Метод главных компонент

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Примеры использования)
(Сингулярное разложение матрицы данных)
Строка 121: Строка 121:
== [[Сингулярное разложение]] матрицы данных ==
== [[Сингулярное разложение]] матрицы данных ==
-
=== Идея сингулярного разложения ===
+
{{main|Простой итерационный алгоритм сингулярного разложения матриц}}
 +
 
Математическое содержание метода главных компонент — это ''спектральное разложение'' ковариационной матрицы <tex> C </tex>, то есть представление пространства данных в виде суммы взаимно ортогональных собственных подпространств <tex> C </tex>, а самой матрицы <tex> C </tex> — в виде линейной комбинации ортогональных проекторов на эти подпространства с коэффициентами <tex> \lambda_i </tex>. Если <tex>\operatorname{X}=\left\{x_1,..., x_m \right\}^T</tex> — матрица, составленная из векторов-строк центрированных данных, то <tex> C = \operatorname{X}^T\operatorname{X}</tex> и задача о спектральном разложении ковариационной матрицы <tex> C </tex> превращается в задачу о ''сингулярном разложении'' (англ. [http://en.wikipedia.org/wiki/Singular_value_decomposition Singular value decomposition]) матрицы данных <tex>\operatorname{X}</tex>.
Математическое содержание метода главных компонент — это ''спектральное разложение'' ковариационной матрицы <tex> C </tex>, то есть представление пространства данных в виде суммы взаимно ортогональных собственных подпространств <tex> C </tex>, а самой матрицы <tex> C </tex> — в виде линейной комбинации ортогональных проекторов на эти подпространства с коэффициентами <tex> \lambda_i </tex>. Если <tex>\operatorname{X}=\left\{x_1,..., x_m \right\}^T</tex> — матрица, составленная из векторов-строк центрированных данных, то <tex> C = \operatorname{X}^T\operatorname{X}</tex> и задача о спектральном разложении ковариационной матрицы <tex> C </tex> превращается в задачу о ''сингулярном разложении'' (англ. [http://en.wikipedia.org/wiki/Singular_value_decomposition Singular value decomposition]) матрицы данных <tex>\operatorname{X}</tex>.
-
Число <tex> \sigma \geq 0 </tex> называется '''сингулярным числом''' матрицы <tex>\operatorname{X}</tex> тогда и только тогда, когда существуют '''правый и левый сингулярные векторы''': такие <tex>m</tex>-мерный вектор-строка <tex>b_{\sigma}</tex> и <tex>n</tex>-мерный вектор-столбец <tex>a_{\sigma}</tex> (оба единичной длины), что выполнено два равенства:
 
-
: <tex>\operatorname{X} a_{\sigma} = \sigma b_{\sigma}^T \;;\, \, b_{\sigma} \operatorname{X}= \sigma a_{\sigma}^T.</tex>
 
-
Пусть <tex>p= \operatorname{rang} \operatorname{X} \leq \min\{n,m\}</tex> — [[ранг матрицы]] данных. '''Сингулярное разложение''' матрицы данных <tex>\operatorname{X}</tex> — это её представление в виде
 
-
: <tex>\operatorname{X}= \sum_{l=1}^p \sigma_l b_l^T a_l^T \;; \;\operatorname{X}^T= \sum_{l=1}^p \sigma_l a_l b_l \; \left(x_{ij}=\sum_{l=1}^p \sigma_l b_{li}a_{lj}\right),</tex>
 
-
где <tex>\sigma_l > 0</tex> — сингулярное число, <tex>a_l=(a_{li}), \, i=1,... n</tex> — соответствующий правый сингулярный вектор-столбец, а <tex>b_l=(b_{li}), \, i=1,... m</tex> — соответствующий левый сингулярный вектор-строка (<tex>l=1,...p</tex>). Правые сингулярные векторы-столбцы <tex>a_l</tex>, участвующие в этом разложении, являются векторами главных компонент и собственными векторами эмпирической ковариационной матрицы
 
-
<tex>C =\operatorname{X} ^T \operatorname{X} </tex>, отвечающими положительным собственным числам <tex> \lambda_l=\sigma_l^2 > 0 </tex>.
 
