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Complexity of K-NN

@ Complexity of training: no training needed!
e Complexity of prediction: O(ND)

e distance from x to all objects of training sample need to be
calculated
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Complexity of K-NN

@ Complexity of training: no training needed!
e Complexity of prediction: O(ND)

e distance from x to all objects of training sample need to be
calculated

@ Variants to simplify search:

o decrease training set size (“prototype selection”)

@ remove outliers (editing)
@ delete uninformative objects (condensing)

o structurize feature space to accelerate search
o KD-tree, ball-tree, LAESA.

1/18



K-NN optimization - Victor Kitov
Reduction of training sample

Table of Contents

0 Reduction of training sample

2/18



K-NN optimization - Victor Kitov
Reduction of training sample

Margin

@ Consider the training set: (x1,c¢1), (x2,¢2),...(xn, cn), Where
c; - is the correct class for object x;, and C = {1,2,...C} -
the set of possible classes.

@ Define margin:

Mz ci) = go(xi) — max ge(%i)

@ margin is negative <=> object x; was incorrectly classified
o the value of margin shows the preference of algorithm to
assign x; the correct class ¢; compared to other classes
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Editing: removal of outliers

Main idea

Filter outliers (objects that deviate significantly from model’s
expectations). These are points having margin below threshold

{x,- : M(x;,c;) < 5}

for some 6 < 0.

Several iterations of algorithm may be needed.
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Condensing: removal of uninformative observations'

Main idea

Remove uninformative observations do not contribute to class information
when they are accounted for.

Listing 1: Removal of uninformative observations
for each class ¢c=1,2,..C:
x(c) = argmaxgz;.;—c{M(xi, i)}
Initialize etalons: Q= {x(c),c=1,2,...C}

repeat while accuracy significantly increases:
xj = argming,crs\o M(x, Q)

Q=QUux

return Q

'Is it better to apply first editing thenicondensing or vice versa?
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Structuring of feature space

@ Hierarchical arrangement of space through a sequence of
simple nested figures
o KD-trees - nested rectangles
o Ball-trees - nested balls
o Comments:

o K-NN stops being online, because the space structure
needs to be recalculated as new observations arrive

o distance metric should satisfy triangle inequality:
Vx1,x2,2 1 p(x1,22) < p(x1,2) + p(2,22)
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KD-tree construction?

@ Tree construction uses the following recursive function:

build_node():
if |Q| < Nmin *
return node with assigned objects Q
else:
find feature with maximal spread in Q:
x' = argmax,; o(x')
find median Q: u = median{x’}
return inner node with two child-nodes:
left child =
build_node(x', < p, {xx € Q:xi < u})
right child =
build_node(x’, > pu, {xx € Q: x> u})

@ Geometrically it is better to take mean instead of median, but
tree may become unbalanced.
2Estimate complexity of KD-tree copstruction using median splits.
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Nearest neighbour search using KD-tree

Step 1: For object of interest x find the leaf of tree, to which it
belongs, then find initial estimate of nearest neighbour:

CURRENT_NODE < root node of TREE
while CURRENT_NODE is not leaf node:
x' + discriminative feature of CURRENT_NODE
w4 threshold p of current_node
if ' < 7%
CURRENT_NODE < left child of CURRENT_NODE
else:
CURRENT_NODE <« right child of CURRENT_NODE

NN < closest object to x from all objects associated
with the leaf node.
NN_DIST <« distance from x to NN.
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Nearest neighbour search using KD-tree

Step 2: Ascending search

mark CURRENT_NODE as checked
while not all nodes of TREE checked:
PARENT_NODE < parent node of CURRENT_NODE
for each NODE of PARENT_NODE except checked nodes:
RECT_DIST < distance from x to rectangle,
associated with NODE
if RECT_DIST > NN_DIST:
mark NODE and all its descendants as checked
else:
NN,NN_DIST = check_tree(NODE)

10/18



K-NN optimization - Victor Kitov
Nearest neighbour search using KD-tree

Utility function, making descending search:

function check_tree(CURRENT_NODE,x,NN,NN_DIST):
if CURRENT_NODE is leaf node:
CURRENT_NN <« closest object to x from all objects
associated with CURRENT_NODE.
CURRENT_NN_DIST < distance from x to CURRENT_NN.
if CURRENT_NN_DIST < NN_DIST:
NN < CURRENT_NN
NN_DIST < CURRENT_NN_DIST
return NN,NN_DIST
else:
for each NODE from children of CURRENT_NODE:
DIST < distnace from x to rectangle of CURRENT_NODE
if NN_DIST > DIST:
mark NODE and all its descendants as checked
else:
NN,NN_DIST = check_tree(NODE,x,NN,NN_DIST)
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KD-tree: finding distance from x to rectangle

e Distance from x = [x',...xP]” to rectangle
{(M,...hp) : AT < hy < HT9%} equals to p(x, z), where
z - is the closest to x point on the rectangle with the
following coordinates:

hZN’n xd < hZN’n
d _ d min d max
z"=qx A" < x® < hj
thx xd > thx

@ Tree depth:

o Best case: [log, N]
o Worst case: N
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Ball trees

@ Nested sequence of balls

@ Nesting is not in geometrical sense. It means that parent ball
contains all objects contained in its child balls

@ Each object from the parent ball is associated with single
child ball.

@ Characteristics of each ball:

e center ¢
e objects, associated with ball zq, z5, ...zx
e radius R = max; ||z; — c||
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Ball trees: recursive generation

e for parent ball Ball(c, ) (with center ¢ and associated
objects Q):

e select ¢y = argmaxzcq ||z; — ¢||
e select ¢, = argmax,eq ||zi — c1]]
o divide 2 into two groups:
U =A{z:lzi — a1 <l|lzi — ez}

Q =A{zi:|lzi — 2l < llzi — ]}
o set for Ball(c,2) two child balls Ball(c1, 1) and Ball(c,,23).
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Minimum distance from x to B = Ball(c, R)

From triangle inequality for every z € B :

p(x,c) < p(x,z) + p(z,c)

It follows that

p(x,z) > p(x,c) — p(z,¢) > p(x,c) — R
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Alternative optimization - clustering

@ Clustering

o cluster points into clusters
o find cluster centers and radii
o for new x find closest clusters and search NN only in them

Clustering:
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Alternative optimization - LSH

@ |dea of locality semantic hashing:

suppose we have hash function hy(x) such that

P(ho(x) = hy(z)) approaches 1 when x and z become similar.
we sample L parameters 61, ...0; and obtain L hash functions
H(x) = [ho,(x), --.ha, ()]

a bucket H = [hy,...h.] is a set {x: H(x) = H}

e group training set xy, ...x, into buckets.

for new x we find its bucket H(x) = [hy,(x), ...hg, ()] and
search nearest neighbours only among similar buckets (having
most of h; the same).

we get nearest neighbours with probability (increasing with
L).
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Comments

@ For ball-tree distance metric p(x, z) should satisfy triangle
inequality.
@ Algorithm can be extended to find K nearest neighbours
instead of one (maintaining a queue).
@ The larger is D, the less efficient is feature space structuring:
e its purpose is to split objects into geometrically compact groups
e and for large D almost all objects become equally distant from
each other
o for example in KD-tree closeness in one coordinate does not
guarantee general closeness of objects

@ For large D ball-trees are more efficient than KD-trees,
because balls are more compact figures than rectangles and
give tighter lower bounds to contained objects.
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