SVM регрессия (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Исходный код)
 
(4 промежуточные версии не показаны)
Строка 35: Строка 35:
<tex>
<tex>
\begin{cases}
\begin{cases}
-
\frac{1}{2} (w,w)^2 + C\sum_{i=1}^\ell(\xi_i^+ + \xi_i^-)\rightarrow \underset{w,w_0,\xi_i^+,\xi_i^-}{min}, \\
+
\frac{1}{2} (w,w) + C\sum_{i=1}^\ell(\xi_i^+ + \xi_i^-)\rightarrow \underset{w,w_0,\xi_i^+,\xi_i^-}{min}, \\
(w,f(x_i))-w_0 \le y_i + \epsilon + \xi_i^+, & i=1,..,\ell; \\
(w,f(x_i))-w_0 \le y_i + \epsilon + \xi_i^+, & i=1,..,\ell; \\
(w,f(x_i))-w_0 \ge y_i - \epsilon - \xi_i^-, & i=1,..,\ell; \\
(w,f(x_i))-w_0 \ge y_i - \epsilon - \xi_i^-, & i=1,..,\ell; \\
Строка 49: Строка 49:
<tex>
<tex>
\begin{cases}
\begin{cases}
-
\frac{1}{2} (w,w)^2 + C\sum_{i=1}^\ell(\xi_i^+ + \xi_i^-)\rightarrow \underset{w,w_0,\xi_i^+,\xi_i^-}{min}, \\
+
\frac{1}{2} (w,w) + C\sum_{i=1}^\ell(\xi_i^+ + \xi_i^-)\rightarrow \underset{w,w_0,\xi_i^+,\xi_i^-}{min}, \\
(w,f(x_i)) - w_0 -\xi_i^+ \le y_i + \epsilon , & i=1,..,\ell; \\
(w,f(x_i)) - w_0 -\xi_i^+ \le y_i + \epsilon , & i=1,..,\ell; \\
-(w,f(x_i))+ w_0 -\xi_i^- \le -y_i + \epsilon , & i=1,..,\ell; \\
-(w,f(x_i))+ w_0 -\xi_i^- \le -y_i + \epsilon , & i=1,..,\ell; \\
Строка 129: Строка 129:
[[Изображение:Svr Poisson3.png|800px]]
[[Изображение:Svr Poisson3.png|800px]]
-
<tex>\Uparrow</tex>Часть предыдущего графика, на которой мы видим, что даже с идеальными данными мы не получим идеальное приближение, т.к. среди прочего минимизируем <tex>(w,w)</tex>
+
<tex>\Uparrow</tex>Часть предыдущего графика, на которой мы видим, что даже с идеальными данными мы не получим идеальное приближение, т.к. среди прочего минимизируем <tex>(w,w)</tex>. Функционал потерь состоит из суммы двух частей: <tex>\frac{1}{2} (w,w)</tex> и <tex>C\sum_{i=1}^\ell(\xi_i^+ + \xi_i^-)</tex>. Если точки идут довольно ровно (дисперсия мала по сравнению с <tex>\epsilon</tex>), то можно выделить целое семейство функций, которые обращают вторую часть в ноль, но при этом первая часть будет принимать различные значения для различных наборов коэффициентов <tex>w</tex>. Таким образом, мы в качестве решения получим функцию из семества с минимальным <tex>\frac{1}{2} (w,w)</tex>, и она будет отличаться от точного решения.
[[Изображение:Weights poisson.png|800px]]
[[Изображение:Weights poisson.png|800px]]
Строка 174: Строка 174:
== Исходный код ==
== Исходный код ==
-
* Исходный код [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/SVM_regression Matlab]
+
* Исходный код [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Group774/Kornienko2010SVMRegression Matlab]
== Смотри также ==
== Смотри также ==
Строка 185: Строка 185:
* Gunn, S., 1998. Support Vector Machines for Classification and Regression. ISIS Technical Report ISIS-1-98. Image Speech & Intelligent Systems Research Group, University of Southampton, U.K.
* Gunn, S., 1998. Support Vector Machines for Classification and Regression. ISIS Technical Report ISIS-1-98. Image Speech & Intelligent Systems Research Group, University of Southampton, U.K.
-
{{ЗаданиеВыполнено|Алексей Корниенко|В.В.Стрижов|28 мая 2010}}
+
{{ЗаданиеВыполнено|Алексей Корниенко|В.В.Стрижов|28 мая 2010|Korial|Strijov}}
-
[[Категория:Учебные материалы]]
+
[[Категория:Практика и вычислительные эксперименты]]
[[Категория:Классификация]]
[[Категория:Классификация]]
[[Категория:Линейные классификаторы]]
[[Категория:Линейные классификаторы]]