Хотя формально задачи сингулярного разложения матрицы данных и спектрального разложения ковариационной матрицы совпадают, алгоритмы вычисления сингулярного разложения напрямую, без вычисления спектра ковариационной матрицы, более эффективны и устойчивы <ref>''Bau III, D., Trefethen, L. N.'', [http://books.google.com/books?id=bj-Lu6zjWbEC&pg=PA136&dq=isbn:9780898713619&sig=BmAatL8LDJZZRhfJIFVRHLQNJw0#PPP1,M1 Numerical linear algebra], Philadelphia: Society for Industrial and Applied Mathematics, 1997. (Lecture 31) ISBN 978-0-89871-361-9 </ref>.
Хотя формально задачи сингулярного разложения матрицы данных и спектрального разложения ковариационной матрицы совпадают, алгоритмы вычисления сингулярного разложения напрямую, без вычисления спектра ковариационной матрицы, более эффективны и устойчивы <ref>''Bau III, D., Trefethen, L. N.'', [http://books.google.com/books?id=bj-Lu6zjWbEC&pg=PA136&dq=isbn:9780898713619&sig=BmAatL8LDJZZRhfJIFVRHLQNJw0#PPP1,M1 Numerical linear algebra], Philadelphia: Society for Industrial and Applied Mathematics, 1997. (Lecture 31) ISBN 978-0-89871-361-9 </ref>.
-
Теория сингулярного разложения была создана Дж. Дж. Сильвестром (англ.[http://en.wikipedia.org/wiki/James_Joseph_Sylvester J. J. Sylvester]}}) в 1889 г. и изложена во всех подробных руководствах по теории матриц <ref>''[[Гантмахер, Феликс Рувимович|Гантмахер Ф. Р.]]'', Теория матриц. — М.: Наука, 1966. — 576 стр.</ref>.
+
Теория сингулярного разложения была создана Дж. Дж. Сильвестром (англ.[http://en.wikipedia.org/wiki/James_Joseph_Sylvester J. J. Sylvester]}}) в 1889 г. и изложена во всех подробных руководствах по теории матриц <ref>''Гантмахер Ф. Р.'', Теория матриц. — М.: Наука, 1966. — 576 стр.</ref>.
-
 
+
-
=== Простой итерационный алгоритм сингулярного разложения ===
+
-
 
+
-
Основная процедура — поиск наилучшего приближения произвольной <tex>m \times n</tex> матрицы <tex>X=(x_{ij})</tex> матрицей вида <tex>b \otimes a = (b_i a_j)</tex> (где <tex>b</tex> — <tex>m</tex>-мерный вектор, а <tex>a</tex> — <tex>n</tex>-мерный вектор) методом наименьших квадратов:
+
-
: <tex>F(b, a) = \frac{1}{2}\sum_{i=1}^m \sum_{j=1}^n (x_{ij} - b_i a_j )^2 \to \min</tex>
+
-
Решение этой задачи дается последовательными итерациями по явным формулам. При фиксированном векторе <tex>a=(a_j) </tex> значения <tex>b=(b_i) </tex>, доставляющие минимум форме <tex>F(b, a) </tex>, однозначно и явно определяются из равенств <tex>\partial F/ \partial b_i = 0</tex> :
+
-
 
+
-
: <tex>\frac{\partial F}{\partial b_i} = - \sum_{j=1}^n (x_{ij} - b_i a_j )a_j = 0; \;\; b_i = \frac{\sum_{j=1}^n x_{ij} a_j}{\sum_{j=1}^n a_j^2 }\, . </tex>
+
-
Аналогично, при фиксированном векторе <tex>b =(b_ i) </tex> определяются значения <tex>a=(a_j) </tex>:
+
-
: <tex>a_j = \frac{\sum_{i=1}^m b_i x_{ij} }{\sum_{i =1}^m b_i ^2 }\, . </tex>
+
-
 
+
-
B качестве начального приближения вектора <tex>a</tex> возьмем случайный вектор единичной длины, вычисляем вектор <tex>b</tex>, далее для этого вектора <tex>b</tex> вычисляем вектор <tex>a</tex> и т. д. Каждый шаг уменьшает значение <tex>F(b, a) </tex>. В качестве критерия остановки используется малость относительного уменьшения значения минимизируемого функционала <tex>F(b, a) </tex> за шаг итерации (<tex>\Delta F / F </tex>) или малость самого значения <tex>F</tex>.
+
-
 
+
-
В результате для матрицы <tex>X=(x_{ij})</tex> получили наилучшее приближение матрицей <tex>P_1</tex> вида <tex>b^1 \otimes a^1 = (b_i^1 a_j^1)</tex> (здесь верхним индексом обозначен номер итерации). Далее, из матрицы <tex>X</tex> вычитаем полученную матрицу <tex>P_1</tex>, и для полученной матрицы уклонений <tex>X_1=X-P_1</tex> вновь ищем наилучшее приближение <tex>P_2</tex> этого же вида и т. д., пока, например, норма <tex>X_k</tex> не станет достаточно малой. В результате получили итерационную процедуру разложения матрицы <tex>X</tex> в виде суммы матриц ранга 1, то есть <tex>X=P_1+P_2+... +P_q \; (P_l = b^l \otimes a^l) </tex> . Полагаем <tex> \sigma_l = \|a^l\| \|b^l\|</tex> и нормируем векторы <tex> a^l \, , \, b^l</tex>: <tex>a^l:= a^l/ \| a^l\|; \, \, b^l:= b^l/ \| b^l\|.</tex> В результате получена аппроксимация сингулярных чисел <tex> \sigma_l </tex> и сингулярных векторов (правых — <tex> a^l</tex> и левых — <tex>b^l</tex>).
+
-
 
