Машинное обучение (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: '''Машинное обучение''' возникло на стыке прикладной статистики, оптимизации, дискретного анализа, и за...)
(296 промежуточных версий не показаны.)
Строка 1: Строка 1:
-
'''Машинное обучение''' возникло на стыке прикладной статистики, оптимизации, дискретного анализа, и за последние 30 лет оформилось в самостоятельную математическую дисциплину. Методы машинного обучения составляют основу ещё более молодой дисциплины — ''интеллектуального анализа данных'' (data mining).
+
{{TOCright}}
 +
'''Теория обучения машин''' (machine learning, машинное обучение) находится на стыке [[Прикладная статистика|прикладной статистики]], [[Методы оптимизации|численных методов оптимизации]], [[Дискретный анализ|дискретного анализа]], и за последние 60 лет оформилась в самостоятельную математическую дисциплину. Методы [[Машинное обучение|машинного обучения]] составляют основу ещё более молодой дисциплины — ''[[Интеллектуальный анализ данных|интеллектуального анализа данных]]'' (data mining).
-
В курсе рассматриваются основные задачи обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Отдельные теоремы приводятся с доказательствами.
+
В курсе рассматриваются основные задачи обучения по прецедентам: [[классификация]], [[кластеризация]], [[регрессия]], [[понижение размерности]]. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Теоремы в основном приводятся без доказательств.
Все методы излагаются по единой схеме:
Все методы излагаются по единой схеме:
Строка 9: Строка 10:
* анализ достоинств, недостатков и границ применимости;
* анализ достоинств, недостатков и границ применимости;
* пути устранения недостатков;
* пути устранения недостатков;
-
* сравнение с другими методами;
+
* сравнение и взаимосвязи с другими методами.
* примеры прикладных задач.
* примеры прикладных задач.
-
Данный курс существенно расширяет и углубляет набор тем, рекомендованный международным стандартом '''ACM/IEEE Computing Curricula 2001''' по дисциплине «Машинное обучение и нейронные сети» (machine learning and neural networks) в разделе «Интеллектуальные системы» (intelligent systems).
+
Данный курс расширяет и углубляет набор тем, рекомендованный международным стандартом '''ACM/IEEE Computing Curricula 2001''' по дисциплине «Машинное обучение и нейронные сети» (machine learning and neural networks) в разделе «Интеллектуальные системы» (intelligent systems).
-
Курс читается студентам 3 курса кафедры «Интеллектуальные системы / интеллектуальный анализ данных» ФУПМ МФТИ с 2004 года и студентам 3 курса кафедры «Математические методы прогнозирования» ВМиК МГУ с 2007 года.
+
Курс читается
-
На материал данного курса существенно опираются последующие курсы, читаемые студентам на этих кафедрах.
+
* студентам 3 курса кафедры [[Интеллектуальные системы (кафедра МФТИ)|«Интеллектуальные системы / интеллектуальный анализ данных» ФУПМ МФТИ]] с 2004 года;
 +
* студентам 3 курса кафедры [[Математические методы прогнозирования (кафедра ВМиК МГУ)|«Математические методы прогнозирования» ВМиК МГУ]] с 2007 года;
 +
* студентам [[Школа анализа данных Яндекса|Школы анализа данных Яндекса]] с 2009 года.
-
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и какого-либо языка программирования желательно, но не обязательно.
+
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание [[Математическая статистика|математической статистики]], [[Методы оптимизации|методов оптимизации]] и языка программирования [[Python]] желательно, но не обязательно.
-
== Первый семестр ==
+
<!---На материал данного курса опираются последующие кафедральные курсы.
 +
На&nbsp;кафедре ММП ВМиК МГУ параллельно с данным курсом и в&nbsp;дополнение к&nbsp;нему читается спецкурс [[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Теория надёжности обучения по прецедентам]], посвящённый проблемам [[Переобучение|переобучения]] и оценивания [[Обобщающая способность|обобщающей способности]].
-
=== Вводная лекция ===
+
Ниже представлена расширенная программа — в полном объёме она занимает больше, чем могут вместить в себя два семестра.
-
Постановка задач обучения по прецедентам, типы задач. Понятия модели алгоритмов и метода обучения. Функционалы качества и принцип минимизации эмпирического риска. Понятие обобщающей способности. Скользящий контроль. Вероятностная постановка задачи и принцип максимума правдоподобия. Объекты и признаки. Типы шкал: бинарные, номинальные, порядковые, количественные. Примеры прикладных задач распознавания, классификации, кластеризации, прогнозирования.
+
Каждый параграф приблизительно соответствует одной лекции. --->
 +
''Курсивом'' выделен дополнительный материал, который может разбираться на семинарах.
-
=== Байесовские алгоритмы классификации ===
+
=== Замечания для студентов ===
-
'''Оптимальный байесовский классификатор'''.
+
-
Функционал среднего риска. Ошибки I и II рода. Теорема об оптимальности байесовского решающего правила. Задача восстановления плотности распределения. «Наивный» байесовский классификатор.
+
-
'''Непараметрическое оценивание плотности''' распределения по Парзену-Розенблатту. Выбор функции ядра. Выбор ширины окна, переменная ширина окна. Робастное оценивание плотности.
+
* Осенью 2020 года курс читается в дистанционном режиме. [https://zoom.us/j/95829589904?pwd=eTVZdGpKUnN1Q0hSYlZ3cWpGMGh2UT09 Подключиться к конференции Zoom] {{Важно|Обновлено: 12-09-2020}}
 +
* [https://github.com/andriygav/MachineLearningSeminars/blob/master/README.rst Ссылка на семинары для студентов МФТИ]
 +
* [https://ya-r.ru/2020/05/07/vorontsov-kurs-mashinnoe-obuchenie-2019-shkola-analiza-dannyh/ Видеолекции ШАД Яндекс]. {{Важно|Обновлено: 2019 год}}
 +
* [https://www.coursera.org/learn/vvedenie-mashinnoe-obuchenie «Введение в машинное обучение» на Курсэре] содержит примерно втрое меньше материала, чем в годовом курсе, представленном на этой странице. Там очень многое упрощено, спрятано, пропущено. Действительно введение.
 +
* На подстранице имеется перечень [[Машинное обучение (курс лекций, К.В.Воронцов)/Вопросы|вопросов к устному экзамену]]. Очень помогает при подготовке к устному экзамену!
 +
* О найденных ошибках и опечатках [[Служебная:EmailUser/Vokov|сообщайте мне]]. —&nbsp;''[[Участник:Vokov|К.В.Воронцов]] 18:24, 19 января 2009 (MSK)''
 +
* Материал, который есть в pdf-тексте, но не рассказывался на лекциях, обычно не входит в программу экзамена.
 +
* Короткая ссылка на эту страницу: [https://bit.ly/1bCmE3Z https://bit.ly/1bCmE3Z].
-
'''Параметрическое оценивание плотности'''.
+
= Семестр 1. Математические основы машинного обучения =
-
Нормальный дискриминантный анализ. Матричное дифференцирование и оценки параметров нормального распределения. Геометрическая интерпретация. Линейные и квадратичные разделяющие поверхности. Подстановочный алгоритм, его недостатки и способы их устранения.
+
-
'''Линейный дискриминант Фишера'''.
+
'''Текст лекций:''' [[Media:Voron-ML-1.pdf|(PDF,&nbsp;3&nbsp;МБ)]] {{важно|— обновление 4.10.2011}}.
-
Проблемы мультиколлинеарности и переобучения. Регуляризация ковариационной матрицы. Метод редукции размерности Шурыгина. Робастное оценивание.
+
-
'''Разделение смеси распределений'''.
+
== Основные понятия и примеры прикладных задач ==
-
