayesian Learning: Inferring the Structure of Bayesian
Networks from Knowledge and Data JMLR

[3] Peer D, Regev A, Elidan G, Friedman N 2001 Inferring subnetworks from perturbed expression profiles
Bioinformatics

[4] Yoo C, Thorsson V, Cooper GF 2002 Discovery of causal relationships in a gene-regulation pathway from a
mizture of experimental and observational DNA microarray data Pac Symp Biocomput

[5] Imoto S, Higuchi T, Goto T, Tashiro K, Kuhara S, Miyano S 2003 Combining microarrays and biological
knowledge for estimating gene networks via bayesian networks; Bioinformatics Conference, Proceedings of
the 2003 IEEE; pp. 104-113;

[6] Chickering DM, Geiger D, Heckerman D. 1994 November Learning bayesian networks is np-hard Technical
Report MSR-TR-94-17, Microsoft Research.

