
Theory of Empirical Prediction
Theory of Generalization Ability

Experiments with Rule Induction System

Combinatorial Approach to

Generalization Bounds Tightening

Konstantin Vorontsov
(voron@ccas.ru, www.ccas.ru/voron)

Computing Centre of Russian Academy of Sciences,
Vavilova 40, 119991, Moscow, Russian Federation

7th Open German/Russian Workshop (OGRW-7)
on Pattern Recognition and Image Understanding

August 20–23, 2007
Ettlingen, Germany

Konstantin Vorontsov (voron@ccas.ru, www.ccas.ru/voron) Combinatorial Approach to Generalization Bounds Tightening

voron@ccas.ru
www.ccas.ru/voron
voron@ccas.ru
www.ccas.ru/voron


Theory of Empirical Prediction
Theory of Generalization Ability

Experiments with Rule Induction System

Outline

1 Theory of Empirical Prediction
Weak Probability Axioms and Empirical Prediction
Example: Transductive Form of the Law of Large Numbers
Discussion

2 Theory of Generalization Ability
Classical Generalization Bounds
Data-Dependent Bounds
Measuring Effective Local Shatter

3 Experiments with Rule Induction System
The Rule Induction Classifier
Experimental results: shatter coefficients
Experimental estimation of rules overfitting

Konstantin Vorontsov (voron@ccas.ru, www.ccas.ru/voron) Combinatorial Approach to Generalization Bounds Tightening

voron@ccas.ru
www.ccas.ru/voron


Outline

1 Theory of Empirical Prediction
Weak Probability Axioms and Empirical Prediction
Example: Transductive Form of the Law of Large Numbers
Discussion

2 Theory of Generalization Ability
Classical Generalization Bounds
Data-Dependent Bounds
Measuring Effective Local Shatter

3 Experiments with Rule Induction System
The Rule Induction Classifier
Experimental results: shatter coefficients
Experimental estimation of rules overfitting

2
0
0
7
-0

8
-3

1

Combinatorial Approach to Generalization Bounds Tightening

Outline

Dear Colleagues, I shall speak about one of the most challenging problem

in computational learning theory — the problem of generalization ability

of learning algorithms. I shall start from a general theoretical framework,

then consider a fundamental problem of learning theory — the looseness

of generalization bounds. I shall finish by some empirical results.
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Weak Probability Axioms and Empirical Prediction
Example: Transductive Form of the Law of Large Numbers
Discussion

Weak Probability Axioms

1 X L = {xi}
L
i=1 — a given finite subset from a set of objects X.

2 All partitions X L = X ℓ
n ∪ X k

n , n = 1, . . . ,N,
where N = C k

L , L = ℓ + k , are equally probable.

Then. . .
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Weak Probability Axioms

Let us start from two very simple axioms. First, [see. . . ] we assume that
in data analysis one can observe only a finite set of objects X L. The set
can be unknown, but it never can be infinite.

Second, [see. . . ] we assume that objects appear at random, so that all

partitions of our set into two subsets have equal chances to realize. The

order of objects is the only source of randomness in our framework.
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Weak Probability Axioms

1 X L = {xi}
L
i=1 — a given finite subset from a set of objects X.

2 All partitions X L = X ℓ
n ∪ X k

n , n = 1, . . . ,N,
where N = C k

L , L = ℓ + k , are equally probable.

Then

Consider an event A as a function A : {1, . . . ,N} → {0, 1}

The fraction of partitions n : A(n) = 1 can be interpreted
as probability or expectation:

PnA(n) ≡ EnA(n) =
1

N

N
∑

i=1

A(n).

Here “probability” Pn is simply averaging operator 1
N

∑N
i=1.
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Weak Probability Axioms

Under these assumptions the probability of an event A(n) [see. . . ] is

defined as the fraction of partitions n [see. . . ] for which A(n) is true.