EM-алгоритм. Теорема о смеси многомерных нормальных распределений. Критерий останова. Выбор начального приближения. Выбор числа компонентов смеси. Стохастический EM-алгоритм. Сети радиальных базисных функций (RBF) и их настройка с помощью EM-алгоритма.
+
Презентация: [[Media:Voron-ML-Intro-slides.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 05.09.2020}}.
 +
* Постановка задач обучения по прецедентам. Объекты и признаки. Типы шкал: бинарные, номинальные, порядковые, количественные.
 +
* Типы задач: [[классификация]], [[регрессия]], [[прогнозирование]], [[ранжирование]].
 +
* Основные понятия: [[модель алгоритмов]], [[метод обучения]], [[функция потерь]] и функционал качества, [[принцип минимизации эмпирического риска]], [[обобщающая способность]], [[скользящий контроль]].
 +
* Линейные модели регрессии и классификации. Метод наименьших квадратов. Полиномиальная регрессия.
 +
* Примеры прикладных задач.
 +
* Методика экспериментального исследования и сравнения алгоритмов на модельных и реальных данных.
 +
* Конкурсы по анализу данных [http://kaggle.com kaggle.com]. [[Полигон алгоритмов классификации]].
 +
* [[CRISP-DM]] — межотраслевой стандарт ведения проектов [[Data Mining | интеллектуального анализа данных]].
-
=== Метрические алгоритмы классификации ===
+
== Линейный классификатор и стохастический градиент ==
-
Метод k ближайших соседей (kNN) и его обобщения. Подбор числа k по критерию скользящего контроля. Обобщённый метрический классификатор. Метод потенциальных функций, градиентный алгоритм. Настройка весов объектов. Отбор эталонных объектов.
+
Презентация: [[Media:Voron-ML-Lin-SG.pdf|(PDF,&nbsp;1,1&nbsp;МБ)]] {{важно|— обновление 12.09.2020}}.
 +
* [[Линейный классификатор]], модель МакКаллока-Питтса, непрерывные аппроксимации пороговой функции потерь.
 +
* [[Метод стохастического градиента]] SG.
 +
* [[Метод стохастического среднего градиента]] SAG.
 +
<!--
 +
* Частные случаи: [[адаптивный линейный элемент]] ADALINE, [[перcептрон Розенблатта]], [[правило Хэбба]].
 +
* [[Теорема Новикова]] о сходимости. Доказательство теоремы Новикова
 +
-->
 +
* Эвристики: инициализация весов, порядок предъявления объектов, выбор величины градиентного шага, «выбивание» из локальных минимумов.
 +
* Проблема мультиколлинеарности и переобучения, регуляризация или [[редукция весов]] (weight decay).
 +
* Вероятностная постановка задачи классификации. Принцип максимума правдоподобия.
 +
* Вероятностная интерпретация регуляризации, совместное правдоподобие данных и модели. Принцип максимума апостериорной вероятности.
 +
* Гауссовский и лапласовский регуляризаторы.
 +
* [[Логистическая регрессия]]. Принцип максимума правдоподобия и логарифмическая функция потерь. [[Метод стохастического градиента]] для логарифмической функции потерь. Многоклассовая логистическая регрессия. Регуляризованная логистическая регрессия. [[Калибровка Платта]].
 +
<!--
 +
* Функции потерь, зависящие от цены ошибок. [[Кривая ошибок]] (ROC curve). Алгоритм эффективного построения ROC-кривой.
 +
* Градиентный метод максимизации AUC.
 +
-->
-
=== Кластеризация и многомерное шкалирование ===
+
== Нейронные сети: градиентные методы оптимизации ==
-
'''Методы кластеризации'''.
+
Презентация: [[Media:Voron-ML-ANN-slides.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 19.09.2020}}.
-
Примеры прикладных задач. Графовые алгоритмы: связные компоненты, кратчайший незамкнутый путь, Форель. Функционалы качества кластеризации. Статистические алгоритмы: EM и k-means. Агломеративные (иерархические) алгоритмы. Формула Ланса-Вильямса. Алгоритм построения дендрограммы. Свойства сжатия/растяжения, монотонности и редуктивности. Определение числа кластеров. Потоковые (субквадратичные) алгоритмы кластеризации.
+
* Биологический нейрон, [[модель МакКаллока-Питтса]] как [[линейный классификатор]]. Функции активации.
 +
* Проблема полноты. [[Задача исключающего или]]. Полнота двухслойных сетей в пространстве булевых функций.
 +
<!--* ''Теоремы Колмогорова, Стоуна, Горбаня (без доказательства).''-->
 +
* [[Алгоритм обратного распространения ошибок]].
 +
* Быстрые методы стохастического градиента: Поляка, Нестерова, AdaGrad, RMSProp, AdaDelta, Adam, Nadam, [[диагональный метод Левенберга-Марквардта]].
 +
* Проблема взрыва градиента и эвристика gradient clipping.
 +
* Метод случайных отключений нейронов (Dropout). Интерпретации Dropout. Обратный Dropout и L2-регуляризация.
 +
* Функции активации ReLU и PReLU. Проблема [[паралич сети|«паралича» сети]].
 +
* Эвристики для формирования начального приближения. Метод послойной настройки сети.
 +
* Подбор структуры сети: методы постепенного усложнения сети, [[оптимальное прореживание нейронных сетей]] (optimal brain damage).
 +
<!--* [[Нейронная сеть Кохонена]]. [[Конкурентное обучение]], стратегии WTA и WTM.
 +
* [[Самоорганизующаяся карта Кохонена]]. Применение для визуального анализа данных. Искусство интерпретации карт Кохонена.* [[Сети встречного распространения]], их применение для кусочно-постоянной и гладкой аппроксимации функций.
 +
-->
-
'''Многомерное шкалирование'''.
+
== Метрические методы классификации и регрессии ==
-
Размещение одной точки методом Ньютона-Рафсона. Субквадратичный алгоритм. Визуализация: карты сходства и диаграммы Шепарда. Совмещение многомерного шкалирования и иерархической кластеризации. Примеры прикладных задач.
+
Презентация: [[Media:Voron-ML-Metric-slides.pdf|(PDF,&nbsp;3,2&nbsp;МБ)]] {{важно|— обновление 05.03.2020}}.
-
=== Алгоритмы восстановления регрессии ===
+
* Гипотезы компактности и непрерывности.
-
'''Непараметрическая регрессия'''.
+
* Обобщённый [[метрический классификатор]].
-
Локально взвешенный метод наименьших квадратов и оценка Надарая-Ватсона. Выбор функции ядра. Выбор ширины окна сглаживания. Сглаживание с переменной шириной окна. Проблема «выбросов» и робастная непараметрическая регрессия. Проблема «проклятия размерности» и проблема выбора метрики.
+
* [[Метод ближайших соседей]] ''k''NN и его обобщения. Подбор числа ''k'' по критерию скользящего контроля.
 +
* [[Метод окна Парзена]] с постоянной и переменной шириной окна.
 +
* [[Метод потенциальных функций]] и его связь с линейной моделью классификации.
 +
* Задача отбора эталонов. [[Полный скользящий контроль]] (CCV), формула быстрого вычисления для метода 1NN. [[Профиль компактности]].
 +
* Отбор эталонных объектов на основе минимизации функционала полного скользящего контроля.
 +
* Непараметрическая регрессия. Локально взвешенный [[метод наименьших квадратов]]. [[Ядерное сглаживание]].
 +
* [[Оценка Надарая-Ватсона]] с постоянной и переменной шириной окна. Выбор функции ядра и ширины окна сглаживания.
 +
* Задача отсева выбросов. Робастная непараметрическая регрессия. [[Алгоритм LOWESS]].
 +
<!--
 +
* ''[[Функция конкурентного сходства]], [[алгоритм FRiS-СТОЛП]]''.
 +
* ''Эффективные структуры данных для быстрого поиска ближайших объектов в прямых и обратных окрестностях — [[метрические деревья]].''
 +
* ''Понятие [[отступ]]а. [[Алгоритм СТОЛП]].''
 +
* ''Задача отбора признаков. Жадный алгоритм построения метрики.''
 +
* ''Концепция вывода на основе прецедентов ([[CBR]]).''
 +
-->
-
'''Многомерная линейная регрессия'''.
+
== Метод опорных векторов ==
-
Принцип наименьших квадратов. Сингулярное разложение. Проблемы мультиколлинеарности и переобучения. Гребневая регрессия. Лассо Тибширани. Линейная монотонная регрессия (симплекс-метод). Линейные преобразования признакового пространства. Метод главных компонент и декоррелирующее преобразование Карунена-Лоэва. Робастная регрессия.
