EM-алгоритм с последовательным добавлением компонент (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Пример 1)
Строка 49: Строка 49:
Алгоритм тестируется на модельных и реальных данных.
Алгоритм тестируется на модельных и реальных данных.
===Пример 1===
===Пример 1===
-
Рассмотрим пример на модельных данных. Выборка состоит из четырех классов. Первый класс представляет собой две гауссианы с диагональной и недиагональной матрицами ковариации, остальные - одна гауссиана.
+
Рассмотрим пример на модельных данных. Выборка состоит из четырех классов. Красный класс представляет собой смесь двух гауссовских распределений с диагональной и недиагональной матрицами ковариации. Остальные классы являются одним гауссовским рапределением.
-
<ref>Переписать последнее предложение, убрать неясности. При этом должно появиться по крайней мере три новых предложения.</ref>
+
Дисперсия зеленого класса меньше дисперсий остальных, поэтому его элементы находятся ближе к центру. Дисперсия бирюзовых по одной координате больше, чем по другой, в результате чего класс визуально вытянулся. Центры классов располагаются близко, некоторые классы линейно неразделимы.
-
 
+
<source lang="matlab">
<source lang="matlab">
[X1, Y1] = gengaussdata(150, [0;0], [1/4,1/2]);
[X1, Y1] = gengaussdata(150, [0;0], [1/4,1/2]);
Строка 81: Строка 81:
Качество обучения алгоритма проверяется на той же выборке. На правом рисунке кружками показаны полученные ответы, цвет отвечает за принадлежность к соответствующему классу. Центры классов, отмечены черным кружками. Алгоритм нашел восемь гауссовских распределений вместо четырех, причем одна из красных компонент описывается сразу 4 гауссианами, в то время как остальные компоненты выборки - одной. Этот факт говорит о том, что одна гауссиана плохо приближает данное распределение, и, для уменьшения числа ошибок, следует приблизить её большим числом гауссиан.
Качество обучения алгоритма проверяется на той же выборке. На правом рисунке кружками показаны полученные ответы, цвет отвечает за принадлежность к соответствующему классу. Центры классов, отмечены черным кружками. Алгоритм нашел восемь гауссовских распределений вместо четырех, причем одна из красных компонент описывается сразу 4 гауссианами, в то время как остальные компоненты выборки - одной. Этот факт говорит о том, что одна гауссиана плохо приближает данное распределение, и, для уменьшения числа ошибок, следует приблизить её большим числом гауссиан.
Алгоритм допустил 16 ошибок, что на выборке из 820 элементов составляет менее 2%.
Алгоритм допустил 16 ошибок, что на выборке из 820 элементов составляет менее 2%.
-
 
===Пример 2===
===Пример 2===

Версия 18:02, 16 мая 2009

Содержание

EM-алгоритм с последовательным добавлением компонент — метод нахождения функции плотности распределения объектов [1] . Предполагается, что она имеет вид смеси k распределений[1]. В данной статье рассматривается гауссовское распредение выборки, количество гауссианов произвольно[1].

[1]

EM-алгоритм был предложен и исследован М.И.Шлезингером как инструмент для самопроизвольной классификации образов. Область его применения чрезвычайно широка: дискриминантный анализ, кластеризация, восстановление пропусков в данных, обработка сигналов и изображений.

Постановка задачи

Задана выборка \{(\mathbf{x}_i,y_i)\}_{i=1}^m, в которой X^m = \{\mathbf{x}_i\}_{i=1}^m - множество объектов, Y^m = \{\mathbf{y}_i\}_{i=1}^m - множество ответов. Предполагается, что на множестве объектов задана плотность распределения p(x), представленная в виде смеси k гауссиан с параметрами \mu и \Sigma,

p(x) = \sum_{i=1}^k w_jp_j(x) = \sum_{i=1}^k w_jN(x;\mu_j,\Sigma_j).