+
-
К достоинствам этого алгоритма относится его исключительная простота и возможность почти без изменений перенести его на данные с пробелами<ref>''Россиев А. А.'',: [http://pca.narod.ru/DisRos.htm Итерационное моделирование неполных данных с помощью многообразий малой размерности], Изд-во СО РАН, 2005.</ref>, а также взвешенные данные.
+
-
 
+
-
Существуют различные модификации базового алгоритма, улучшающие точность и устойчивость. Например, векторы главных компонент <tex>a^l</tex> при разных <tex>l</tex> должны быть ортогональны «по построению», однако при большом числе итерации (большая размерность, много компонент) малые отклонения от ортогональности накапливаются и может потребоваться специальная коррекция <tex>a^l</tex> на каждом шаге, обеспечивающая его ортогональность ранее найденным главным компонентам.
+
-
 
+
-
Для квадратных симметричных положительно определённых матриц описанный алгоритм превращается в метод прямых итераций для поиска собственных векторов (см. статью [[Собственные векторы, значения и пространства]]).
+
== Матрица преобразования к главным компонентам ==
== Матрица преобразования к главным компонентам ==

Версия 21:31, 2 июля 2008

Метод Главных Компонент (англ. Principal Components Analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ.Karl Pearson) в 1901 г. Применяется во многих областях, таких как распознавание образов, компьютерное зрение, сжатие данных и т. п. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных. Иногда метод главных компонент называют преобразованием Кархунена-Лоэва (англ. Karhunen-Loeve)[1] или преобразованием Хотеллинга (англ. Hotelling transform). Другие способы уменьшения размерности данных — это метод независимых компонент, многомерное шкалирование, а также многочисленные нелинейные обобщения: метод главных кривых и многообразий, поиск наилучшей проекции (англ. Projection Pursuit), нейросетевые методы «узкого горла», самоорганизующиеся карты Кохонена и др.

Содержание

Формальная постановка задачи

Статья в настоящий момент дорабатывается.
Agor153 03:21, 1 июля 2008 (MSD)



Задача анализа главных компонент, имеет, как минимум, три базовых версии:

  • аппроксимировать данные линейными многообразиями меньшей размерности;
  • найти подпространства меньшей размерности, в ортогональной проекции на которые разброс данных максимален;
  • для данной многомерной случайной величины построить такое ортогональное преобразования координат, что в результате корреляции между отдельными координатами обратятся в ноль.

Первые две версии оперируют конечными множествами данных. Они эквивалентны и не используют никакой гипотезы о статистическом порождении данных. Третья версия оперирует случайными величинами. Конечные множества появляются здесь как выборки из данного распределения, а решение двух первых задач — как приближение к «истинному» преобразованию Кархунена-Лоэва. При этом возникает дополнительный и не вполне тривиальный вопрос о точности этого приближения.

Аппроксимация данных линейными многообразиями

Иллюстрация к знаменитой работе К. Пирсона (1901): даны точки  на плоскости,  — расстояние от  до прямой . Ищется прямая , минимизирующая сумму
Иллюстрация к знаменитой работе К. Пирсона (1901): даны точки  P_i на плоскости,   p_i — расстояние от   P_i до прямой  AB. Ищется прямая   AB, минимизирующая сумму \sum_i p_i^2

Метод главных компонент начинался с задачи наилучшей аппроксимации конечного множества точек прямыми и плоскостями (К. Пирсон, 1901). Дано конечное множество векторов x_1,x_2,...x_m \in\mathbb{R}^n . Для каждого  k = 0,1,..., n-1 среди всех k-мерных линейных многообразий в \mathbb{R}^n найти такое L_k \subset \mathbb{R}^n , что сумма квадратов уклонений  x_i от  L_k минимальна:

\sum_{i=1}^m \operatorname{dist}^2(x_i, L_k) \to \min,

где \operatorname{dist}(x_i, L_k) — евклидово расстояние от точки до линейного многообразия. Всякое k -мерное линейное многообразие в \mathbb{R}^n  может быть задано как множество линейных комбинаций L_k = \{ a_0 +\beta_1 a_1 +...+ \beta_k a_k | \beta_i \in \mathbb{R} \} , где параметры  \beta_i пробегают вещественную прямую \mathbb{R}, a_0 \in \mathbb{R}^n а \left\{a_1,..., a_k \right\} \subset \mathbb{R}^n — ортонормированный набор векторов

\operatorname{dist}^2(x_i, L_k) = \| x_i - a_0 - \sum_{j=1}^k a_j (a_j, x_i - a_0) \| ^2,

где \| \cdot \|  евклидова норма,  \left(a_j, x_i\right) — евклидово скалярное произведение, или в координатной форме:

 \operatorname{dist}^2(x_i, L_k) = \sum_{l=1}^n \left(x_{il} - a_{0l}- \sum_{j=1}^k a_{jl} \sum_{q=1}^n a_{jq}(x_{iq} - a_{0q}) \right)^2 .