Note that there is no difference between expectation [see. . . ] and

probability [see. . . ] in this framework.
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A general problem of Empirical Prediction

Empirical framework:
some partition (X ℓ

n , X k
n ) realizes, n ∈ {1, . . . ,N};

subsample X ℓ
n is observable,

subsample X k
n is hidden.

Given a function T : X
k × X

ℓ → R
1. Chose a function T̂ : X

ℓ → R such that
the value T̂n = T̂ (X ℓ

n) predicts the value Tn = T (X k
n , X ℓ

n).
2. Estimate prediction accuracy (obtain an upper bound):

Pn

[

d(T̂n, Tn) > ǫ
]

≤ η(ǫ),

where d(r̂ , r) — discrepancy function, e.g. d(r̂ , r) = |r̂ − r |.
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A general problem of Empirical Prediction

The problem of empirical prediction arise when some of the equiprobable

partitions [see. . . ] realizes, but one observe only a first subset X ℓ
n [see. . . ]

whereas X k
n [see. . . ] remains hidden. We want to predict a value

of a given function T [see. . . ] that depends on both parts, having an

information T̂ [see. . . ] computed from the observed part only. Also we

want to know in advance how accurate our prediction can be [see. . . ] .

Then, the problem is to upper bound the fraction of partitions for which

our prediction fails. To formulate exactly what means “fails”

we introduce a discrepancy function d [see. . . ] (that can be simply

a difference in most cases) and a threshold of exactness ǫ [see. . . ] .
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Why we call this framework “Weak Probability Axioms”?

Insight:

Weak PA leads to “simplified Probability Theory”

Indeed. . .
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Weak Probability Axioms and Empirical Prediction

Why we call this framework “Weak Probability
Axioms”?

Why we call this framework “the weak probability axioms” and even

the weak Probability Theory?
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Why we call this framework “Weak Probability Axioms”?

Insight:

Weak PA leads to “simplified Probability Theory”

Indeed. . .

Weak PA is sufficient to prove fundamental facts:

the Law of Large Numbers, with exact convergence rate;
Kolmogorov-Smirnov criterion, also exact;
many statistical hypothesis tests (order statistics etc.);
Vapnik-Chervonenkis generalization bounds (see later);
etc.
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Weak Probability Axioms and Empirical Prediction

Why we call this framework “Weak Probability
Axioms”?

First, because it is very general. Empirical Prediction is one of the central

problems in Probability Theory, Statistics and Learning Theory.

In practice predictions are interesting only for finite sets of objects,

because nobody can observe an infinite set of objects. Empirical

Prediction is transductive by its nature. Many fundamental results in

Statistics and Learning Theory can be reformulated in transductive form.
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Why we call this framework “Weak Probability Axioms”?

Insight:

Weak PA leads to “simplified Probability Theory”

Indeed. . .

Weak PA is sufficient to prove fundamental facts:

the Law of Large Numbers, with exact convergence rate;
Kolmogorov-Smirnov criterion, also exact;
many statistical hypothesis tests (order statistics etc.);
Vapnik-Chervonenkis generalization bounds (see later);
etc.

Weak PA is based on less restrictive assumptions:

no need of probability measure on X;
no need of frequentist definition of probability via L → ∞;
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Weak Probability Axioms and Empirical Prediction

Why we call this framework “Weak Probability
Axioms”?

On the other hand, Weak Probability Axioms are less restrictive

if compared with classical Kolmogorov’s Axioms. Here we don’t need

of probability measure on object space and we don’t define a probability

via passage to the limit.
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Weak Probability Axioms and Empirical Prediction

Why we call this framework “Weak Probability
Axioms”?

Frankly speaking, we don’t need of the notion of probability at all. In our

framework “probability” is no more than a synonym of “fraction of

partitions”.
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Example: transductive form of the Law of Large Numbers

Def. The frequency of S ⊂ X in a finite sample U ⊂ X:

νS(U) =
1

|U|

∑

u∈U

[u ∈ S ].