Текущая версия

SVM (Support Vector Machine, машина опорных векторов) — это особый класс алгоритмов, который характеризуется использованием ядер, отсутствием локальных минимумов, и используется для решения задач классификации и регрессии. В этой статье рассматривается пример использования метода опорных векторов в задачах регрессии.


Содержание

Постановка задачи

Дано: Обучающая выборка X=\{(x_i,y_i)\}_{i=1}^{\ell}, где x_i-признаковое описание i-го объекта, y_i - характеристика, приписываемая объекту. Функция потерь имеет вид a(x_i)=\mid (w,f(x_i))-w_0-y_i \mid_\epsilon для каждого вектора (x_i,y_i), где \mid z \mid_\epsilon = max(0,\mid z \mid-\epsilon).

Найти: такую функцию f_0, которая описывает зависимость E(y|\mathbf{x})=f_0(\mathbf{x}) наилучшим образом.

Алгоритм

Основная статья: Машина опорных векторов

В этом примере решается задача построения линейной SVM регрессии. Для этого решается прямая задача минимизации функционала потерь, в предположении что решение задается линейной комбинацией неких порождающих функций, из которых можем составить вектор-функцию 
f(x)=\begin{Vmatrix}
f_1(x) \\
f_2(x) \\
\vdots \\
f_k(x)
\end{Vmatrix}
.

Тогда функционал примет вид:

Q_\epsilon(a,X)=\sum_{i=1}^\ell \mid (w,f(x_i))-w_0-y_i \mid_\epsilon + \tau (w,w)^2 \rightarrow \underset{w,w_0}{min}

В предположении что

f_0(x)=\sum_{i=1}^k w_i f_i(x)

Для этого вводятся обозначение C=\frac{1}{2\tau} и дополнительные переменные \xi_i^+ и \xi_i^-:

\xi_i^+=(a(x_i)-y_i-\epsilon)_+, \xi_i^-=(-a(x_i)+y_i-\epsilon)_-, i=1,...,l.

Геометрический смысл \xi_i^+ и \xi_i^-:

Изображение:GeometricalSenceOfKsi.jpg

Далее решается задача квадратичного программирования:


\begin{cases} 
\frac{1}{2} (w,w) + C\sum_{i=1}^\ell(\xi_i^+ + \xi_i^-)\rightarrow \underset{w,w_0,\xi_i^+,\xi_i^-}{min},  \\
(w,f(x_i))-w_0 \le y_i + \epsilon + \xi_i^+, & i=1,..,\ell; \\
(w,f(x_i))-w_0 \ge y_i - \epsilon - \xi_i^-, & i=1,..,\ell; \\
\xi_i^- \ge 0, \mbox{   } i=1,..,\ell; \\
\xi_i^+ \ge 0, \mbox{   } i=1,..,\ell; \\
\end{cases}

Эту же задачу можно преобразовать к виду \frac{1}{2}u^T H u + g u\rightarrow \underset{u}{min}, при условии, что A u \le b,\ а также, lb \le u, где u - вектор-столбец, составленный из столбцов w\ , \xi_i^+, \xi_i^-, тоесть, где все переменные объединены в один столбец неизвестных. В таких обозначениях H=diag(1,1,...,1,0,0,...,0),\ g=(0,0,...,0,1,1,...,1), где единиц и нулей в H и g соответственно столько же, сколько порождающих функций, а размерность матрицы H и вектора g равна размерности u.