Решение задачи аппроксимации для   k = 0,1,..., n-1 даётся набором вложенных линейных многообразий L_0 \subset L_1 \subset ... L_{n-1} , L_k = \{ a_0 +\beta_1 a_1 +...+ \beta_k a_k | \beta_i \in \mathbb{R} \} . Эти линейные многообразия определяются ортонормированным набором векторов \left\{a_1,..., a_{n-1} \right\} (векторами главных компонент) и вектором   a_0 . Вектор  a_0 ищется, как решение задачи минимизации для  L_0 :

 a_0 = \underset{a_0\in\mathbb{R}^n}{\operatorname{argmin}} \left(\sum_{i=1}^m \operatorname{dist}^2(x_i, L_0)\right),

то есть

a_0 = \underset{a_0\in\mathbb{R}^n}{\operatorname{argmin}} \left (\sum_{i=1}^m \| x_i - a_0\| ^2\right) .

Это — выборочное среднее: a_0 = \frac{1}{m} \sum_{i=1}^m x_i = \overline{X}. Фреше в 1948 году обратил внимание, что вариационное определение среднего (как точки, минимизирующей сумму квадратов расстояний до точек данных) очень удобно для построения статистики в произвольном метрическом пространстве, и построил обобщение классической статистики для общих пространств (обобщённый метод наименьших квадратов).

Векторы главных компонент могут быть найдены как решения однотипных задач оптимизации:

1) централизуем данные (вычитаем среднее): x_i:= x_i - \overline{X_i}. Теперь \sum_{i=1}^m x_i =0 ;
2) находим первую главную компоненту как решение задачи;
a_1 = \underset{\| a_1 \| =1}{\operatorname{argmin}} \left( \sum_{i=1}^m \| x_i - a_1 (a_1,x_i)\| ^2\right).
Если решение не единственно, то выбираем одно из них.
3) Вычитаем из данных проекцию на первую главную компоненту:
x_i:= x_i - a_1 \left(a_1,x_i\right) ;
4) находим вторую главную компоненту как решение задачи
a_2 = \underset{\| a_2 \| =1}{\operatorname{argmin}} \left( \sum_{i=1}^m \| x_i - a_2 (a_2,x_i)\| ^2\right) .
Если решение не единственно, то выбираем одно из них.
2k-1) Вычитаем проекцию на (k-1)-ю главную компоненту (напомним, что проекции на предшествующие (k-2) главные компоненты уже вычтены):
x_i:= x_i - a_{k-1} \left(a_{k-1},x_i\right) ;
2k) находим k-ю главную компоненту как решение задачи:
a_k = \underset{\| a_k \| =1}{\operatorname{argmin}} \left( \sum_{i=1}^m \| x_i - a_k (a_k,x_i)\| ^2\right) .
Если решение не единственно, то выбираем одно из них.

На каждом подготовительном шаге    (2k-1) вычитаем проекцию на предшествующую главную компоненту. Найденные векторы \left\{a_1,..., a_{ n -1} \right\} ортонормированы просто в результате решения описанной задачи оптимизации, однако чтобы не дать ошибкам вычисления нарушить взаимную ортогональность векторов главных компонент, можно включать a_k \bot \{a_1,..., a_{k -1} \} в условия задачи оптимизации.

Неединственность в определении  a_k помимо тривиального произвола в выборе знака (  a_k и   -a_k решают ту же задачу) может быть более существенной и происходить, например, из условий симметрии данных.

Поиск ортогональных проекций с наибольшим рассеянием

Первая главная компонента максимизирует выборочную дисперсию проекции данных
Первая главная компонента максимизирует выборочную дисперсию проекции данных


Пусть нам дан центрированный набор векторов данных x_i\in\mathbb{R}^n \; (i=1,...,m) (среднее арифметическое значение  x_i равно нулю). Задача — найти такое ортогональное преобразование в новую систему координат, для которого были бы верны следующие условия:

  • Выборочная дисперсия данных вдоль первой координаты максимальна (эту координату называют первой главной компонентой);
  • Выборочная дисперсия данных вдоль второй координаты максимальна при условии ортогональности первой координате (вторая главная компонента);
  • Выборочная дисперсия данных вдоль значений k-ой координаты максимальна при условии ортогональности первым k-1 координатам;

Выборочная дисперсия данных вдоль направления, заданного нормированным вектором  a_k, это

S^2_m \left[ (X, a_k) \right ] = \frac{1}{m} \sum\limits_{i=1}^m \left(\sum\limits_{j=1}^n x_{ij}a_{kj} \right)^2

(поскольку данные центрированы, выборочная дисперсия здесь совпадает со средним квадратом уклонения от нуля).