Theorem (common knowledge)

The frequency νS(X ℓ
n) predicts the frequency νS(X k

n ).
Prediction accuracy is given by an exact bound

Pn

[

νS(X k
n ) − νS(X ℓ

n) ≥ ǫ
]

= H
(ℓ s(ǫ)
L m

)

,

where H
(

ℓ s
L m

)

is a tail of hypergeometric distribution,

s(ǫ) =
⌊

ℓ
L
(m − ǫk)

⌋

, m = LνS(X L).

Remark. Here T̂ (U) = T (U) = νS(U).
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Example: transductive form of the Law of Large
Numbers

Let us consider the Law of Large Numbers as an example. It is commonly
known that the frequency of an event S in the hidden sample [see. . . ]
can be predicted by its frequency in the observed sample [see. . . ] .
In classical Probability Theory one predict not frequency but a probability
of the event S and one use inequalities of Hoeffding, Bernstain and
Chernoff to give asymptotical bounds of the prediction accuracy.

In our transductive framework the bound is given by hypergeometric

distribution [see. . . ] . Remarkable than it is an exact [see. . . ]

non-asymptotic bound.
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Example: transductive form of the Law of Large Numbers

The tail of hypergeometric distribution:

H
(ℓ s(ǫ)
L m

)

=
s(ǫ)
∑

t=s0

C t
mC ℓ−t

L−m

C ℓ

L

, s0 = max{0, m − k}

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

s

H

Here ǫ = 0.05, L = 300, ℓ = 200, m = 30.
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Example: transductive form of the Law of Large
Numbers

In this case convergence is a trivial consequence of the fact that the

relative width [see. . . ] of hypergeometric peak tends to zero when the

sample size L tends to infinity.
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Links with classical Kolmogorov’s Probability Axioms

Theorem (Correspondence principle)

If we have obtained a bound under Weak PA

Qǫ(X
L) = Pn

[

d(T̂ (X ℓ
n), T (X ℓ

n , X k
n )) > ǫ

]

≤ η(ǫ, X L)

then analogous bound will be true under Strong PA
(classical Kolmogorov’s PA)

EX LQǫ(X
L) = PX L

[

d(T̂ (X ℓ), T (X ℓ, X k)) > ǫ
]

≤ EX Lη(ǫ, X L)

Konstantin Vorontsov (voron@ccas.ru, www.ccas.ru/voron) Combinatorial Approach to Generalization Bounds Tightening

voron@ccas.ru
www.ccas.ru/voron


Links with classical Kolmogorov’s Probability Axioms

Theorem (Correspondence principle)

If we have obtained a bound under Weak PA

Qǫ(X
L) = Pn

[

d(T̂ (X ℓ
n), T (X ℓ

n , X k
n )) > ǫ

]

≤ η(ǫ, X L)

then analogous bound will be true under Strong PA
(classical Kolmogorov’s PA)

EX LQǫ(X
L) = PX L

[

d(T̂ (X ℓ), T (X ℓ, X k)) > ǫ
]

≤ EX Lη(ǫ, X L)

2
0
0
7
-0

8
-3

1

Combinatorial Approach to Generalization Bounds Tightening

Theory of Empirical Prediction

Discussion

Links with classical Kolmogorov’s Probability Axioms

Each bound obtained under Weak Axioms can be easily restated under

classical Kolmogorov’s Axioms. To do this one may take expectation

[see. . . ] of both sides of the inequality.
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Links with classical Kolmogorov’s Probability Axioms

Theorem (Correspondence principle)

If we have obtained a bound under Weak PA

Qǫ(X
L) = Pn

[

d(T̂ (X ℓ
n), T (X ℓ

n , X k
n )) > ǫ

]

≤ η(ǫ, X L)

then analogous bound will be true under Strong PA
(classical Kolmogorov’s PA)

EX LQǫ(X
L) = PX L

[

d(T̂ (X ℓ), T (X ℓ, X k)) > ǫ
]
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When a transduction becomes an induction

