
K-NN optimization - Victor Kitov

K-nearest neighbours optimization

Victor Kitov

v.v.kitov@yandex.ru

1/18

K-NN optimization - Victor Kitov

Complexity of K-NN

Complexity of training: no training needed!

Complexity of prediction: O(ND)

distance from x to all objects of training sample need to be

calculated

Variants to simplify search:

decrease training set size (“prototype selection”)

remove outliers (editing)

delete uninformative objects (condensing)

structurize feature space to accelerate search

KD-tree, ball-tree, LAESA.

1/18

K-NN optimization - Victor Kitov

Complexity of K-NN

Complexity of training: no training needed!

Complexity of prediction: O(ND)

distance from x to all objects of training sample need to be

calculated

Variants to simplify search:

decrease training set size (“prototype selection”)

remove outliers (editing)

delete uninformative objects (condensing)

structurize feature space to accelerate search

KD-tree, ball-tree, LAESA.

1/18

K-NN optimization - Victor Kitov

Reduction of training sample

Table of Contents

1 Reduction of training sample

2 Structuring of feature space

2/18

K-NN optimization - Victor Kitov

Reduction of training sample

Margin

Consider the training set: (x1, c1), (x2, c2), ...(xN, cN), where

ci - is the correct class for object xi, and C = {1, 2, ...C} -

the set of possible classes.

Define margin:

M(xi , ci) = gci
(xi)− max

c∈C\{ci}
gc(xi)

margin is negative <=> object xi was incorrectly classified

the value of margin shows the preference of algorithm to

assign xi the correct class ci compared to other classes

3/18

K-NN optimization - Victor Kitov

Reduction of training sample

Editing: removal of outliers

Main idea

Filter outliers (objects that deviate significantly from model’s

expectations). These are points having margin below threshold

{xi : M(xi , ci) < δ}

for some δ < 0.

Several iterations of algorithm may be needed.

4/18

K-NN optimization - Victor Kitov

Reduction of training sample

Condensing: removal of uninformative observations1

Main idea

Remove uninformative observations do not contribute to class information

when they are accounted for.

Listing 1: Removal of uninformative observations

for each class c = 1, 2, ...C: # add the most
x(c) = argmaxxi :ci=c{M(xi , ci)} # representative example

Initialize etalons: Ω = {x(c), c = 1, 2, ...C}

repeat while accuracy significantly increases:
xi = argminxi∈TS\Ω M(x,Ω) # add object
Ω = Ω ∪ xi # with smallest margin

return Ω

1Is it better to apply first editing then condensing or vice versa?5/18

K-NN optimization - Victor Kitov

Structuring of feature space

Table of Contents

1 Reduction of training sample

2 Structuring of feature space

6/18

K-NN optimization - Victor Kitov

Structuring of feature space

Structuring of feature space

Hierarchical arrangement of space through a sequence of

simple nested figures

KD-trees - nested rectangles

Ball-trees - nested balls

Comments:

K-NN stops being online, because the space structure

needs to be recalculated as new observations arrive

distance metric should satisfy triangle inequality:
∀x1,x2, z : ρ(x1,x2) ≤ ρ(x1, z) + ρ(z,x2)

7/18

K-NN optimization - Victor Kitov

Structuring of feature space

KD-tree construction2

Tree construction uses the following recursive function:

build_node(Ω):
if |Ω| < nmin:

return node with assigned objects Ω
else:

find feature with maximal spread in Ω:

xi = argmaxxi σ(xi)

find median Ω: µ = median{xi}
return inner node with two child-nodes:

left child =

build_node(xi, < µ, {xk ∈ Ω : xi
k < µ})

right child =

build_node(xi, ≥ µ, {xk ∈ Ω : xi
k ≥ µ})

Geometrically it is better to take mean instead of median, but

tree may become unbalanced.
2Estimate complexity of KD-tree construction using median splits.8/18

K-NN optimization - Victor Kitov

Structuring of feature space

Nearest neighbour search using KD-tree

Step 1: For object of interest x find the leaf of tree, to which it

belongs, then find initial estimate of nearest neighbour:

CURRENT_NODE ← root node of TREE
while CURRENT_NODE is not leaf node:

xi ← discriminative feature of CURRENT_NODE
µ← threshold µ of current_node

if xi ≤ µ:
CURRENT_NODE ← left child of CURRENT_NODE

else:
CURRENT_NODE ← right child of CURRENT_NODE

NN ← closest object to x from all objects associated
with the leaf node.

NN_DIST ← distance from x to NN.