Формально, если A=\left \{a_1,...,a_n \right \}^T\in\mathbb{R}^{n \times n}, a_k\in\mathbb{R}^n — искомое преобразование, то для векторов a_k должны выполняться следующие условия:

  • a_1 = \underset{\| a_1 \| =1}{\operatorname{argmax}}\,S^2_m \left [(X, a_1) \right ];
Если решение не единственно, то выбираем одно из них.
  • Вычитаем из данных проекцию на первую главную компоненту:
x_i:= x_i - a_1 \left(a_1,x_i\right) ; в результате x_i \bot a_1;
  • находим вторую главную компоненту как решение задачи
a_2 = \underset{\| a_2 \| =1}{\operatorname{argmax}}\,S^2_m \left [ (X, a_2) \right ];
Если решение не единственно, то выбираем одно из них.
  • Вычитаем проекцию на (k-1)-ю главную компоненту (напомним, что проекции на предшествующие k-2 главные компоненты уже вычтены):
x_i:= x_i - a_{k-1} \left(a_{k-1},x_i\right) ; в результате x_i \bot a_l, (l = 1, \dots, k-1);
  • находим k-ю главную компоненту как решение задачи
a_n = \underset{\| a_k\| = 1}{\operatorname{argmax}}\,S^2_m \left [ (X, a_k) \right ];
Если решение не единственно, то выбираем одно из них.

Фактически, как и для задачи аппроксимации, на каждом шаге решается задача о первой главной компоненте для данных, из которых вычтены проекции на все ранее найденные главные компоненты. При большом числе итерации (большая размерность, много главных компонент) отклонения от ортогональности накапливаются и может потребоваться специальная коррекция алгоритма или другой алгоритм поиска собственных векторов ковариационной матрицы.

Решение задачи о наилучшей аппроксимации даёт то же множество решений \left\{a_i\right\}, что и поиск ортогональных проекций с наибольшим рассеянием, по очень простой причине: \| x_i - a_k (a_k,x_i)\| ^2 = \| x_i\| ^2 - (a_k,x_i)^2, и первое слагаемое не зависит от  a_k. Только одно дополнение к задаче об аппроксимации: появляется последняя главная компонента  a_n.

Поиск ортогональных проекций с наибольшим среднеквадратичным расстоянием между точками

Ещё одна эквивалентная формулировка следует из очевидного тождества, верного для любых m векторов  x_i:

\frac{1}{m(m-1)}\sum_{i,j=1}^m (x_i-x_j)^2 =\frac{2m^2}{m(m-1)}\left[\frac{1}{m}\sum_{i=1}^m x_i^2 - \left(\frac{1}{m}\sum_{i}^m x_i \right)^2\right].

В левой части этого тождества стоит среднеквадратичное расстояние между точками, а в квадратных скобках справа — выборочная дисперсия. Таким образом, в методе главных компонент ищутся подпространства, в проекции на которые среднеквадратичное расстояние между точками максимально. Такая переформулировка позволяет строить обобщения с взвешиванием различных парных расстояний (а не только точек).

Аннулирование корреляций между координатами

Для заданной  n-мерной случайной величины  X найти такой ортонормированный базис, \left\{a_1,..., a_n \right\}, в котором коэффициент ковариации между различными координатами равен нулю. После преобразования к этому базису

\operatorname{cov}(X_i,X_j)=0 для i \neq j .

Здесь  \operatorname{cov}(X_i,X_j)= \operatorname{E}[(X_i-\overline{X_i})(X_j-\overline{X_j})] — коэффициент ковариации.

Диагонализация ковариационной матрицы

Все задачи о главных компонентах приводят к задаче диагонализации ковариационной матрицы или выборочной ковариационной матрицы. Эмпирическая или выборочная ковариационная матрица, это

C = [c_{ij}],\ c_{ij} = \frac{1}{m} \sum_{l=1}^m (x_{li}-\overline{X_{i}})(x_{lj}-\overline{X_{j}}).

Ковариационная матрица многомерной случайной величины  X, это

\Sigma = [\sigma_{ij}],\ \sigma_{ij} = \operatorname{cov}(X_i,X_j)=E[(X_i-\overline{X_i})(X_j-\overline{X_j})].

Векторы главных компонент для задач о наилучшей аппроксимации и о поиске ортогональных проекций с наибольшим рассеянием — это ортонормированный набор  \left\{a_1,..., a_n \right\} собственных векторов эмпирической ковариационной матрицы C, расположенных в порядке убывания собственных значений \lambda: \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge 0. Эти векторы служат оценкой для собственных векторов ковариационной матрицы \operatorname{cov}(X_i,X_j) . В базисе из собственных векторов ковариационной матрицы она, естественно, диагональна, и в этом базисе коэффициент ковариации между различными координатами равен нулю.

Если спектр ковариационной матрицы вырожден, то выбирают произвольный ортонормированный базис собственных векторов. Он существует всегда, а собственные числа ковариационной матрицы всегда вещественны и неотрицательны.