If η(ǫ, X L) ≡ η(ǫ) then the same bound is true for any sample.
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Discussion

Links with classical Kolmogorov’s Probability Axioms

Philosophic remark. It is commonly to think that transduction is more

restrictive that induction. This is not the case when one write

a functional in transductive form and obtain its bound that is true for any

sample X L [see. . . ] . Really this means than transduction transforms into

induction.
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Links with empirical techniques

Cross-Validation

If we did not succeed to obtain a bound theoretically, or
if we obtained very loose (overestimated) bound:

Qǫ(X
L) = Pn

[

d(T̂n, Tn) > ǫ
]

≤ ??? ,

then we can measure it empirically:

Qǫ(X
L) ≈

1

|N ′|

∑

n∈N′

[

d(T̂n, Tn) > ǫ
]

where N ′ ⊂ {1, . . . ,N} is small enough to compute the sum and
big enough to estimate be accurate.
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Discussion

Links with empirical techniques

The keystone advantage of Weak Probability Axioms. It provides the
unique starting point for both theoretical and empirical consideration. If
we did not succeed to obtain a bound theoretically, we can measure the
prediction functional empirically, replacing the average of all partitions
[see. . . ] by the average of some partitions [see. . . ] . This leads to the
well known empirical technique — Cross Validation.

The main idea of the further part of presentation is that Cross Validation

can help to understand the causes of bounds looseness.
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Weak Probability Axioms: pro and con

+++ Weak PA is suitable for data analysis, statistics, COLT
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Discussion

Weak Probability Axioms: pro and con

Intermediate summary. Our framework is suitable for data analysis,

statistics and learning theory, where all samples are finite and all variables

can be calculated from data. In classical Probability Theory one operate

with hypothetical asymptotic values such that probabilities, expectations,

distribution functions, etc. We intend to manage without this

hypothetical values. For what reason? Because asymptotic considerations

are often the cause of bound looseness and can lead to numerous

misunderstandings that are very difficult to reveal.
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Theory of Empirical Prediction

Discussion

Weak Probability Axioms: pro and con

The same time I think that Weak PA will not suitable for physics and

other applications where continuity is crucial. . . so every theory may have

its own limitations.
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Theory of Empirical Prediction

Discussion

Weak Probability Axioms: pro and con

It can give exact bounds but we are to elaborate fast algorithms to

calculate them effectively.
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Example: Transductive Form of the Law of Large Numbers
Discussion

Weak Probability Axioms: pro and con

+++ Weak PA is suitable for data analysis, statistics, COLT

−−− . . . but not suitable for physics

+++ Weak PA gives non-asymptotic, exact bounds

− . . . represented by complicated combinatorial formula

+++ Weak PA satisfies a “correspondence principle”

−−− . . . but not all theorems in classical Probability Theory
have analogs in Weak PA
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Theory of Empirical Prediction

Discussion

Weak Probability Axioms: pro and con

Each bound obtained under Weak PA can be restated under classical PA.

But many measure-specific theorems can not be transferred to the weak

form.
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Weak Probability Axioms and Empirical Prediction
Example: Transductive Form of the Law of Large Numbers
Discussion

Weak Probability Axioms: pro and con

+++ Weak PA is suitable for data analysis, statistics, COLT

−−− . . . but not suitable for physics

+++ Weak PA gives non-asymptotic, exact bounds

− . . . represented by complicated combinatorial formula

+++ Weak PA satisfies a “correspondence principle”

−−− . . . but not all theorems in classical Probability Theory
have analogs in Weak PA

Open problem:

What part of mathematical statistics can be restated in Weak PA?
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Theory of Empirical Prediction

Discussion

Weak Probability Axioms: pro and con

A big open problem is “what part of mathematical statistics can be

restated in Weak PA?” My opinion is that a sifficiently big part.
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The learning problem (classification, regression, etc.)