+
Презентация: [[Media:Voron-ML-Lin-SVM.pdf|(PDF,&nbsp;1,1&nbsp;МБ)]] {{важно|— обновление 24.03.2020}}.
 +
* Оптимальная разделяющая гиперплоскость. Понятие [[зазор]]а между классами (margin).
 +
* Случаи линейной разделимости и отсутствия линейной разделимости. Связь с минимизацией регуляризованного эмпирического риска. Кусочно-линейная функция потерь.
 +
* Задача квадратичного программирования и двойственная задача. Понятие [[Опорный вектор|опорных векторов]].
 +
* Рекомендации по выбору константы&nbsp;''C''.
 +
* [[Функция ядра]] (kernel functions), [[спрямляющее пространство]], [[теорема Мерсера]].
 +
* Способы конструктивного построения ядер. Примеры ядер.
 +
* SVM-регрессия.
 +
* Регуляризации для отбора признаков: [[LASSO SVM]], [[Elastic Net SVM]], [[SFM]], [[RFM]].
 +
* Метод релевантных векторов [[RVM]]
 +
<!---
 +
* ''Обучение SVM методом активных ограничений. [[Алгоритм INCAS]]. [[Алгоритм SMO]].''
 +
* ''ню-SVM.''
 +
--->
-
'''Шаговая регрессия'''.
+
== Многомерная линейная регрессия ==
-
Алгоритм модифицированной ортогонализации Грама-Шмидта, достоинства и недостатки. Отбор признаков в процессе ортогонализации, критерии выбора и останова. Метод наименьших углов, его связь с лассо и шаговой регрессией.
+
Презентация: [[Media:Voron-ML-regression-slides.pdf|(PDF,&nbsp;0,7&nbsp;MБ)]] {{важно|— обновление 14.12.2019}}.
 +
* Задача регрессии, [[многомерная линейная регрессия]].
 +
* [[Метод наименьших квадратов]], его вероятностный смысл и геометрический смысл.
 +
* [[Сингулярное разложение]].
 +
* Проблемы [[мультиколлинеарность|мультиколлинеарности]] и [[переобучение|переобучения]].
 +
* [[Регуляризация]]. [[Гребневая регрессия]] через сингулярное разложение.
 +
* Методы отбора признаков: [[Лассо Тибширани]], [[Elastic Net]], сравнение с гребневой регрессией.
 +
* [[Метод главных компонент]] и [[декоррелирующее преобразование]] Карунена-Лоэва, его связь с сингулярным разложением.
 +
* Спектральный подход к решению задачи наименьших квадратов.
 +
* Задачи и методы низкоранговых матричных разложений.
 +
<!---
 +
=== Шаговая регрессия ===
 +
* [[Модифицированная ортогонализация Грама-Шмидта]], достоинства и недостатки.
 +
* [[Отбор признаков]] в процессе ортогонализации, критерии выбора и останова.
 +
* [[Метод наименьших углов]] (LARS), его связь с лассо и шаговой регрессией.
 +
-->
-
'''Нелинейная параметрическая регрессия'''.
+
== Нелинейная регрессия ==
-
Методы Ньютона-Рафсона и Ньютона-Гаусса. Одномерные нелинейные преобразования признаков: метод обратной настройки (backfitting) Хасти-Тибширани. Обобщённые линейные модели. Неквадратичные функции потерь, примеры прикладных задач.
+
Презентация: [[Media:Voron-ML-regress-non-slides.pdf|(PDF,&nbsp;0,7&nbsp;MБ)]] {{важно|— обновление 14.12.2019}}.
 +
* [[Метод Ньютона-Рафсона]], [[метод Ньютона-Гаусса]].
 +
* Обобщённая аддитивная модель (GAM): [[метод настройки с возвращениями]] (backfitting) Хасти-Тибширани.
 +
* [[Логистическая регрессия]]. [[Метод наименьших квадратов с итеративным пересчётом весов]] (IRLS). Пример прикладной задачи: кредитный скоринг. Бинаризация признаков. Скоринговые карты и оценивание вероятности дефолта. ''Риск кредитного портфеля банка.''
 +
* [[Обобщённая линейная модель]] (GLM). Экспоненциальное семейство распределений.
 +
* Неквадратичные функции потерь. Метод наименьших модулей. Квантильная регрессия. Пример прикладной задачи: прогнозирование потребительского спроса.
 +
* Робастная регрессия, функции потерь с горизонтальными асимптотами.
 +
<!---
 +
* [[Логистическая регрессия]]. Гипотеза экспоненциальности функций правдоподобия классов. Теорема о линейности байесовского оптимального классификатора. Оценивание апостериорных вероятностей классов с помощью сигмоидной функции активации.
 +
--->
-
'''Логистическая регрессия'''.
+
== Критерии выбора моделей и методы отбора признаков ==
-
Линейный пороговый классификатор. «Наивное» сведение задачи классификации к задаче регрессии, его недостатки. Гладкие аппроксимации пороговой функции потерь. Обоснование логистической регрессии: теорема об экспонентных плотностях. Метод наименьших квадратов с итеративным пересчетом весов. Настройка порога решающего правила по критерию числа ошибок I и II рода, кривая ошибок (lift curve), отказы от классификации. Пример прикладной задачи: кредитный скоринг и скоринговые карты.
+
Текст лекций: [[Media:Voron-ML-Modeling.pdf|(PDF,&nbsp;330&nbsp;КБ)]].<br/>
 +
Презентация: [[Media:Voron-ML-Quality-slides.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 14.12.2019}}.
-
=== Элементы теории обобщающей способности ===
+
* Критерии качества классификации: чувствительность и специфичность, ROC-кривая и AUC, точность и полнота, AUC-PR.
-
Функционалы скользящего контроля. Теорема Вапника-Червоненкиса. Функция роста и ёмкость. Емкость некоторых семейств алгоритмов. Метод структурной минимизации риска. Принцип минимума длины описания. Достаточная длина обучающей выборки. Причины завышенности оценок Вапника-Червоненкиса. Эффект локализации семейства алгоритмов. Оценки, зависящие от данных. Принцип самоограничения сложности. Декомпозиция ошибки на шум, смещение и вариацию. Понятие стабильности обучения. Методы эмпирического оценивания обобщающей способности.
+
* Внутренние и [[внешние критерии]]. Эмпирические и аналитические критерии.
 +
* [[Скользящий контроль]], разновидности эмпирических оценок скользящего контроля. [[Критерий непротиворечивости]].
 +
* Разновидности аналитических оценок. [[Регуляризация]]. [[Критерий Акаике]] (AIC). [[Байесовский информационный критерий]] (BIC). Оценка Вапника-Червоненкиса.
 +
* Сложность задачи [[отбор признаков|отбора признаков]]. [[Полный перебор]].
 +
* [[Метод добавления и удаления]], шаговая регрессия.
 +
* [[Поиск в глубину]], метод ветвей и границ.
 +
* Усечённый [[поиск в ширину]], [[многорядный итерационный алгоритм МГУА]].
 +
* [[Генетический алгоритм]], его сходство с МГУА.
 +
* [[Случайный поиск]] и [[Случайный поиск с адаптацией]] (СПА).
 +
<!---
 +
* ''Агрегированные и многоступенчатые критерии''.
 +
* ''Статистические критерии: [[коэффициент детерминации]], [[критерий Фишера]], [[анализ регрессионных остатков]].''
 +
== Теория обобщающей способности ==
 +
* [[Теория Вапника-Червоненкиса]]. Функционал равномерного отклонения частот ошибок. [[Функция роста]], [[ёмкость]] семейства алгоритмов. [[Структурная минимизация риска]].
 +
* ''Оценка «бритвы Оккама»''.
 +
* ''[[Радемахеровская сложность]] семейства алгоритмов.''
 +
* [[Комбинаторная теория переобучения (виртуальный семинар)|Комбинаторная теория переобучения]]. Функционал вероятности переобучения. Граф расслоения-связности. Оценки расслоения-связности.
 +
--->
-
=== Оценивание и выбор моделей ===
+
== Логические методы классификации ==
-
'''Критерии качества модели'''.
+
Текст лекций: [[Media:Voron-ML-Logic.pdf|(PDF,&nbsp;625&nbsp;КБ)]].<br/>
-
Внутренние и внешние критерии. Скользящий контроль, критерии непротиворечивости и регуляризации. Критерии, основанные на оценках обобщающей способности: Вапника-Червоненкиса, Акаике (AIC), байесовский (BIC). Статистические критерии: коэффициент детерминации, критерий Фишера, анализ остатков.
+
Презентация: [[Media:Voron-ML-Logic-slides.pdf|(PDF,&nbsp;1.8&nbsp;МБ)]] {{важно| — обновление 05.03.2030}}.
-
'''Методы отбора признаков'''.
+