Сингулярное разложение матрицы данных

Математическое содержание метода главных компонент — это спектральное разложение ковариационной матрицы  C , то есть представление пространства данных в виде суммы взаимно ортогональных собственных подпространств  C , а самой матрицы  C — в виде линейной комбинации ортогональных проекторов на эти подпространства с коэффициентами  \lambda_i . Если \operatorname{X}=\left\{x_1,..., x_m \right\}^T — матрица, составленная из векторов-строк центрированных данных, то  C = \operatorname{X}^T\operatorname{X} и задача о спектральном разложении ковариационной матрицы  C превращается в задачу о сингулярном разложении (англ. Singular value decomposition) матрицы данных \operatorname{X}.


Хотя формально задачи сингулярного разложения матрицы данных и спектрального разложения ковариационной матрицы совпадают, алгоритмы вычисления сингулярного разложения напрямую, без вычисления спектра ковариационной матрицы, более эффективны и устойчивы [1].

Теория сингулярного разложения была создана Дж. Дж. Сильвестром (англ.J. J. Sylvester}}) в 1889 г. и изложена во всех подробных руководствах по теории матриц [1].

Матрица преобразования к главным компонентам

Матрица A преобразования данных к главным компонентам строится из векторов главных компонент: A=\left \{a_1,...,a_n \right \}^T. Здесь  a_i — ортонормированные векторы-столбцы главных компонент, расположенные в порядке убывания собственных значений, верхний индекс  T означает транспонирование. Матрица A является ортогональной: A A^T=1.

После преобразования большая часть вариации данных будет сосредоточена в первых координатах, что даёт возможность отбросить оставшиеся и рассмотреть пространство уменьшенной размерности.

Остаточная дисперсия

Пусть данные центрированы, \overline{ X}=0. При замене векторов данных  x_i на их проекцию на первые  k главных компонент x_i \mapsto \sum_{j=1}^k a_j (a_j, x_i) вносится средний квадрат ошибки в расчете на один вектор данных:

\frac{1}{m} \sum_{i=1}^m \left\| x_i - \sum_{j=1}^k a_j (a_j, x_i) \right \| ^2=\sum_{l=k+1}^n \lambda_l,

где \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge 0 собственные значения эмпирической ковариационной матрицы C, расположенные в порядке убывания, с учетом кратности.

Эта величина называется остаточной дисперсией. Величина

\frac{1}{m} \sum_{i=1}^m \left\| \sum_{j=1}^k a_j (a_j, x_i) \right\| ^2=\frac{1}{m} \sum_{i=1}^m  \sum_{j=1}^k (a_j, x_i)^2=\sum_{l=1}^k \lambda_l

называется объяснённой дисперсией. Их сумма равна выборочной дисперсии. Соответствующий квадрат относительной ошибки — это отношение остаточной дисперсии к выборочной дисперсии (то есть доля необъяснённой дисперсии):

\delta^2_k=\frac{\lambda_{k+1}+\lambda_{k+2}+...+\lambda_{n}}{\lambda_{1}+\lambda_{2}+...+\lambda_{n}}.

По относительной ошибке  \delta_k оценивается применимость метода главных компонент с проецированием на первые  k компонент.

Замечание: в большинстве вычислительных алгоритмов собственные числа  \lambda_i с соответствуюшими собственными векторами — главными компонентами  a_i вычисляются в порядке «от больших  \lambda_i — к меньшим». Для вычисления  \delta_k достаточно вычислить первые  k собственных чисел и след эмпирической ковариационной матрицы C, \operatorname{tr} C (сумму диагональных элементов C, то есть дисперсий по осям). Тогда

\delta^2_k=\frac{1}{\operatorname{tr} C}\left(\operatorname{tr} C -\sum_{i=1}^k \lambda_{i}\right).

Сколько главных компонент нужно оставлять

Нормировка

Нормировка после приведения к главным компонентам

После проецирования на первые  k главных компонент с \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k > 0 удобно произвести нормировку на единичную (выборочную) дисперсию по осям. Дисперсия вдоль  iй главной компоненты равна \lambda_i > 0 \; (1 \le i \le k), поэтому для нормировки надо разделить соответствующую координату на  \sqrt{ \lambda_i}. Это преобразование не является ортогональным и не сохраняет скалярного произведения. Ковариационная матрица проекции данных после нормировки становится единичной, проекции на любые два ортогональных направления становятся независимыми величинами, а любой ортонормированный базис становится базисом главных компонент (напомним, что нормировка меняет отношение ортогональности векторов). Отображение из пространства исходных данных на первые  k главных компонент вместе с нормировкой задается матрицей

K=\left \{\frac{a_1}{\sqrt{ \lambda_1}},\frac{a_2}{\sqrt{ \lambda_2}},...,\frac{a_k}{\sqrt{ \lambda_k}} \right \}^T.

Именно это преобразование чаще всего называется преобразованием Кархунена-Лоэва. Здесь  a_i — векторы-столбцы, а верхний индекс  T означает транспонирование.