X — set of objects, Y — set of outputs

Binary loss function L : X × Y → {0, 1}

In classification: L (x , y) =
[

y 6= y∗(x)
]

,

In regression: L (x , y) =
[

|y − y∗(x)| > δ
]

where y∗(x) — unknown target function

Training set X ℓ = {xi}
ℓ
i=1 ⊂ X with known losses L (xi , y)

Learning algorithm

µ : X ℓ 7→ f , where f : X → Y — some function

Average error of a function f : X → Y on a set U ⊂ X

ν(f ,U) =
1

|U|

∑

u∈U

L (u, f (u))

Generalization ability:

ν(µX ℓ,U) must be sufficiently small for most U ∈ X
∗
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Classical Generalization Bounds

The learning problem (classification, regression, etc.)

Now I pass to the second part of my presentation — the Learning
Problem. Given a training set X ℓ [see. . . ] one must learn a function f
[see. . . ] that approximates the unknown target function y∗(x) [see. . . ]
as well as possible. The approximation quality on a finite sample U
is measured by the average error ν(f ,U) [see. . . ] also called the
frequency of errors.

The most challenging problem in Learning Theory — how to guarantee

that the learned function f will have a small frequency of errors [see. . . ]

out of the training set.
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Classical bounds

Vapnik and Chervonenkis (1974):

Pǫ(F ) = PX L

[

sup
f ∈F

(

ν(f , X k) − ν(f , X ℓ)
)

> ǫ
]

≤ ∆F (L) · 1.5 e−ǫ2ℓ; (if ℓ = k)

where F is the entire functions set (search space);
∆F (L) — Global Shatter Coefficient of the set F ,
the number of functions f from F distinguishable on X L;
∆F (L) ≤ 1.5 Lh

h! , h = VC dimension (growth function) of F .
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Classical Generalization Bounds

Classical bounds

The classical generalization bound is a product of two terms: complexity
term called shatter coefficient [see. . . ] and convergence term [see. . . ]
that tends to zero when the sample length tends to infinity.
Let us remind that shatter coefficient of the functions set A is defined as
the maximal number of functions from A pairwise indistinguishable
on a set X L.
If the set X L is fixed then the shatter coefficient is called local.
If the set X L is arbitrary then the shatter coefficient depends on sample
size L only (and not on concrete objects) and is called global [see. . . ] .

In classic VC theory only global shatter coefficient was used.
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Classical bounds

Vapnik and Chervonenkis (1974):

Pǫ(F ) = PX L

[

sup
f ∈F

(

ν(f , X k) − ν(f , X ℓ)
)

> ǫ
]

≤ ∆F (L) · 1.5 e−ǫ2ℓ; (if ℓ = k)

where F is the entire functions set (search space);
∆F (L) — Global Shatter Coefficient of the set F ,
the number of functions f from F distinguishable on X L;
∆F (L) ≤ 1.5 Lh

h! , h = VC dimension (growth function) of F .

The bound is extremely loose, as it doesn’t take into account:

the distribution of objects X ℓ;
the target y∗(x);
the learning algorithm µ;
1.5 e−ǫ

2
ℓ is an asymptotic approximation.
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Classical Generalization Bounds

Classical bounds

The main shortcoming of this bound [see. . . ] is that the uniform

convergence taken in VC theory as an axiom results in extremely

overestimated complexity term [see. . . ] . Taking supremum [see. . . ] one

neglect many important peculiarities [see. . . ] of the given task.
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Data-dependent bounds

Localization effect:
If target y∗, learning algorithm µ,
and sample X L are fixed
then not all functions from F
can be obtained.

Uniform convergence bound (Vapnik & Chervonenkis, 1969)

Theory of learnable (Valiant, 1982)

First data-dependent bound (?)