* Понятие [[логическая закономерность|логической закономерности]].
-
Полный перебор, методы добавлений и удалений (шаговая регрессия), поиск в глубину (метод ветвей и границ), усечённый поиск в ширину (многорядный итерационный алгоритм МГУА), генетический алгоритм, случайный поиск с адаптацией.
+
* Параметрические семейства закономерностей: конъюнкции пороговых правил, синдромные правила, шары, гиперплоскости.
 +
* Переборные алгоритмы синтеза конъюнкций: [[стохастический локальный поиск]], [[стабилизация]], [[редукция]].
 +
* Двухкритериальный отбор информативных закономерностей, парето-оптимальный фронт в (p,n)-пространстве.
 +
* [[Решающее дерево]]. Жадная нисходящая стратегия «разделяй и властвуй». [[Алгоритм ID3]]. Недостатки жадной стратегии и способы их устранения. Проблема переобучения.
 +
* Вывод критериев ветвления. Мера нечистоты (impurity) распределения. Энтропийный критерий, критерий Джини.
 +
* [[Редукция решающих деревьев]]: [[предредукция]] и [[постредукция]]. [[Алгоритм C4.5]].
 +
* Деревья регрессии. [[Алгоритм CART]].
 +
* [[Небрежные решающие деревья]] (oblivious decision tree).
 +
* Решающий лес. [[Случайный лес]] (Random Forest).
-
== Второй семестр ==
+
'''Факультатив'''
 +
* Статистический критерий информативности, [[точный тест Фишера]]. Сравнение областей эвристических и статистических закономерностей. Асимптотическая эквивалентность статистического и энтропийного критерия информативности. Разнообразие критериев информативности в (p,n)-пространстве.
 +
* Решающий пень. [[Бинаризация признаков]]. Алгоритм разбиения области значений признака на информативные зоны.
 +
* [[Решающий список]]. Жадный алгоритм синтеза списка.
 +
* Преобразование решающего дерева в решающий список.
-
=== Нейронные сети ===
+
== Линейные композиции, бустинг ==
-
'''Персептроны'''.
+
Текст лекций: [[Media:Voron-ML-Compositions.pdf|(PDF,&nbsp;1&nbsp;MБ)]].<br/>
-
Естественный нейрон и его математическая модель. Персептрон Розенблатта. Метод стохастического градиента. Теорема сходимости (Новикова). Связь однослойного персептрона с логистической регрессией и обоснование сигмоидной функции потерь. Проблема «исключающего или». Проблема полноты. Полнота двухслойных сетей в пространстве булевских функций. Теоремы Колмогорова, Стоуна, Горбаня (без доказательства).
+
Презентация: [[Media:Voron-ML-Compositions-slides.pdf|(PDF,&nbsp;0.9&nbsp;МБ)]] {{важно|— обновление 14.12.2019}}.
 +
* Основные понятия: [[базовый алгоритм]] ([[алгоритмический оператор]]), [[корректирующая операция]].
 +
* [[Взвешенное голосование]].
 +
* [[Алгоритм AdaBoost]]. Экспоненциальная аппроксимация пороговой функции потерь. Процесс последовательного обучения базовых алгоритмов. Теорема о сходимости [[бустинг]]а.
 +
* Обобщающая способность бустинга.
 +
* Базовые алгоритмы в бустинге. Решающие пни.
 +
* ''Варианты бустинга: [[GentleBoost]], [[LogitBoost]], [[BrownBoost]], и другие.''
 +
* [[Градиентный бустинг]]. Стохастический градиентный бустинг.
 +
* [[Алгоритм AnyBoost]].
 +
* [[Алгоритм XGBoost]].
-
'''Многослойные нейронные сети'''.
+
== Байесовская классификация и оценивание плотности ==
-
Алгоритм обратного распространения ошибок. Недостатки алгоритма, способы их устранения. Проблема переобучения. Проблема «паралича» сети. Редукция весов. Подбор структуры сети. Метод оптимальной редукции сети (optimal brain damage).
+
Презентация: [[Media:Voron-ML-BTC-EM-slides.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 14.12.2019}}.
-
'''Обучающееся векторное квантование (сети Кохонена)'''.
+
* Принцип максимума апостериорной вероятности. Теорема об оптимальности байесовского классификатора.
-
Структура сети Кохонена. Конкурентное обучение, стратегии WTA и WTM. Самоорганизующиеся карты Кохонена. Применение для визуального анализа данных. Сети встречного распространения, их применение для кусочно-постоянной и гладкой аппроксимации функций.
+
* [[Оценивание плотности распределения]]: три основных подхода.
 +
* [[Наивный байесовский классификатор]].
 +
* Непараметрическое оценивание плотности. [[Ядерная оценка плотности Парзена-Розенблатта]]. Одномерный и многомерный случаи.
 +
* [[Метод парзеновского окна]]. Выбор функции ядра. Выбор ширины окна, переменная ширина окна.
 +
* Параметрическое оценивание плотности. [[Нормальный дискриминантный анализ]].
 +
* [[Многомерное нормальное распределение]], геометрическая интерпретация. Выборочные оценки параметров многомерного нормального распределения.
 +
* [[Квадратичный дискриминант]]. Вид разделяющей поверхности. [[Подстановочный алгоритм]], его недостатки и способы их устранения.
 +
* [[Линейный дискриминант Фишера]].
 +
* Проблемы [[мультиколлинеарность|мультиколлинеарности]] и [[переобучение|переобучения]]. [[Регуляризация]] ковариационной матрицы.
 +
* Параметрический наивный байесовский классификатор.
 +
* [[Смесь распределений]].
 +
* [[EM-алгоритм]] как метод простых итераций для решения системы нелинейных уравнений.
 +
* Выбор числа компонентов смеси. Пошаговая стратегия. Априорное распределение Дирихле.
 +
* Смесь многомерных нормальных распределений. [[Сеть радиальных базисных функций]] (RBF) и применение EM-алгоритма для её настройки.
 +
* Сравнение RBF-сети и SVM с гауссовским ядром.
 +
<!---
 +
* ''Связь линейного дискриминанта Фишера с [[метод наименьших квадратов|методом наименьших квадратов]].''
 +
* ''Матричное дифференцирование. Вывод оценок параметров многомерного нормального распределения.''
 +
* Жадное добавление признаков в линейном дискриминанте, ''[[метод редукции размерности]] Шурыгина.''
 +
* ''Робастное оценивание. Цензурирование выборки (отсев объектов-выбросов).''
 +
== Разделение смеси распределений ==
 +
Презентация: [[Media:Voron-ML-Bayes2-slides.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 27.04.2017}}.
 +
* Детали реализации EM-алгоритма. Критерий останова. Выбор начального приближения.
 +
* Обобщённый EM-алгоритм. Стохастический EM-алгоритм. Иерархический EM-алгоритм.
 +
* Задача кластеризации. [[EM-алгоритм]] и [[Алгоритм k средних]] (k-means).
 +
* Задача частичного обучения.
 +
--->
-
=== Машины опорных векторов ===
+
== Кластеризация и частичное обучение ==
-
Оптимальная разделяющая гиперплоскость. Понятие зазора между классами (margin). Случай линейной разделимости. Задача квадратичного программирования. Опорные векторы. Случай отсутствия линейной разделимости. Функции ядра (kernel functions), спрямляющее пространство, теорема Мерсера. Способы построения ядер. Примеры ядер. Сопоставление SVM и нейронной RBF-сети. Обучение SVM методом активных ограничений. SVM-регрессия.
+
Презентация: [[Media:Voron-ML-Clustering-SSL-slides.pdf|(PDF,&nbsp;1,8&nbsp;МБ)]] {{важно|— обновление 14.12.2019}}.
 +
* Постановка задачи [[кластеризация|кластеризации]]. Примеры прикладных задач. Типы кластерных структур.
 +
* Постановка задачи Semisupervised Learning, примеры приложений.
 +
* Оптимизационные постановки задач кластеризации и частичного обучения.
 +
* [[Алгоритм k-средних]] и [[ЕМ-алгоритм]] для разделения гауссовской смеси.
 +
* [[Графовые алгоритмы кластеризации]]. Выделение связных компонент. [[Кратчайший незамкнутый путь]].
 +
* [[Алгоритм ФОРЭЛ]].
 +
* [[Алгоритм DBSCAN]].
 +
* [[Агломеративная кластеризация]], [[Алгоритм Ланса-Вильямса]] и его частные случаи.
 +
* Алгоритм построения [[дендрограмма|дендрограммы]]. Определение числа кластеров.
 +