Задача разделения смеси заключается в том, чтобы, имея выборку X^m случайных и независимых наблюдений из смеси p(x) оценить вектор параметров \theta = (w_1,...,w_k,\mu_1,...,\mu_k,\Sigma_1,...,\Sigma_k) доставляющий максимум функции правдоподобия

Q(\Theta) = \ln\prod_{i=1}^mp(x_i|w,\mu,\Sigma) = \sum_{i=1}^m\ln\sum_{j=1}^kw_jp_j(x_i) \rightarrow \max_{\Theta}

Алгоритм отыскания оптимальных параметров

Оптимальные параметры отыскиваются последовательно с помощью EM-алгоритма. Идея заключается во введении вспомогательного вектора скрытых переменных G, обладающего двумя замечательными свойствами. С одной стороны, он может быть вычислен, если известны значения вектора параметров \Theta, с другой стороны, поиск максимума правдоподобия сильно упрощается, если известны значения скрытых переменных. EM-алгоритм состоит из итерационного повторения двух шагов. На E-шаге вычисляется ожидаемое значение (expectation) вектора скрытых переменных G по текущему приближению вектора параметров \Theta. На М-шаге решается задача максимизации правдоподобия (maximization) и находится следующее приближение вектора \Theta по текущим значениям векторов G и \Theta.

Если число компонент смеси заранее неизвестно, то применяется EM-алгоритм с последовательным добавлением компонент. Если при каком-либо k число неправильно классифицированных объектов превышает допустимое, то k увеличивается и повторяется EM(X,k_{new}). [1]

  • Вход:

Выборка X^m = \{x_1,...,x_m\} ; R - максимальный допустимый разброс правдоподобия объектов; m_0 - минимальная длина выборки, по которой можно восстановить плотность; \delta - параметр критерия останова;

  • Выход:

k - число компонент смеси; \Theta = (w_j,\mu_j,\Sigma_j)_{j=1}^k

  • Алгоритм

1. начальное приближение - одна компонента:
     k:=1; \qquad w_1:=1; \qquad \mu_1=\frac{1}{w_1}\sum_{i=1}^m g_{i1}x_i; \qquad \Sigma_1 = \frac{1}{mw_1}\sum_{i=1}^m g_{i1}(x_i-\mu_j)(x_i-\mu_j)^{T};
2. для всех k:= 2,3,4...
3.      выделить объекты с низким правдоподобием
         U:= \{x_i \in X^m\ | ~ p(x_i) <  \frac{max_j ~ p(x_j)}{R}  \}
4.      Если |U|<m_0 то выход из цикла по k
5.      Начальное приближение для k компоненты:
        w_k:=\frac{1}{m}|U|; \qquad \mu_k=\frac{1}{mw_k}\sum_{i=1}^m g_{ik}x_i; \qquad \Sigma_k = \frac{1}{mw_k}\sum_{i=1}^m g_{ik}(x_i-\mu_j)(x_i-\mu_j)^{T};
        w_j:=w_j(1-w_k) \qquad j = 1,...,k-1;
6.     EM(X^m,k,\Theta,\delta);

Вычислительный эксперимент

Алгоритм тестируется на модельных и реальных данных.

Пример 1

Рассмотрим пример на модельных данных. Выборка состоит из четырех классов. Красный класс представляет собой смесь двух гауссовских распределений с диагональной и недиагональной матрицами ковариации. Остальные классы являются одним гауссовским рапределением. Дисперсия зеленого класса меньше дисперсий остальных, поэтому его элементы находятся ближе к центру. Дисперсия бирюзовых по одной координате больше, чем по другой, в результате чего класс визуально вытянулся. Центры классов располагаются близко, некоторые классы линейно неразделимы.

[X1, Y1] = gengaussdata(150, [0;0], [1/4,1/2]);
[X2, Y2] = gengaussdata(150, [4;0], [1 5/6;5/6 1]);
[X4, Y4] = gengaussdata(120, [2;4], [1/10;1/10]);
[X3, Y3] = gengaussdata(200, [-2,2], [1/3, 1/3]);
[X5, Y5] = gengaussdata(200, [2,2], [1.25, 1/20]);
X=[X1;X2;X3;X4;X5];
%Y are answers (numbers of classes)
Y=[Y1;Y2;Y3+1;Y4+2;Y5+3];
hold off
drawdata(X,Y,'*');
%learning algorithm
[W,M,Sigma,k,Ytheta] = emlearn(X, Y, [2,40,0.001])
 
%testing and geting answers from algorithm
[Yanswer] = emtest(X, M, Sigma, Ytheta);
 
drawdata(X,Yanswer,'o');
 
%printing centers of classes according to algorithm decision
printcenters(M);

435 × 342 435 × 342
Истинное распределение классов показано на рисунке слева. Одинаковым цветом помечены элементы одного класса. Как можно заметить, некоторые представители "красных", "бирюзовых" и "синих" перемешались.