The most tight general VC-like bound (M. Talagrand)

Self-bounding (Freund)

Algorithmic luckiness ()

Computationally tight sample complexity bounds [J. Langford]

Konstantin Vorontsov (voron@ccas.ru, www.ccas.ru/voron) Combinatorial Approach to Generalization Bounds Tightening

voron@ccas.ru
www.ccas.ru/voron


Data-dependent bounds

Localization effect:
If target y∗, learning algorithm µ,
and sample X L are fixed
then not all functions from F
can be obtained.

Uniform convergence bound (Vapnik & Chervonenkis, 1969)

Theory of learnable (Valiant, 1982)

First data-dependent bound (?)

The most tight general VC-like bound (M.Talagrand)

Self-bounding (Freund)

Algorithmic luckiness ()

Computationally tight sample complexity bounds [J. Langford]

2
0
0
7
-0

8
-3

1

Combinatorial Approach to Generalization Bounds Tightening

Theory of Generalization Ability

Data-Dependent Bounds

Data-dependent bounds

When a particular task is fixed, only a little part of functions [see. . . ] can
be obtained. This localization effect was understood long ago and several
frameworks for data-dependent bound was proposed.
...

Our proposition distinguishes by the total change of Probability Axioms.
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Data-dependent bounds under Weak PA

Weak PA:

Qǫ(µ,X L) = Pn

[

ν(fn, X
k
n ) − ν(fn, X

ℓ
n) > ǫ

]

≤ ∆ℓ
L(µ,X L) · max

m
H

(ℓ s(ǫ)
L m

)

( ≤ ∆F (L) · 1.5 e−ǫ2ℓ);

where fn = µX ℓ
n is a result of learning;

∆ℓ
L(µ,X L) — Local Shatter Coefficient of the set of functions

obtainable by learning:
{

fn
∣

∣ n = 1, . . . ,N
}

.
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Data-Dependent Bounds

Data-dependent bounds under Weak PA

The bound can be obtained under Weak PA [see. . . ] . We will see later
that this bound is still very loose. The only advantage of this bound is
that this functional [see. . . ] can be measured effectively to understand
the causes of bound looseness.
Note that the older data-independent VC bound can be derived from this
one.

The next idea is to eliminate maximum on m [see. . . ] in convergence

term.
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Further tightening data-dependent bound

Idea: the scalar complexity contains too small information
about the learning process.

Splitting the local shatter coeff into Shatter Profile {Dm}
L
m=0:

∆ℓ
L(µ,X L) =

L
∑

m=1

Dm(µ,X L)

Dm(µ,X L) — local shatter coefficient of the set of functions
having m errors on X L:

{

fn
∣

∣ ν(fn, X
L) = m

L
, n = 1, . . . ,N

}

.
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Data-Dependent Bounds

Further tightening data-dependent bound

This idea has yet another interpretation. One scalar characteristic of
complexity contains too small information about learning process. It’s
not sufficient to know, how many different functions can be obtained as
a result of learning. Also it is worth to take into account how many
functions of a given quality can be obtained.

For this reason we split the local shatter coefficient into L + 1

components [see. . . ] . Each component can be considered as a local

shatter coefficient of the set of functions that make exactly m errors on

the full sample X L. So we obtain the non-scalar characteristic of

complexity that we call Shatter Profile [see. . . ] .
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Further tightening data-dependent bound

Idea: the scalar complexity contains too small information
about the learning process.

Splitting the local shatter coeff into Shatter Profile {Dm}
L
m=0:

∆ℓ
L(µ,X L) =

L
∑

m=1

Dm(µ,X L)

Dm(µ,X L) — local shatter coefficient of the set of functions
having m errors on X L:

{

fn
∣

∣ ν(fn, X
L) = m

L
, n = 1, . . . ,N

}

.

Weak PA:

Qǫ(µ,X L) ≤
L

∑

m=1

Dm(µ,X L) · H
(ℓ s(ǫ)
L m

)

;
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Data-Dependent Bounds

Further tightening data-dependent bound

With shatter profile we obtain a more tight bound [see. . . ] . The

previous one could be obtained from this one taken the maximum

of convergence term by m [see. . . ] .
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The Effective Local Shatter Profile and Coefficient

Ideally accurate but “unfair” bound answers a question:
what would be the shatter profile Dm to bound be exact?