* Свойства сжатия/растяжения, монотонности и редуктивности. Псевдокод редуктивной версии алгоритма.
 +
* Простые эвристические методы частичного обучения: self-training, co-training, co-learning.
 +
* Трансдуктивный метод опорных векторов TSVM.
 +
* Алгоритм Expectation-Regularization на основе многоклассовой регуляризированной логистической регрессии.
 +
<!--
 +
* ''Потоковые (субквадратичные) алгоритмы кластеризации.''
 +
* [[Многомерное шкалирование]], примеры прикладных задач.
 +
* Субквадратичный алгоритм, псевдокод. Минимизация функционала стресса методом Ньютона-Рафсона.
 +
* Визуализация: [[карта сходства]], [[диаграмма Шепарда]].
 +
* Совмещение многомерного шкалирования и иерархической кластеризации.
 +
* [[Алгоритм t-SNE]]
 +
-->
-
=== Алгоритмические композиции ===
+
= Семестр 2. Прикладные модели машинного обучения =
-
'''Линейные алгоритмические композиции'''.
+
-
Понятия базового алгоритма и корректирующей операции. Процесс последовательного обучения базовых алгоритмов. Простое голосование (комитет большинства). Решающий список (комитет старшинства). Взвешенное голосование. Бустинг: алгоритм AdaBoost, теорема сходимости. Стохастические методы: бэггинг и метод случайных подпространств.
+
-
'''Метод комитетов'''.
+
== Прогнозирование временных рядов ==
-
Комитеты большинства, простое и взвешенное голосование. Сопоставление с нейронной сетью. Понятия максимальной совместной подсистемы и минимального комитета. Алгоритм построения комитета большинства. Верхняя оценка числа членов комитета.
+
Презентация: [[Media:Voron-ML-forecasting-slides.pdf|(PDF,&nbsp;0,9&nbsp;MБ)]] {{важно|— обновление 14.12.2019}}.
 +
* Задача прогнозирования временных рядов. Примеры приложений.
 +
* [[Экспоненциальное сглаживание|Экспоненциальное скользящее среднее]]. [[Модель Хольта]]. [[Модель Тейла-Вейджа]]. [[Модель Хольта-Уинтерса]].
 +
* Адаптивная авторегрессионная модель.
 +
* [[Следящий контрольный сигнал]]. [[Модель Тригга-Лича]].
 +
* Адаптивная селективная модель. Адаптивная композиция моделей.
 +
* Локальная адаптация весов с регуляризацией.
-
'''Нелинейные алгоритмические композиции'''.
+
== Поиск ассоциативных правил ==
-
Смеси экспертов, понятие области компетентности алгоритма. Выпуклые функции потерь. Методы построения смесей: последовательный и иерархический. Построение смесей экспертов с помощью EM-алгоритма. Нелинейная монотонная коррекция.
+
Презентация: [[Media:Voron-ML-AssocRules-slides.pdf|(PDF,&nbsp;1.1&nbsp;МБ)]] {{важно| — обновление 14.12.2019}}.
 +
* Понятие [[Ассоциативное правило|ассоциативного правила]] и его связь с понятием логической закономерности.
 +
* Примеры прикладных задач: [[анализ рыночных корзин]], выделение терминов и тематики текстов.
 +
* [[Алгоритм APriori]]. Два этапа: поиск частых наборов и рекурсивное порождение ассоциативных правил. Недостатки и пути усовершенствования алгоритма APriori.
 +
* [[Алгоритм FP-growth]]. Понятия FP-дерева и условного FP-дерева. Два этапа поиска частых наборов в FP-growth: построение FP-дерева и рекурсивное порождение частых наборов.
 +
* Общее представление о динамических и иерархических методах поиска ассоциативных правил.
-
=== Логические алгоритмы классификации ===
+
== Нейронные сети глубокого обучения ==
-
'''Понятие логической закономерности'''. Энтропийное и комбинаторное определения информативности, их асимптотическая эквивалентность. Разновидности закономерностей: шары, гиперплоскости, гиперпараллелепипеды (конъюнкции). Бинаризация признаков, алгоритм выделения информативных зон. «Градиентный» алгоритм синтеза конъюнкций, частные случаи: жадный алгоритм, стохастический локальный поиск, стабилизация, редукция.
+
Презентация: [[Media:Voron-ML-DeepLearning-slides.pdf|(PDF,&nbsp;3,4&nbsp;МБ)]] {{важно|— обновление 14.12.2019}}.
 +
* Свёрточные нейронные сети (CNN) для изображений. Свёрточный нейрон. Pooling нейрон. Выборка размеченных изображений ImageNet.
 +
* Свёрточные сети для сигналов, текстов, графов, игр.
 +
* Рекуррентные нейронные сети (RNN). Обучение рекуррентных сетей: Backpropagation Through Time (BPTT).
 +
* Сети долгой кратковременной памяти (Long short-term memory, LSTM).
 +
* Рекуррентная сеть Gated Recurrent Unit (GRU).
 +
* Автокодировщики. Векторные представления дискретных данных.
 +
* Перенос обучения (transfer learning).
 +
* Самообучение (self-supervised learning).
 +
* Генеративные состязательные сети (GAN, generative adversarial net).
-
'''Решающие списки'''. Жадный алгоритм синтеза списка. Разновидности решающих правил в списках: шары, гиперплоскости, гиперпараллелепипеды (конъюнкции).
+
== Эвристические, стохастические, нелинейные композиции ==
 +
Презентация: [[Media:Voron-ML-Compositions-slides2.pdf|(PDF,&nbsp;0.9&nbsp;МБ)]] {{важно|— обновление 14.12.2019}}.
 +
* Стохастические методы: [[бэггинг]] и [[метод случайных подпространств]].
 +
* [[Простое голосование]] (комитет большинства). Алгоритм ComBoost. Идентификация нетипичных объектов (выбросов).
 +
* Преобразование простого голосования во взвешенное.
 +
* Обобщение на большое число классов.
 +
* Случайный лес.
 +
* Анализ смещения и вариации для простого голосования.
 +
* [[Смесь алгоритмов]] (квазилинейная композиция), [[область компетентности]], примеры функций компетентности.
 +
* Выпуклые функции потерь. Методы построения смесей: последовательный и иерархический.
 +
* Построение смеси алгоритмов с помощью EM-подобного алгоритма.
 +
<!---
 +
* ''[[Решающий список]] (комитет старшинства). Алгоритм обучения. Стратегия выбора классов для базовых алгоритмов.''
 +
* ''Нелинейная монотонная корректирующая операция. Случай классификации. Случай регрессии. Задача монотонизации выборки, изотонная регрессия.''
 +
=== Метод комитетов ===
 +
* Общее понятие: [[комитет]] системы ограничений. Комитеты большинства, простое и взвешенное голосование (''z,p''-комитеты).
 +
* Теоремы о существовании комитетного решения.
 +
* Сопоставление комитета линейных неравенств с нейронной сетью.
 +
* [[Максимальная совместная подсистема]], [[минимальный комитет]]. Теоремы об ''NP''-полноте задачи поиска минимального комитета.
 +
* Алгоритм построения комитета, близкого к минимальному. Верхняя оценка числа членов комитета.
 +
=== Бустинг алгоритмов ранжирования ===
 +
* Задача ранжирования. Примеры: ранжирование результатов текстового поиска, задача [[Netflix]].
 +
* Функционал качества — число дефектных пар.
 +
* Бустинг алгоритмов ранжирования — аналоги AdaBoost и AnyBoost.
 +
* Двудольная задача. Сведение попарного функционала качества к поточечному.
 +
=== Взвешенное голосование логических закономерностей ===
 +
* Применение алгоритма бустинга [[AdaBoost]] к закономерностям. Критерий информативности в бустинге.
 +
* [[Решающий лес]] и бустинг над решающими деревьями. ''[[Алгоритм TreeNet]].''
 +
* ''Методы синтеза конъюнктивных закономерностей. Псевдокод: [[алгоритм КОРА]], [[алгоритм ТЭМП]].''
 +
* Эвристики, обеспечивающие различность и полезность закономерностей. Построение Парето-оптимальных закономерностей. Выравнивание распределения отступов.
 +
* ''[[Чередующиеся решающие деревья]] (alternating decision tree).''
 +
* Примеры прикладных задач: кредитный скоринг, прогнозирование ухода клиентов.
 +
=== Алгоритмы вычисления оценок ===
 +
* [[Принцип частичной прецедентности]]. Структура [[Алгоритмы вычисления оценок|Алгоритмов вычисления оценок]].
 +
* [[Тупиковые тесты]].
 +