9/18

K-NN optimization - Victor Kitov

Structuring of feature space

Nearest neighbour search using KD-tree

Step 2: Ascending search

mark CURRENT_NODE as checked
while not all nodes of TREE checked:

PARENT_NODE ← parent node of CURRENT_NODE
for each NODE of PARENT_NODE except checked nodes:

RECT_DIST ← distance from x to rectangle,
associated with NODE

if RECT_DIST ≥ NN_DIST:
mark NODE and all its descendants as checked

else:
NN,NN_DIST = check_tree(NODE)

10/18

K-NN optimization - Victor Kitov

Structuring of feature space

Nearest neighbour search using KD-tree

Utility function, making descending search:

function check_tree(CURRENT_NODE,x,NN,NN_DIST):
if CURRENT_NODE is leaf node:

CURRENT_NN ← closest object to x from all objects
associated with CURRENT_NODE.

CURRENT_NN_DIST ← distance from x to CURRENT_NN.
if CURRENT_NN_DIST < NN_DIST:

NN ← CURRENT_NN
NN_DIST ← CURRENT_NN_DIST

return NN,NN_DIST
else:

for each NODE from children of CURRENT_NODE:
DIST ← distnace from x to rectangle of CURRENT_NODE
if NN_DIST ≥ DIST:

mark NODE and all its descendants as checked
else:

NN,NN_DIST = check_tree(NODE,x,NN,NN_DIST)

11/18

K-NN optimization - Victor Kitov

Structuring of feature space

KD-tree: finding distance from x to rectangle

Distance from x = [x1, ...xD]T to rectangle

{(h1, ...hD) : hmin
d ≤ hd ≤ hmax

d } equals to ρ(x, z), where

z - is the closest to x point on the rectangle with the

following coordinates:

zd =


hmin
d xd < hmin

d

xd hmin
d ≤ xd ≤ hmax

d

hmax
d xd > hmax

d

Tree depth:

Best case: dlog2 Ne
Worst case: N

12/18

K-NN optimization - Victor Kitov

Structuring of feature space

Ball trees

Nested sequence of balls

Nesting is not in geometrical sense. It means that parent ball

contains all objects contained in its child balls

Each object from the parent ball is associated with single

child ball.

Characteristics of each ball:

center c

objects, associated with ball z1, z2, ...zK

radius R = maxi ‖zi − c‖

13/18

K-NN optimization - Victor Kitov

Structuring of feature space

Ball trees: recursive generation

for parent ball Ball(c,Ω) (with center c and associated

objects Ω):

select c1 = argmaxzi∈Ω ‖zi − c‖
select c2 = argmaxzi∈Ω ‖zi − c1‖
divide Ω into two groups:

Ω1 = {zi : ‖zi − c1‖ < ‖zi − c2‖}

Ω2 = {zi : ‖zi − c2‖ < ‖zi − c1‖}

set for Ball(c,Ω) two child balls Ball(c1,Ω1) and Ball(c2,Ω2).

14/18

K-NN optimization - Victor Kitov

Structuring of feature space

Minimum distance from x to B = Ball(c,R)

From triangle inequality for every z ∈ B :

ρ(x, c) ≤ ρ(x, z) + ρ(z, c)

It follows that

ρ(x, z) ≥ ρ(x, c)− ρ(z, c) ≥ ρ(x, c)− R

15/18

K-NN optimization - Victor Kitov

Structuring of feature space

Alternative optimization - clustering

Clustering

cluster points into clusters

find cluster centers and radii

for new x find closest clusters and search NN only in them

Clustering:

16/18

K-NN optimization - Victor Kitov

Structuring of feature space

Alternative optimization - LSH

Idea of locality semantic hashing:

suppose we have hash function hθ(x) such that

P(hθ(x) = hθ(z)) approaches 1 when x and z become similar.

we sample L parameters θ1, ...θL and obtain L hash functions

H(x) = [hθ1
(x), ...hθL

(x)]
a bucket H = [h1, ...hL] is a set {x : H(x) = H}
group training set x1, ...xn into buckets.

for new x we find its bucket H(x) = [hθ1
(x), ...hθL

(x)] and

search nearest neighbours only among similar buckets (having

most of hi the same).

we get nearest neighbours with probability (increasing with

L).

17/18

K-NN optimization - Victor Kitov

Structuring of feature space

Comments

For ball-tree distance metric ρ(x, z) should satisfy triangle

inequality.

Algorithm can be extended to find K nearest neighbours

instead of one (maintaining a queue).

The larger is D, the less efficient is feature space structuring:

its purpose is to split objects into geometrically compact groups

and for large D almost all objects become equally distant from

each other

for example in KD-tree closeness in one coordinate does not

guarantee general closeness of objects

For large D ball-trees are more efficient than KD-trees,

because balls are more compact figures than rectangles and

give tighter lower bounds to contained objects.

18/18

	Reduction of training sample
	Structuring of feature space