Theorem

Qǫ,m(µ,X L) = Pn

[

ν(fn, X
k
n ) − ν(fn, X

ℓ
n) > ǫ

][

ν(fn, X
L) = m

L

]

≤ Dm(µ,X L) · H
(ℓ s(ǫ)
L m

)

;

Let us change “≤” by “=” and express Dm:
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Measuring Effective Local Shatter

The Effective Local Shatter Profile and Coefficient

To compare proposed bounds empirically we must have an ideally

accurate bound as a reference point. Then we introduce a subsidiary

functional Qm [see. . . ] which helps to estimate all components of the

Shatter Profile separately [see. . . ] . We call this bound unfair because

usually one estimate the complexity term to get an upper bound of the

quality functional. Whereas here we do a contrary thing: we estimate the

quality functional via Cross-Validation [see. . . ] in order to answer

a question: what would be the shatter profile Dm [see. . . ] to bound be

exact?
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The Effective Local Shatter Profile and Coefficient

Ideally accurate but “unfair” bound answers a question:
what would be the shatter profile Dm to bound be exact?

Theorem

Qǫ,m(µ,X L) = Pn

[

ν(fn, X
k
n ) − ν(fn, X

ℓ
n) > ǫ

][

ν(fn, X
L) = m

L

]

≤ Dm(µ,X L) · H
(ℓ s(ǫ)
L m

)

;

Let us change “≤” by “=” and express Dm:

Effective Local Shatter Profile D̂m, m = 0, . . . , L:

D̂m =

1
|N′|

∑

n∈N′

[

ν(fn, X
k
n ) − ν(fn, X

ℓ
n) > ǫ

][

ν(fn, X
L) = m

L

]

H
(ℓ s(ǫ)
L m

)

.

Effective Local Shatter Coefficient: ∆̂ℓ
L = D̂0 + · · · + D̂L.
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Measuring Effective Local Shatter

The Effective Local Shatter Profile and Coefficient

We call the unfair estimate of shatter profile the Effective Local Shatter

Profile [see. . . ] . Then we define the Effective Local Shatter Coefficient

as the sum of all profile components [see. . . ] .
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Empirical study

The goal of experiment — to understand:

how tight these bounds are?
what effect is more important to bound tightening?

Bounds to be compared:

The worst: classical VC bound
Local shatter coefficient bound
Local shatter profile bound
The best: effective (unfair) local shatter profile bound

Testing area — the Rule Induction algorithm, because:

Global SC is well known
Local SC can be easily estimated during rule search

Testing area — 7 tasks from UCI repository
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Measuring Effective Local Shatter

Empirical study

The goal of our empirical study was to check the looseness of our bounds
and to understand, what effects must be taken into account additionally?
We compare all three bounds [see. . . ] with an ideal [see. . . ] .

We choose a Rule induction System as a Testing Area because global and

local shatter coefficients can be easily obtained for this kind of learning

algorithms.
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The Rule Induction Classifier
Experimental results: shatter coefficients
Experimental estimation of rules overfitting

The rule definition

Features f1(x), . . . , fn(x).

Rule φ is a conjunction: φ(x , θ) =
∧

f ∈Ω

[

f (x) ≶ θf

]

,

where Ω ⊂ {f1, . . . , fn}, θf — threshold for feature f (x).

Rule φ(x , θ) is well interpretable while |Ω| . 5.

φ(x) = 1 ⇐⇒ Rule φ(x) covers object x ∈ X.