* [[Тупиковые представительные наборы]].
 +
* Проблема оптимизации АВО. АВО как композиция метрических закономерностей.
 +
* Применение бустинга, ТЭМП и СПА для оптимизации АВО.
 +
--->
-
'''Решающие деревья'''. Алгоритм синтеза дерева ID3. Недостатки алгоритма и способы их устранения. Проблема переобучения. Редукция решающих деревьев: предредукция и постредукция. Преобразование решающего дерева в решающий список. Решающий лес и бустинг над решающими деревьями.
+
== Ранжирование ==
 +
Презентация: [[Media:Voron-ML-Ranking-slides.pdf|(PDF,&nbsp;0,5&nbsp;МБ)]] {{важно|— обновление 14.12.2019}}.
 +
* Постановка задачи [[Обучение ранжированию|обучения ранжированию]]. Примеры.
 +
* Признаки в задаче ранжирования поисковой выдачи: текстовые, ссылочные, кликовые. [[TF-IDF]]. [[PageRank]].
 +
* Критерии качества ранжирования: Precision, MAP, AUC, DCG, NDCG, pFound.
 +
* Ранговая классификация, OC-SVM.
 +
* Попарный подход: RankingSVM, RankNet, LambdaRank.
-
'''Взвешенное голосование логических закономерностей'''.
+
== Рекомендательные системы ==
-
Принцип голосования. Проблема различности (диверсификации) закономерностей. Алгоритмы синтеза конъюнктивных закономерностей КОРА и ТЭМП. Применение ТЭМП для синтеза решающего списка. Алгоритм бустинга. Теорема сходимости. Взвешенные решающие деревья (alternating decision tree). Примеры прикладных задач: кредитный скоринг, прогнозирование ухода клиентов.
+
Презентация: [[Media:Voron-ML-CF.pdf|(PDF,&nbsp;0.8&nbsp;МБ)]] {{важно| — обновление 14.12.2019}}.
 +
* Задачи [[коллаборативная фильтрация|коллаборативной фильтрации]], [[транзакционные данные]] и матрица субъекты—объекты.
 +
* Корреляционные методы user-based, item-based. Задача восстановления пропущенных значений. Меры сходства субъектов и объектов.
 +
* ''Латентные методы на основе [[би-кластеризация|би-кластеризации]]. [[Алгоритм Брегмана]].''
 +
* Латентные методы на основе матричных разложений. [[Метод главных компонент]] для разреженных данных (LFM, Latent Factor Model). [[Метод стохастического градиента]].
 +
* Неотрицательные матричные разложения. Метод чередующихся наименьших квадратов ALS.
 +
* Модель с учётом неявной информации (implicit feedback).
 +
* Рекомендации с учётом дополнительных признаковых данных. Линейная и квадратичная регрессионные модели, [[libFM]].
 +
* Измерение качества рекомендаций. Меры разнообразия (diversity), новизны (novelty), покрытия (coverage), догадливости (serendipity).
-
'''Алгоритмы вычисления оценок'''.
+
== Тематическое моделирование ==
-
Принцип частичной прецедентности. Структура АВО. Тупиковые тесты и тупиковые представительные наборы. Проблема оптимизации АВО. АВО как композиция метрических закономерностей. Применение бустинга для оптимизации АВО.
+
Текст лекций: [[Media:Voron-ML-TopicModels.pdf|(PDF,&nbsp;830&nbsp;КБ)]].<br/>
 +
<!---
 +
Презентация 1: [[Media:Voron-ML-TopicModels-slides.pdf|(PDF,&nbsp;2.8&nbsp;МБ)]] {{важно| — обновление 16.11.2015}}.
 +
Презентация 2: [[Media:Voron-ML-TopicModels-slides-2.pdf|(PDF,&nbsp;6.1&nbsp;МБ)]] {{важно| — обновление 16.11.2015}}.
 +
--->
 +
Презентация: [[Media:Voron-ML-TopicModeling-slides.pdf|(PDF,&nbsp;1.6&nbsp;МБ)]] {{важно| — обновление 14.12.2019}}.
 +
* Задача [[тематическое моделирование|тематического моделирования]] коллекции текстовых документов.
 +
* [[Вероятностный латентный семантический анализ]] PLSA. [[Метод максимума правдоподобия]]. [[ЕМ-алгоритм]]. Элементарная интерпретация EM-алгоритма.
 +
* [[Латентное размещение Дирихле]] LDA. [[Метод максимума апостериорной вероятности]]. Сглаженная частотная оценка условной вероятности.
 +
* Небайесовская интерпретация LDA и её преимущества. Регуляризаторы разреживания, сглаживания, частичного обучения.
 +
* Аддитивная регуляризация тематических моделей. Регуляризованный EM-алгоритм, теорема о стационарной точке (применение условий Каруша–Куна–Таккера).
 +
* Рациональный EM-алгоритм. Онлайновый EM-алгоритм и его распараллеливание.
 +
* Мультимодальная тематическая модель.
 +
* Регуляризаторы классификации и регрессии.
 +
* Регуляризаторы декоррелирования и отбора тем.
 +
* Внутренние и внешние критерии качества тематических моделей.
-
'''Поиск ассоциативных правил'''.
+
== Обучение с подкреплением ==
-
Пример прикладной задачи: анализ рыночных корзин. Понятие ассоциативного правила и его связь с понятием логической закономерности. Алгоритм APriori, его недостатки и пути усовершенствования.
+
Презентация: [[Media:Voron-ML-RL-slides.pdf|(PDF,&nbsp;1.0&nbsp;МБ)]] {{важно| — обновление 14.12.2019}}.
 +
* Задача о многоруком бандите. Жадные и эпсилон-жадные стратегии. Метод UCB (upper confidence bound). Стратегия Softmax.
 +
* Среда для экспериментов.
 +
* Адаптивные стратегии на основе скользящих средних. Метод сравнения с подкреплением. Метод преследования.
 +
* Постановка задачи в случае, когда агент влияет на среду. Ценность состояния среды. Ценность действия.
 +
* Жадные стратегии максимизации ценности. Уравнения оптимальности Беллмана.
 +
* Метод временных разностей TD. Метод Q-обучения.
 +
<!---* Многошаговое TD-прогнозирование. Обобщения методов временных разностей, SARSA, Q-обучения. --->
 +
* Градиентная оптимизация стратегии (policy gradient). Связь с максимизацией log-правдоподобия.
 +
* Постановка задачи при наличии информации о среде в случае выбора действия. Контекстный многорукий бандит.
 +
* Линейная регрессионная модель с верхней доверительной оценкой LinUCB.
 +
* Оценивание новой стратегии по большим историческим данным.
 +
<!---* Адаптивный полужадный метод VDBE.--->
-
== Файлы ==
+
== Активное обучение ==
 +
Презентация: [[Media:Voron-ML-AL-slides.pdf|(PDF,&nbsp;1.2&nbsp;МБ)]] {{важно| — обновление 14.12.2019}}.
 +
* Постановка задачи машинного обучения. Основные стратегии: отбор объектов из выборки и из потока, синтез объектов.
 +
* Сэмплирование по неуверенности. Почему активное обучение быстрее пассивного.
 +
* Сэмплирование по несогласию в комитете. Сокращение пространства решений.
 +
* Сэмплирование по ожидаемому изменению модели.
 +
* Сэмплирование по ожидаемому сокращению ошибки.
 +
* Синтез объектов по критерию сокращения дисперсии.
 +
* Взвешивание по плотности.
 +
* Оценивание качества активного обучения.
 +
* Введение изучающих действий в стратегию активного обучении. Алгоритмы ε-active и EG-active.
 +
* Применение обучения с подкреплением для активного обучения. Активное томпсоновское сэмплирование.
-
Программа курса
+
== Заключительная лекция ==
 +
Презентация: [[Media:Voron-ML-final.pdf|(PDF,&nbsp;2.0&nbsp;МБ)]] {{важно| — обновление 14.12.2019}}.
-
Экзаменационные билеты
+
Обзор курса. Оптимизационные задачи машинного обучения.
-
Практикум
+
= См. также =
 +
* [https://www.coursera.org/learn/vvedenie-mashinnoe-obuchenie Курс «Введение в машинное обучение», К.В.Воронцов (ВШЭ и Яндекс)].[https://habrahabr.ru/company/yandex/blog/269175 Хабр об этом курсе].
 +
* [https://www.coursera.org/specializations/machine-learning-data-analysis Специализация «Машинное обучение и анализ данных» (МФТИ и Яндекс)]. [https://habrahabr.ru/company/yandex/blog/277427 Хабр об этом курсе].
 +
* [https://drive.google.com/open?id=0B-3LhgkjkY_OSDJncFdxTkFaOG8 Машинное обучение (семинары,ФУПМ МФТИ)]
 +
* [[Машинное обучение (семинары, ВМК МГУ)]]
 +
* [[Машинное обучение (курс лекций, Н.Ю.Золотых)]]
 +
* [[Машинное обучение (курс лекций, СГАУ, С.Лисицын)]]
 +
 
