Метод Натаниеля Мейкона (N.Macon) поиска исходных приближений для случая почти равных корней

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Введение

Метод Ньютона-Рафсона

Пусть имеется некоторая функция F(x) и необходимо найти такие значения аргумента x, для которых

(1)
F(x)=0

Перепишем (1) в виде

(1.1)
x = f(x)

и запишем n+1-ое приближения корня (1.1), при этом делая поправку \alpha к очередному значению x_n

(2)
x_{n+1} = x_n + \alpha \Delta x_n,

где \Delta x_n = f(x_n) - x_n, и положим \alpha = \frac{1}{1-f'(x_n)}.

Тогда (2) перепишется в виде

(3)
x_{n+1} = \frac{f(x_n) - x_n f'(x_n)}{1 - f'(x_n)}

Нетрудно видеть, что (3) эквивалентно простому методу последовательных приближений

x_{n+1} = g(x_n),

где g(x) = \frac{f(x) - x f'(x)}{1 - f'(x)}.

Вспомним также, что если |g'(x)| < 1, то метод сходится. Имеем

g'(x) = \frac{f''(x)[f(x) - x]}{[1 - f'(x)]^2}.

Но так как справедливо соотношение (1.1), то для x, достаточно близких к решению (1.1), выражение в скобках в числителе дроби становится малым. Поэтому итерационный метод, описываемый формулой (3) сходится, если

1. Начальное приближение x_0 выбрано достаточно близко к решению x = f(x).
2. Производная f''(x) не становится слишком большой.
3. Производная f'(x) не слишком близка к 1.

Это и есть метод Ньютона-Рафсона. Обычно его записывают в виде

(4)
x_{n+1} = x_{n} - \frac{F(x_n)}{F'(x_n)},

где F(x) = f(x) - x = 0

Таким образом, мы вернулись к уравнению в форме (1), и условия сходимости принимают следующий вид

1. Начальное приближение x_0 выбрано достаточно близко к корню уравнения F(x) = 0.
2. Производная F''(x) не становится очень большой.
3. Производная F'(x) не слишком близка к 0.

Случай почти равных корней

Рисунок 1
Рисунок 1

Условие 3 сходимости метода Ньютона-Рафсона означает, что никакие два корня не находятся слишком близко один к другому. Соответствующая ситуация представлена на рисунке 1 (масштаб сильно увеличен). Заметим, что производная f'(x) близка к 1 при x, равном обоим значениям корней, a_1 и a_2. Более того, на основании теоремы Лагранжа, можно утверждать, что f'(x) = 1 где-то между a_1 и a_2.

Рассмотрим, что случится, если принять x_0 в качестве исходного значения для корня a_1. Касательная, проведенная через точку C, пересечет прямую y=x в точке A, и следующее приближение будет равно x_1. Касательная, проведенная через точку B, пересекает прямую в точке D, и в качестве следующего приближеня получается снова x_0. Итерационный процесс, таким образом, осциллирует между x_0 и x_1 до бесконечности, не сходясь ни к одному значению корня. Иначе говоря, не удается отделить эти два корня, потому что они расположены слишком близко.

Поэтому необходимо начальное приближение, достаточно близкое к искомому значению корня. Трудности возникают потому, что вычисление знаменателя в формуле (3) включает в себя вычитание двух почти равных чисел, что приводит к понижению точности.

Изложение метода

Поиск начального приближения

Рисунок 2
Рисунок 2

Сначала находится значение x, при котором f'(x)=1, то есть решается уравнение

x=x+f'(x)-1

Пусть решением этого уравнения будет некоторое x = x_0. Эта точка расположена между двумя корнями, a_1 и a_2. Чтобы получить начальное приближение для решения уравнения, предположим, что x_0 лежит посредине между a_1 и a_2 (рисунок 2). Другими словами, мы предполагаем, что x_0 + d и x_0 - d являются корнями уравнения (1.1). Разлагая f(x) в ряд Тейлора в окрестности точки x_0 и принимая во внимание, что f'(x)=1, получаем

f(x) = f(x_0) + (x - x_0) + \frac{1}{2} f''(x_0) (x - x_0)^2 + \ldots

Ограничим ряд тремя членами. Подставляя x + d вместо x, имеем

f(x_0+d) = f(x_0) + d + \frac{1}{2} f''(x_0)(d^2)

Но по условию

f(x_0+d) = x_0+d,

поэтому, решая эти уравнения относительно d, получаем

d=\sqrt{\frac{2(x_0 - f(x_0))}{f''(x_0)}}

Таким образом, процесс решения сводится к следующему. Если дано уравнение с почти равными корнями, то, определив приблизительное местонахождение этих корней, необходиом решить уравнение

x = x + f'(x) - 1

и определить значение x_0. Для решения этого уравнения можно применить, например, метод Ньютона-Рафсона. Найдя значение x_0, можно определить значение d. И, наконец, значения x_0-d и x_0+d используются в качестве начальных приближений для определения соответственно a_1 и a_2.

Список литературы

  • Мак-Кракен Д.  Дорн У. Численные методы и программирование на ФОРТРАНе М.: Мир, 1977.
Личные инструменты