Метод Ньютона. Проблема области сходимости. Метод парабол. Совмещение методов Ньютона и парабол

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Постановка задачи одномерной оптимизации

Задача одномерной оптимизации определяется следующим образом:

  1. Допустимое множество — множество \mathbb{X}=\{\vec{x}:\;g_i(\vec{x})\leq 0,\;i=1,\ldots,n_1;\;g_j(\vec{x})=0,\;j=1,\ldots,n_2;\;g_k(\vec{x})\geq 0,\;k=1,\dots,n_3;\;m=n_1+n_2+n_3 \} \subset \mathbb{R}^n(\mathbb{C}^n);
  2. Целевую функцию — отображение f:\;\mathbb{X}\to\mathbb{R};
  3. Критерий поиска (max или min).

Тогда решить задачу f(x)\to \min_{\vec{x}\in\mathrm{X}} означает одно из:

  1. Показать, что \mathbb{X}=\varnothing.
  2. Показать, что целевая функция f(\vec{x}) не ограничена.
  3. Найти \vec{x}^*\in\mathbb{X}:\;f(\vec{x}^*)=\min_{\vec{x}\in\mathbb{X}}f(\vec{x}).
  4. Если \nexists \vec{x}^* , то найти \inf_{\vec{x}\in\mathbb{X}}f(\vec{x}).

Если минимизируемая функция не является выпуклой, то часто ограничиваются поиском локальных минимумов и максимумов: точек x_0 таких, что всюду в некоторой их окрестности f(x)\ge f(x_0) для минимума и f(x)\le f(x_0) для максимума.

Если допустимое множество \mathbb{X}=\mathbb{R}, то такая задача называется задачей безусловной оптимизации, в противном случае — задачей условной оптимизации.

Метод Ньютона

Метод Парабол

Совмещение метода Ньютона и Парабол

Численный пример

Литература

Смотри также

Личные инструменты