 +
= Литература =
 +
# ''Hastie T., Tibshirani R., Friedman J.'' The Elements of Statistical Learning. Springer, 2014. — 739 p.
 +
# ''Bishop C. M.'' Pattern Recognition and Machine Learning. — Springer, 2006. — 738 p.
 +
# ''Мерков А. Б.'' Распознавание образов. Введение в методы статистического обучения. 2011. 256 с.
 +
# ''Мерков А. Б.'' Распознавание образов. Построение и обучение вероятностных моделей. 2014. 238 с.
 +
# ''Коэльо Л.П., Ричарт В.'' Построение систем машинного обучения на языке Python. 2016. 302 с.
 +
 
 +
= Список подстраниц =
 +
{{Служебная:Prefixindex/Машинное обучение (курс лекций, К.В.Воронцов)/}}
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]

Версия 08:36, 19 сентября 2020

Содержание

Теория обучения машин (machine learning, машинное обучение) находится на стыке прикладной статистики, численных методов оптимизации, дискретного анализа, и за последние 60 лет оформилась в самостоятельную математическую дисциплину. Методы машинного обучения составляют основу ещё более молодой дисциплины — интеллектуального анализа данных (data mining).

В курсе рассматриваются основные задачи обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Теоремы в основном приводятся без доказательств.

Все методы излагаются по единой схеме:

  • исходные идеи и эвристики;
  • их формализация и математическая теория;
  • описание алгоритма в виде слабо формализованного псевдокода;
  • анализ достоинств, недостатков и границ применимости;
  • пути устранения недостатков;
  • сравнение и взаимосвязи с другими методами.
  • примеры прикладных задач.

Данный курс расширяет и углубляет набор тем, рекомендованный международным стандартом ACM/IEEE Computing Curricula 2001 по дисциплине «Машинное обучение и нейронные сети» (machine learning and neural networks) в разделе «Интеллектуальные системы» (intelligent systems).

Курс читается

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и языка программирования Python желательно, но не обязательно.

Курсивом выделен дополнительный материал, который может разбираться на семинарах.

Замечания для студентов

Семестр 1. Математические основы машинного обучения

Текст лекций: (PDF, 3 МБ) — обновление 4.10.2011.

Основные понятия и примеры прикладных задач

Презентация: (PDF, 1,4 МБ) — обновление 05.09.2020.

Линейный классификатор и стохастический градиент

Презентация: (PDF, 1,1 МБ) — обновление 12.09.2020.

Нейронные сети: градиентные методы оптимизации

Презентация: (PDF, 1,4 МБ) — обновление 19.09.2020.

Метрические методы классификации и регрессии

Презентация: (PDF, 3,2 МБ) — обновление 05.03.2020.

Метод опорных векторов

Презентация: (PDF, 1,1 МБ) — обновление 24.03.2020.

  • Оптимальная разделяющая гиперплоскость. Понятие зазора между классами (margin).
  • Случаи линейной разделимости и отсутствия линейной разделимости. Связь с минимизацией регуляризованного эмпирического риска. Кусочно-линейная функция потерь.
  • Задача квадратичного программирования и двойственная задача. Понятие опорных векторов.
  • Рекомендации по выбору константы C.
  • Функция ядра (kernel functions), спрямляющее пространство, теорема Мерсера.
  • Способы конструктивного построения ядер. Примеры ядер.
  • SVM-регрессия.
  • Регуляризации для отбора признаков: LASSO SVM, Elastic Net SVM, SFM, RFM.
  • Метод релевантных векторов RVM

Многомерная линейная регрессия

Презентация: (PDF, 0,7 MБ) — обновление 14.12.2019.

Нелинейная регрессия

Презентация: (PDF, 0,7 MБ) — обновление 14.12.2019.

Критерии выбора моделей и методы отбора признаков

Текст лекций: (PDF, 330 КБ).
Презентация: (PDF, 1,5 МБ) — обновление 14.12.2019.

Логические методы классификации

Текст лекций: (PDF, 625 КБ).
Презентация: (PDF, 1.8 МБ) — обновление 05.03.2030.