Нормировка до вычисления главных компонент

Предупреждение: не следует путать нормировку, проводимую после преобразования к главным компонентам, с нормировкой и «обезразмериванием» при предобработке данных, проводимой до вычисления главных компонент. Предварительная нормировка нужна для обоснованного выбора метрики, в которой будет вычисляться наилучшая аппроксимация денных, или будут искаться направления наибольшего разброса (что эквивалентно). Например, если данные представляют собой трёхмерные векторы из «метров, литров и килограмм», то при использовании стандартного евклидового расстояния разница в 1 метр по первой координате будет вносить тот же вклад, что разница в 1 литр по второй, или в 1 кг по третьей. Обычно системы единиц, в которых представлены исходные данные, недостаточно точно отображают наши представления о естественных масштабах по осям, и проводится «обезразмеривание»: каждая координата делится на некоторый масштаб, определяемый данными, целями их обработки и процессами измерения и сбора данных.

Есть три cущественно различных стандартных подхода к такой нормировке: на единичную дисперсию по осям (масштабы по осям равны средним квадратичным уклонениям — после этого преобразования ковариационная матрица совпадает с матрицей коэффициентов корреляции), на равную точность измерения (масштаб по оси пропорционален точности измерения данной величины) и на равные требования в задаче (масштаб по оси определяется требуемой точностью прогноза данной величины или допустимым её искажением — уровнем толерантности). На выбор предобработки влияют содержательная постановка задачи, а также условия сбора данных (например, если коллекция данных принципиально не завершена и данные будут ещё поступать, то нерационально выбирать нормировку строго на единичную дисперсию, даже если это соответствует смыслу задачи, поскольку это предполагает перенормировку всех данных после получения новой порции; разумнее выбрать некоторый масштаб, грубо оценивающий стандартное отклонение, и далее его не менять).

Предварительная нормировка на единичную дисперсию по осям разрушается поворотом системы координат, если оси не являются главными компонентами, и нормировка при предобработке данных не заменяет нормировку после приведения к главным компонентам.

Механическая аналогия и метод главных компонент для взвешенных данных

Если сопоставить каждому вектору данных единичную массу, то эмпирическая ковариационная матрица  C совпадёт с тензором инерции этой системы точечных масс (делённым на полную массу  m), а задача о главных компонентых — с задачей приведения тензора инерции к главным осям. Можно использовать дополнительную свободу в выборе значений масс для учета важности точек данных или надежности их значений (важным данным или данным из более надежных источников приписываются бо́льшие массы). Если вектору данных  x_l придаётся масса  w_l, то вместо эмпирической ковариационной матрицы  C получим

C^w = [c^w_{ij}],\ c^w_{ij} = \frac{1}{\sum_{l} w_l} \sum_{l=1}^m w_l(x_{li}-\overline{X_{i}})(x_{lj}-\overline{X_{j}}).

Все дальнейшие операции по приведению к главным компонентам производятся так же, как и в основной версии метода: ищем ортонормированный собственный базис  C^w, упорядочиваем его по убыванию собственных значений, оцениваем средневзвешенную ошибку аппроксимации данных первыми  k компонентами (по суммам собственных чисел  C^w), нормируем и т. п.

Более общий способ взвешивания даёт максимизация взвешенной суммы попарных расстояний[1] между проекциями. Для каждых двух точек данных, x_l , \ x_q вводится вес d_{lq}; d_{lq}=d_{ql} и d_{l}=\sum_{q=1}^m d_{lq}. Вместо эмпирической ковариационной матрицы  C используется

C^d = [c^d_{ij}],\ c^d_{ij} =\sum_{l=1}^m d_l (x_{li}-\overline{X_{i}})(x_{lj}-\overline{X_{j}})  -\sum_{l \neq q, \ l,q=1}^m d_{lq}(x_{li} - \overline{X_{i}})(x_{qj}- \overline{X_{j}}).

При d_{lq}>0 симметричная матрица C^d положительно определена, поскольку положительна квадратичная форма:

\sum_{ij} c^d_{ij}a_i a_j = \frac{1}{2}\sum_{lq}d_{lq}\left(\sum_ia_i(x_{li}-x_{qi})\right)^2.

Далее ищем ортонормированный собственный базис  C^d, упорядочиваем его по убыванию собственных значений, оцениваем средневзвешенную ошибку аппроксимации данных первыми  k компонентами и т. д. — в точности так же, как и в основном алгоритме.

Этот способ применяется при наличии классов: для x_l , \ x_q из разных классов вес d_{lq} вес выбирается бо́льшим, чем для точек одного класса. В результате, в проекции на взвешенные главные компоненты различные классы «раздвигаются» на большее расстояние.

Другое применение — снижение влияния больших уклонений (оутлайеров, англ.Outlier), которые могут искажать картину из-за использования среднеквадратичного расстояния: если выбрать d_{lq}=1/ \| x_l -x_q \|, то влияние больших уклонений будет уменьшено. Таким образом, описанная модификация метода главных компонент является более робастной, чем классическая.

