Метод Парзеновского окна (пример)

Материал из MachineLearning.

Перейти к: навигация, поиск

Метод Парзеновского окна принадлежит к непараметрическим методам классификации и представляет собой одну из возможных реализаций байесовского подхода к решению задачи классификации.

Содержание

Постановка задачи разделения классов методом парзеновского окна

Пусть у нас задана выборка \{(\mathbf{x}_i,y_i)\}_{i=1}^m, где X^m = \{\mathbf{x}_i\}_{i=1}^m - множество объектов, а Y^m = \{\mathbf{y}_i\}_{i=1}^m - множество ответов на этих объектах. Кроме того, задан объект x_0, который небоходимо классифицировать с помощью алгоритма a(x;X^{l},h). Задача состоит в том, что бы подобрать параметр h, ширину окна, и Kядерную функцию, таким образом, что бы при классификации с помощью метода парзеновского окна функционал качества достигал бы своего максимума при работе алгоритма с заданными параметрами:

a(x;X^{l},h)=\arg \max_{y\in Y} \lambda_{y} \sum_{i=1}^l {[}y_i = y{]} K\left(\frac{\ro{}(x,x_i)}{h}\right).

В этой формуле \lambda_{y} - цена правильного ответа для каждого класса из Y

Алгоритм отыскания оптимальных параметров

Чтобы найти ширину окна и наиболее подходящий нам тип ядра, мы воспользуемся принципом максимального правдоподобия и исключением объектов по одному leave-one-out:

h^{*}=\arg{ } \max_{h} \sum_{i=1}^l \log \hat{p}_h (x_i;X^{m}{/}x_i).

То есть, мы будем восстанавливать значение класса для одного объекта из нашей выборки и максимизировать логарифм количества правильных ответов при исключении по очереди всех объектов выборки. Максимизация этого значения происходит по двум параметрам - ширине окна h и типу ядерной функции. Ширину окна мы можем подобрать из некоторого диапазона \delta{}H, полученного из эмпирических предположений. Ядро выбирается из нижеприведенного набора ядер:

# ядро K(r) формула
1 Епанечникова K_1(r)=E(r)=\frac{3}{4}(1-r^2){[}{|}r{|}<=1{]}
2 Квартическое K_2(r)=Q(r)=\frac{15}{16}(1-r^2)^2{[}{|}r{|}<=1{]}
3 Треугольное K_3(r)=T(r)=(1-{|}r{|}){[}{|}r{|}<=1{]}
4 Гауссовское K_4(r)=G(r)=(2\pi)^{(-\frac{1}{2})}exp(-\frac{1}{2}r^2)
5 Прямоугольное K_5(r)=\Pi(r)=\frac{1}{2}{[}{|}r{|}<=1{]}

Получившееся выражение имеет достаточно понятный вид:

(h^{*},K^{*}_s(r))=\arg{ } \max_{\small s\in\{1,2,3,4,5\}} \max_{h\in\delta{}H} \sum_{i=1}^l \log \hat{p}_h (x_i;X^{m}{/}x_i).

Вычислительный эксперимент

Вычислительный эксперимент был проведен на реальных и модельных данных. В качестве модельных данных были взяты точки из двух нормальных распределений с разными математическими ожиданиями и дисперсиями (соответственно, были получены два класса объектов). После проведения рядка экспериментов были получены следующие результаты:

Код получения данных:

%NORMGENERATION generation of normal data in 2 classes with different
%parameteres to be described in V: V(1,1) V(1,2) parameters of normal
%distribution for first class; V(2,1) V(2,2) parameters of normal
%distribution for first class; V(1,3) - number of properties; V(1,4),
%V(2,4) - number of objects in first and second class
X1=random('normal',V(1,1),V(1,2),V(1,3),V(1,4));
X2=random('normal',V(2,1),V(2,2),V(1,3),V(2,4));
X=[X1 , X2];
Y=[ones(1,V(1,4)) , zeros(1,V(2,4))];

В каждом случае была использована своя матрица параметров двухмерного распределения V=\{M_1,\sigma_1^2,m,n_1{;}M_2,\sigma_2^2,m,n_2\}, где M_i - математическое ожидание для i-го класса, \sigma_i^2 -дисперсия, m=2 - размерность пространства признаков, n_i - количество элемнтов каждого класса

# M_1 \sigma_1^2 n_1 M_2 \sigma_2^2 n_2
1 0 4 60 20 4 50
2 0 4 60 5 4 50
3 0 4 60 0 12 50

Мы видим, что при хорошо разделимых классах, наш алгоритм работает замечательно при правильно подобранном значение k и любом ядре.

Во втором случае классы были сближены, что привело к некоторому неустранимому числу ошибок.

В третьем случае были взяты два класса с одинаковыми математическими ожиданиями, но разными дисперсиями. Алгоритм достаточно хорошо разделил и их.

Исходный код

Скачать листинги алгоритмов можно здесь parzenclassification.m, crossvalidation.m, fqual.m, kgenerate.m

Смотри также

Литература

  1. Воронцов К. В. Лекции по линейным алгоритмам классификации.
  2. Christopher M. Bishop Pattern Recognition and Machine Learning. — Hardcover. — 2006. — 740 с.
  3. Pascal Vincent and Yoshua Bengio Manifold Parzen Windows. — 2002.


Данная статья является непроверенным учебным заданием.
Студент: Участник:Зайцев Алексей
Преподаватель: Участник:В.В. Стрижов
Срок: 28 мая 2009

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.

Замечания

Личные инструменты