Факультатив

  • Статистический критерий информативности, точный тест Фишера. Сравнение областей эвристических и статистических закономерностей. Асимптотическая эквивалентность статистического и энтропийного критерия информативности. Разнообразие критериев информативности в (p,n)-пространстве.
  • Решающий пень. Бинаризация признаков. Алгоритм разбиения области значений признака на информативные зоны.
  • Решающий список. Жадный алгоритм синтеза списка.
  • Преобразование решающего дерева в решающий список.

Линейные композиции, бустинг

Текст лекций: (PDF, 1 MБ).
Презентация: (PDF, 0.9 МБ) — обновление 14.12.2019.

Байесовская классификация и оценивание плотности

Презентация: (PDF, 1,6 МБ) — обновление 14.12.2019.

Кластеризация и частичное обучение

Презентация: (PDF, 1,8 МБ) — обновление 14.12.2019.

Семестр 2. Прикладные модели машинного обучения

Прогнозирование временных рядов

Презентация: (PDF, 0,9 MБ) — обновление 14.12.2019.

Поиск ассоциативных правил

Презентация: (PDF, 1.1 МБ) — обновление 14.12.2019.

  • Понятие ассоциативного правила и его связь с понятием логической закономерности.
  • Примеры прикладных задач: анализ рыночных корзин, выделение терминов и тематики текстов.
  • Алгоритм APriori. Два этапа: поиск частых наборов и рекурсивное порождение ассоциативных правил. Недостатки и пути усовершенствования алгоритма APriori.
  • Алгоритм FP-growth. Понятия FP-дерева и условного FP-дерева. Два этапа поиска частых наборов в FP-growth: построение FP-дерева и рекурсивное порождение частых наборов.
  • Общее представление о динамических и иерархических методах поиска ассоциативных правил.

Нейронные сети глубокого обучения

Презентация: (PDF, 3,4 МБ) — обновление 14.12.2019.

  • Свёрточные нейронные сети (CNN) для изображений. Свёрточный нейрон. Pooling нейрон. Выборка размеченных изображений ImageNet.
  • Свёрточные сети для сигналов, текстов, графов, игр.
  • Рекуррентные нейронные сети (RNN). Обучение рекуррентных сетей: Backpropagation Through Time (BPTT).
  • Сети долгой кратковременной памяти (Long short-term memory, LSTM).
  • Рекуррентная сеть Gated Recurrent Unit (GRU).
  • Автокодировщики. Векторные представления дискретных данных.
  • Перенос обучения (transfer learning).
  • Самообучение (self-supervised learning).
  • Генеративные состязательные сети (GAN, generative adversarial net).

Эвристические, стохастические, нелинейные композиции

Презентация: (PDF, 0.9 МБ) — обновление 14.12.2019.

  • Стохастические методы: бэггинг и метод случайных подпространств.
  • Простое голосование (комитет большинства). Алгоритм ComBoost. Идентификация нетипичных объектов (выбросов).
  • Преобразование простого голосования во взвешенное.
  • Обобщение на большое число классов.
  • Случайный лес.
  • Анализ смещения и вариации для простого голосования.
  • Смесь алгоритмов (квазилинейная композиция), область компетентности, примеры функций компетентности.
  • Выпуклые функции потерь. Методы построения смесей: последовательный и иерархический.
  • Построение смеси алгоритмов с помощью EM-подобного алгоритма.

Ранжирование

Презентация: (PDF, 0,5 МБ) — обновление 14.12.2019.

  • Постановка задачи обучения ранжированию. Примеры.
  • Признаки в задаче ранжирования поисковой выдачи: текстовые, ссылочные, кликовые. TF-IDF. PageRank.
  • Критерии качества ранжирования: Precision, MAP, AUC, DCG, NDCG, pFound.
  • Ранговая классификация, OC-SVM.
  • Попарный подход: RankingSVM, RankNet, LambdaRank.

Рекомендательные системы

Презентация: (PDF, 0.8 МБ) — обновление 14.12.2019.

  • Задачи коллаборативной фильтрации, транзакционные данные и матрица субъекты—объекты.
  • Корреляционные методы user-based, item-based. Задача восстановления пропущенных значений. Меры сходства субъектов и объектов.
  • Латентные методы на основе би-кластеризации. Алгоритм Брегмана.
  • Латентные методы на основе матричных разложений. Метод главных компонент для разреженных данных (LFM, Latent Factor Model). Метод стохастического градиента.
  • Неотрицательные матричные разложения. Метод чередующихся наименьших квадратов ALS.
  • Модель с учётом неявной информации (implicit feedback).
  • Рекомендации с учётом дополнительных признаковых данных. Линейная и квадратичная регрессионные модели, libFM.
  • Измерение качества рекомендаций. Меры разнообразия (diversity), новизны (novelty), покрытия (coverage), догадливости (serendipity).

Тематическое моделирование

Текст лекций: (PDF, 830 КБ).
Презентация: (PDF, 1.6 МБ) — обновление 14.12.2019.

Обучение с подкреплением

Презентация: (PDF, 1.0 МБ) — обновление 14.12.2019.

  • Задача о многоруком бандите. Жадные и эпсилон-жадные стратегии. Метод UCB (upper confidence bound). Стратегия Softmax.
  • Среда для экспериментов.
  • Адаптивные стратегии на основе скользящих средних. Метод сравнения с подкреплением. Метод преследования.
  • Постановка задачи в случае, когда агент влияет на среду. Ценность состояния среды. Ценность действия.
  • Жадные стратегии максимизации ценности. Уравнения оптимальности Беллмана.
  • Метод временных разностей TD. Метод Q-обучения.
  • Градиентная оптимизация стратегии (policy gradient). Связь с максимизацией log-правдоподобия.
  • Постановка задачи при наличии информации о среде в случае выбора действия. Контекстный многорукий бандит.
  • Линейная регрессионная модель с верхней доверительной оценкой LinUCB.
  • Оценивание новой стратегии по большим историческим данным.

Активное обучение

Презентация: (PDF, 1.2 МБ) — обновление 14.12.2019.

  • Постановка задачи машинного обучения. Основные стратегии: отбор объектов из выборки и из потока, синтез объектов.
  • Сэмплирование по неуверенности. Почему активное обучение быстрее пассивного.
  • Сэмплирование по несогласию в комитете. Сокращение пространства решений.
  • Сэмплирование по ожидаемому изменению модели.
  • Сэмплирование по ожидаемому сокращению ошибки.
  • Синтез объектов по критерию сокращения дисперсии.
  • Взвешивание по плотности.
  • Оценивание качества активного обучения.
  • Введение изучающих действий в стратегию активного обучении. Алгоритмы ε-active и EG-active.
  • Применение обучения с подкреплением для активного обучения. Активное томпсоновское сэмплирование.

Заключительная лекция

Презентация: (PDF, 2.0 МБ) — обновление 14.12.2019.

Обзор курса. Оптимизационные задачи машинного обучения.

См. также

Литература

  1. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. Springer, 2014. — 739 p.
  2. Bishop C. M. Pattern Recognition and Machine Learning. — Springer, 2006. — 738 p.
  3. Мерков А. Б. Распознавание образов. Введение в методы статистического обучения. 2011. 256 с.
  4. Мерков А. Б. Распознавание образов. Построение и обучение вероятностных моделей. 2014. 238 с.
  5. Коэльо Л.П., Ричарт В. Построение систем машинного обучения на языке Python. 2016. 302 с.

Список подстраниц

Машинное обучение (курс лекций, К.В.Воронцов)/2009Машинное обучение (курс лекций, К.В.Воронцов)/ToDoМашинное обучение (курс лекций, К.В.Воронцов)/Вопросы
Машинное обучение (курс лекций, К.В.Воронцов)/Семестровый курсМашинное обучение (курс лекций, К.В.Воронцов)/Форма отчета
Личные инструменты