Rule φy (x) of class y covers many objects from y
and none or a few objects from Y \ y :
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Experiments with Rule Induction System

The Rule Induction Classifier

The rule definition

A few words about what is rule induction. A rule is a well interpretable

predicate, usually a conjunction, that covers many objects of one class

and none [see. . . ] or a few [see. . . ] objects of other classes. For example

this [see. . . ] is not a rule because it covers both classes significantly.
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Classifier is a combination of rules

Decision List of rules:

If φ1
y1

(x) → f (x) := y1;

If φ2
y2

(x) → f (x) := y2;

· · ·

If φT
yT

(x) → f (x) := yT;

Weighted Voting of rules:

f (x) = arg max
y∈Y

Ty
∑

t=1

w t
yφt

y (x),

where
φt

y (x) — t-th rule of class y ;
w t

y — its weight.
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The Rule Induction Classifier

Classifier is a combination of rules

A rule-based classifier can be considered as an ensemble of rules based on

the principle of seniority voting [see. . . ] or majority voting [see. . . ] .
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Results

Task L Glob.SC Loc.SC Loc.S.Profile Eff.Loc.SC
crx 690 2.8 · 108 3.5 · 104 1.1 · 104 21 ± 11
german 1000 5.2 · 108 3.1 · 104 1.8 · 104 47 ± 38
hepatitis 155 5.5 · 106 1.8 · 104 8.4 · 103 58 ± 46
horse-colic 300 1.9 · 106 1.3 · 104 6.3 · 103 5 ± 3
hypothyroid 3163 5.3 · 108 2.2 · 104 9.2 · 103 43 ± 28
liver 345 1.5 · 107 2.9 · 104 9.5 · 103 12 ± 8
promoters 106 4.4 · 109 5.3 · 104 2.4 · 104 13 ± 4

Interpretation

In all tasks effective local SC ≪ L.
Then the “effective local VC dimension” newer exceeds 1 !
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Experimental results: shatter coefficients

Results

We measured complexity terms for seven real tasks from UCI repository
[see. . . ] and four types of bounds.
The result is choking.
None of the bounds can be called tight!

Moreover, the effective local shatter coefficient [see. . . ] is always

significantly less than the sample size [see. . . ] . This means that the

effective local VC dimension never exceeds 1. So the VC dimension bears

no relation to generalization bounds.
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Directions of further investigation

So, what causes of bound looseness did we miss?

I have two ideas:
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Experimental results: shatter coefficients
Experimental estimation of rules overfitting

Directions of further investigation

So, what causes of bound looseness did we miss?

I have two ideas:

Functions from {fn | n = 1, . . . ,N} have different chance to be
obtained as a result of learning.
Two similar functions from {fn | n = 1, . . . ,N} really are not 2
but ≈ 1 function.
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What can we do today

Define the overfitting of a rule φ(x) as

δ(φ,X ℓ, X k) = ν(φ,X k) − ν(φ,X ℓ)

Estimate (nonparametric) regression:
how δ depends on rules properties measured on training
set X ℓ

n during inductive search:

number of errors made on X ℓ
n ;

number of objects covered on X ℓ
n ;

number of terms in a rule;
entropy of a rule on X ℓ

n ;
breadth and width of the inductive search;

We use these technique for:

Controlling rules overfitting
Risk Assessment — estimation of PD (probability of default)
in Credit Scoring application: PD(x) = ν(φ,X ℓ) + δ̂(φ)
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Example 1

avr train err avr test err their diff conf.interval
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Example 2

avr train err avr test err their diff conf.interval

-0.10

-0.05

0

0.05

0.10

0.15

0.20

error rate

70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160

0

100

entropy of rules on training set

number of rules found

Konstantin Vorontsov (voron@ccas.ru, www.ccas.ru/voron) Combinatorial Approach to Generalization Bounds Tightening

voron@ccas.ru
www.ccas.ru/voron


Theory of Empirical Prediction
Theory of Generalization Ability

Experiments with Rule Induction System

The Rule Induction Classifier
Experimental results: shatter coefficients
Experimental estimation of rules overfitting

Example 3

avr train err avr test err their diff conf.interval
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