Устойчивость главных компонент

Анализ соответствий

Анализ соответствий (англ. Correspondence analysis)...

Специальная терминология

В статистике при использовании метода главных компонент используют несколько специальных терминов.

Матрица данных \mathbf{X}=\{x_1,... x_m\}^T; каждая строка — вектор предобработанных данных (центрированных и правильно нормированных), число строк — m (количество векторов данных), число столбцов — n (размерность пространства данных);

Матрица нагрузок (Loadings) \mathbf{P}=\{a_1,... a_k\}; каждый столбец — вектор главных компонент, число строк — n (размерность пространства данных), число столбцов — k (количество векторов главных компонент, выбранных для проецирования);

Матрица счетов (Scores) \mathbf{T}=[t_{ij}]; \; t_{ij}=(x_i,a_j); каждая строка — проекция вектора данных на k главных компонент; число строк — m (количество векторов данных), число столбцов — k (количество векторов главных компонент, выбранных для проецирования);

Матрица Z-счетов (Z-scores) \mathbf{Z}=[z_{ij}]; \; z_{ij}=\frac{(x_i,a_j)}{\sqrt{ \lambda_j}}; каждая строка — проекция вектора данных на k главных компонент, нормированная на единичную выборочную дисперсию; число строк — m (количество векторов данных), число столбцов — k (количество векторов главных компонент, выбранных для проецирования);

Матрица ошибок (или остатков) (Errors or residuals) \mathbf{E}=\mathbf{X}-\mathbf{T}\mathbf{P}^T.

Основная формула: \mathbf{X}=\mathbf{T}\mathbf{P}^T+\mathbf{E}.

Пределы применимости и ограничения эффективности метода

Построение ветвящихся главных компонент методом топологических грамматик. Крестики — точки данных, красное дерево с желтыми узлами — аппроксимирующий дендрит.
Построение ветвящихся главных компонент методом топологических грамматик. Крестики — точки данных, красное дерево с желтыми узлами — аппроксимирующий дендрит[1].

Метод главных компонент применим всегда. Распространённое утверждение о том, что он применим только к нормально распределённым данным (или для распределений, близких к нормальным) неверно: в исходной формулировке К. Пирсона ставится задача об аппроксимации конечного множества данных и отсутствует даже гипотеза о их статистическом порождении, не говоря уж о распределении.

Однако метод не всегда эффективно снижает размерность при заданных ограничениях на точность  \delta_k. Прямые и плоскости не всегда обеспечивают хорошую аппроксимацию. Например, данные могут с хорошей точностью следовать какой-нибудь кривой, а эта кривая может быть сложно расположена в пространстве данных. В этом случае метод главных компонент для приемлемой точности потребует нескольких компонент (вместо одной), или вообще не даст снижения размерности при приемлемой точности. Для работы с такими «кривыми» главными компонентами изобретен метод главных многообразий[1] и различные версии нелинейного метода главных компонент[1][1]. Больше неприятностей могут доставить данные сложной топологии. Для их аппроксимации также изобретены различные методы, например самоорганизующиеся карты Кохонена, нейронный газ[1] или топологические грамматики[1]. Если данные статистически порождены с распределением, сильно отличающимся от нормального, то для аппроксимации распределения полезно перейти от главных компонент к независимым компонентам[1], которые уже не ортогональны в исходном скалярном произведении. Наконец, для изотропного распределения (даже нормального) вместо эллипсоида рассеяния получаем шар, и уменьшить размерность методами аппроксимации невозможно.

Примеры использования

Метод главных компонент — наиболее популярный метод сокращения размерности во многих приложениях, в том числе в следующих областях:

  • Визуализация данных;
  • Компрессия изображений и видео;
  • Подавление шума на изображениях;
  • Индексация видео;
  • Биоинформатика;
  • Хемометрика;
  • Психодиагностика;
  • Общественные науки (включая политологию);
  • Сокращение размерности динамических моделей (в том числе — в вычислительной гидродинамике).

Литература

Классические работы

  • Pearson K., On lines and planes of closest fit to systems of points in space, Philosophical Magazine, (1901) 2, 559—572; а также на сайте PCA.
  • Sylvester J.J., On the reduction of a bilinear quantic of the nth order to the form of a sum of n products by a double orthogonal substitution, Messenger of Mathematics, 19 (1889), 42—46; а также на сайте PCA.
  • Frećhet M. Les élements aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré, 10 (1948), 215—310.

Основные руководства (стандарт де-факто)

  • Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика. Классификация и снижение размерности.— М.: Финансы и статистика, 1989.— 607 с.
  • Рао С. Р., Линейные статистические методы и их применения.— М.: Наука (Физматлит), 1968.— 548 с.
  • Jolliffe I.T. Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed., Springer, NY, 2002, XXIX, 487 p. 28 illus. ISBN 978-0-387-95442-4

Сборник современных обзоров

Ссылки

Примечания


Личные инструменты