Расстояние Кука

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 27: Строка 27:
== Пример использования ==
== Пример использования ==
 +
[[Изображение:Kook.jpg|300px|thumb|Визуализация наблюдений с помощью расстояния Кука ]]
Рассмотрим задачу по оценке [http://www.machinelearning.ru/wiki/index.php?title=%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85_%28%D0%BA%D1%83%D1%80%D1%81_%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D0%B9%2C_%D0%9A.%D0%92.%D0%92%D0%BE%D1%80%D0%BE%D0%BD%D1%86%D0%BE%D0%B2%29/2013#.D0.AD.D1.84.D1.84.D0.B5.D0.BA.D1.82.D0.B8.D0.B2.D0.BD.D0.BE.D1.81.D1.82.D1.8C_.D1.82.D1.80.D0.BE.D0.BC.D0.B1.D0.BE.D0.BB.D0.B8.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.BE.D0.B9_.D1.82.D0.B5.D1.80.D0.B0.D0.BF.D0.B8.D0.B8 эффективность тромболитической терапии]. В данной задаче собраны данные по 206 пациентам второго кардиологического отделения московской городской клинической больницы №25. Имеются результаты 14 анализов, а также 8 дополнительных признаков, описывающих пациента (пол, возраст, курение, наличие диабета и т.д.).
Рассмотрим задачу по оценке [http://www.machinelearning.ru/wiki/index.php?title=%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85_%28%D0%BA%D1%83%D1%80%D1%81_%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D0%B9%2C_%D0%9A.%D0%92.%D0%92%D0%BE%D1%80%D0%BE%D0%BD%D1%86%D0%BE%D0%B2%29/2013#.D0.AD.D1.84.D1.84.D0.B5.D0.BA.D1.82.D0.B8.D0.B2.D0.BD.D0.BE.D1.81.D1.82.D1.8C_.D1.82.D1.80.D0.BE.D0.BC.D0.B1.D0.BE.D0.BB.D0.B8.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.BE.D0.B9_.D1.82.D0.B5.D1.80.D0.B0.D0.BF.D0.B8.D0.B8 эффективность тромболитической терапии]. В данной задаче собраны данные по 206 пациентам второго кардиологического отделения московской городской клинической больницы №25. Имеются результаты 14 анализов, а также 8 дополнительных признаков, описывающих пациента (пол, возраст, курение, наличие диабета и т.д.).
-
Построив уравнение регрессии и оценив расстояние Кука, визуализируем полученные результаты.[[Изображение:Kook.jpg|200px|thumb|Визуализация наблюдений с помощью расстояния Кука ]]
+
Построив уравнение регрессии и оценив расстояние Кука, мы можем визуализировать наблюдения и определить выбросы.
 +
 
 +
== Реализации ==
 +
 
 +
* MATLAB: В версии 2013b и выше реализован отдельный класс для [http://www.mathworks.com/help/stats/generalizedlinearmodelclass.html обобщенной модели регрессии].
 +
Построив модель с помощью функции [http://www.mathworks.com/help/stats/fitglm.html#outputarg_mdl mdl = fitglm(X, y)], можем оценить для всех наблюдений расстояние Кука с помощью функций класса: mdl.Diagnostics.CooksDistance.
 +
 
 +
== Ссылки ==
 +
 
 +
* Cook, R. Dennis (February 1977). [http://www.jstor.org/discover/10.2307/1268249?uid=3738032&uid=2&uid=4&sid=21103080796681 "Detection of Influential Observations in Linear Regression"].
 +
 
 +
* Cook, R. Dennis; and Weisberg, Sanford (1982); Residuals and influence in regression, New York, NY: Chapman & Hall
 +
 
 +
* [http://www.mathworks.com/help/stats/generalizedlinearmodelclass.html GeneralizedLinearModel class]. MATLAB R2013b Documentation.
 +
 
 +
 
 +
 
[[Категория:Прикладная статистика]]
[[Категория:Прикладная статистика]]

Версия 20:05, 7 декабря 2013

Расстояние Кука (Cook's distance) является широко используемым методом оценки влияния соответствующего наблюдения (элемента выборки) на уравнение регрессии. Эта величина показывает разницу между вычисленными коэффициентами уравнения регрессии и значениями, которые получились бы при исключении соответствующего наблюдения. В адекватной модели все расстояния Кука должны быть примерно одинаковыми; если это не так, то имеются основания считать, что соответствующее наблюдение (или наблюдения) смещает оценки коэффициентов регрессии.

Метод назван в честь американского ученого Р. Денниса Кука , который ввел данное понятие в 1977 году.

Содержание

Определение

Расстояние Кука оценивает эффект от удаления одного (рассматриваемого) наблюдения и вычисляется по следующей формуле:


 D_i =  \frac{ \sum_{j=1}^n (\hat Y_j\ - \hat Y_{j(i)})^2 }{p \ \mathrm{MSE}}

где,

\hat Y_j - предсказание регрессионной модели, построенной по всей выборке, получаемое для j-ого наблюдения;
\hat Y_{j(i)} - предсказание регрессионной модели, построенной по выборке без i-ого наблюдения, получаемое для j-ого наблюдения;
p - количество параметров модели
 \mathrm{MSE} - средне-квадратичная ошибка модели


Нахождение и удаление выбросов

Существуют различные подходы к определению выбросов с помощью расстояния Кука. Наиболее распространенной эвристикой считается  D_i > 4/n , где n - количество наблюдений в выборке.


Пример использования

Визуализация наблюдений с помощью расстояния Кука
Визуализация наблюдений с помощью расстояния Кука

Рассмотрим задачу по оценке эффективность тромболитической терапии. В данной задаче собраны данные по 206 пациентам второго кардиологического отделения московской городской клинической больницы №25. Имеются результаты 14 анализов, а также 8 дополнительных признаков, описывающих пациента (пол, возраст, курение, наличие диабета и т.д.). Построив уравнение регрессии и оценив расстояние Кука, мы можем визуализировать наблюдения и определить выбросы.

Реализации

Построив модель с помощью функции mdl = fitglm(X, y), можем оценить для всех наблюдений расстояние Кука с помощью функций класса: mdl.Diagnostics.CooksDistance.

Ссылки

  • Cook, R. Dennis; and Weisberg, Sanford (1982); Residuals and influence in regression, New York, NY: Chapman & Hall
Личные инструменты