Качество обучения алгоритма проверяется на той же выборке. На правом рисунке кружками показаны полученные ответы, цвет отвечает за принадлежность к соответствующему классу. Центры классов, отмечены черным кружками. Алгоритм нашел восемь гауссовских распределений вместо четырех, причем одна из красных компонент описывается сразу 4 гауссианами, в то время как остальные компоненты выборки - одной. Этот факт говорит о том, что одна гауссиана плохо приближает данное распределение, и, для уменьшения числа ошибок, следует приблизить её большим числом гауссиан. Алгоритм допустил 16 ошибок, что на выборке из 820 элементов составляет менее 2%.

Пример 2

В качестве второго примера возьмем два плохо разделимых класса. Центры классов находятся на расстоянии меньшем дисперсии каждого из них. Можно наблюдать синие элементы, расположенные ближе к центру красного класса, чем к центру своего.


Алгоритм выделил четыре гауссовских распределения в синем классе. Благодаря этому, хорошо классифицировались некоторые синие элементы, находящиеся ближе к красному классу.


Ирисы Фишера

Проверку алгоритма проведем на классической задаче: Ирисы Фишера Объектами являются три типа ирисов: setosa, versicolor, virginica

У каждого объекта есть четыре признака: длина лепестка, ширина лепестка, длина чашелистика, ширина чашелистика. Для удобства визуализации результатов будем использовать первые два признака.

load 'iris2.data'
X = iris2(:,[3,4]);
Y = [ones([50,1]);2*ones([50,1]);3*ones([50,1])];
hold off
drawdata(X,Y,'*');
title('Irises classification')
xlabel('petal width, cm');
ylabel('petal length, cm');
legend('Iris Setosa','Iris Versicolour','Iris Virginica','Location','NorthWest');
[W,M,Sigma,k,Ytheta] = emlearn(X, Y, [2,20,0.0005])
[Yanswer] = emtest(X, M, Sigma, Ytheta);
drawdata(X,Yanswer,'o')

Алгоритм хорошо отделил ирисы setosa от остальных, но допустил 30% ошибок при разделении ирисов versicolor и virginica. Это произошло потому, что алгоритм изначально решал задачу кластеризации и лишь потом задачу классификации, приписывая каждому кластеру номер наиболее хорошо приближаемого им класса. Для разделения последних двух классов можно использовать линейные алгоритмы классификации, либо решать с помощью EM-алгоритма, используя все четыре признака.

Исходный код

Скачать листинги алгоритмов можно здесь EMk.m, emlearn.m, emtest.m

Смотри также

Литература

  • К. В. Воронцов, Лекции по статистическим (байесовским) алгоритмам классификации
  • Bishop C. - Pattern Recognition and Machine Learning (Springer, 2006)
  • The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay includes simple examples of the EM-algorithm such as clustering using the soft K-means algorithm, and emphasizes the variational view of the EM-algorithm.
  • Журавлёв, Юрий Иванович Об алгебраическом подходе к решению задач распознавания или классификации // Проблемы кибернетики. 1978 Т. 33.С. 5–68.
  • Jordan M. I., Xu L. Convergence results for the EM algorithm to mixtures of experts architectures: Tech. Rep. A.I. Memo No. 1458: MIT, Cambridge, MA, 1993.


Данная статья является непроверенным учебным заданием.
Студент: Участник:Кирилл Павлов
Преподаватель: Участник:В.В.Стрижов
Срок: 28 мая 2009

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.

Замечания

Личные инструменты