Теперь построим матрицу А и столбцы b и lb. Преобразуем задачу квадратичного программирования к виду


\begin{cases} 
\frac{1}{2} (w,w) + C\sum_{i=1}^\ell(\xi_i^+ + \xi_i^-)\rightarrow \underset{w,w_0,\xi_i^+,\xi_i^-}{min},  \\
(w,f(x_i)) - w_0 -\xi_i^+ \le y_i + \epsilon , & i=1,..,\ell; \\
-(w,f(x_i))+ w_0 -\xi_i^- \le -y_i + \epsilon , & i=1,..,\ell; \\
0  \le  \xi_i^-, \mbox{   } i=1,..,\ell; \\
0  \le  \xi_i^+, \mbox{   } i=1,..,\ell; \\
\end{cases}

Получаем, 
A=\begin{Vmatrix}
f^T(\x_1)    & -1 & 0 & \cdots & 0 \\
f^T(\x_2)    & 0 & -1 & \cdots & 0 \\
\vdots     & \vdots &\vdots & \ddots & \vdots \\
f^T(\x_\ell) & 0 & 0 & \vdots & 0 \\
-f^T(\x_1)   & 0 & 0 & \vdots & 0 \\
\vdots     & \vdots &\vdots & \ddots & \vdots \\
-f^T(\x_\ell) & 0 & 0 & \cdots & -1 \\
\end{Vmatrix},\ b= 
\begin{Vmatrix}
y_1 + \epsilon \\
y_2 + \epsilon \\
\vdots  \\
y_\ell + \epsilon \\
-y_1 + \epsilon \\
\vdots  \\
-y_\ell + \epsilon \\
\end{Vmatrix},\ lb=
\begin{Vmatrix}
-\infty \\
-\infty \\
\vdots  \\
-\infty \\
0 \\
\vdots  \\
0 \\
\end{Vmatrix}
, и количество минус бесконечностей в lb равно количеству порождающих функций, а количество нулей равно 2\ell.

Таким образом, мы свели задачу к задаче квадратичного программирования.

В нашем примере значения С, \epsilon и порождающие функции задаются экспертом.

Вычислительный эксперимент

Вычислительный эксперимент состоит из трех основных частей:

  • Генерация данных;
  • Работа алгоритма;
  • Визуализация и анализ данных.

Генерация данных

При генерации данных мы выбираем некую линейную комбинацию наших порождающих функций, и добавляем к ней случайный шум. В ходе эксперимента исследуются различные, как дискретные, так и непрерывные шумы. В качестве базовой функции выбрана функция y = 3 + x - 1.5sin(x). А в качестве порождающих функций x,\ e^x,\ sin(x),\ cos(x),\ x^{\frac{1}{2}},\ x^{\frac{3}{2}}, x^0.

Нормальное распределение

\Uparrow дисперсия=1

\Uparrow дисперсия=0.1

\Uparrow Зависимость весов соответствующих функций от обратной дисперсии

Пуассоновское распределение

\UparrowПуассоновское распределение с большой дисперсией

\Uparrow Пуассоновское распределение с малой дисперсией, получаем почти точное решение

\UparrowЧасть предыдущего графика, на которой мы видим, что даже с идеальными данными мы не получим идеальное приближение, т.к. среди прочего минимизируем (w,w). Функционал потерь состоит из суммы двух частей: \frac{1}{2} (w,w) и C\sum_{i=1}^\ell(\xi_i^+ + \xi_i^-). Если точки идут довольно ровно (дисперсия мала по сравнению с \epsilon), то можно выделить целое семейство функций, которые обращают вторую часть в ноль, но при этом первая часть будет принимать различные значения для различных наборов коэффициентов w. Таким образом, мы в качестве решения получим функцию из семества с минимальным \frac{1}{2} (w,w), и она будет отличаться от точного решения.

\Uparrow Зависимость весов соответствующих функций от параметра

Равномерное распределение

\Uparrow Работа алгоритма на примере с равномерным шумом. На этом графике шум равномерно распределен на отрезке [-\frac{1}{2};\frac{1}{2}]

\Uparrow Зависимость весов соответствующих функций от параметра

Распределение sin(unif)

Тест на распределении вида \frac{sin(unifrnd(-3.1415/2,3.1415/2))}{parameter}, или же синуса от равномерного распределения.

\Uparrow Если выбрать большую амплитуду(=5), решение может сильно отличаться от верного

\Uparrow При малых(=0.5) такого не наблюдается.

\Uparrow Зависимость весов соответствующих функций от параметра

Реальные данные

Пример взят из Репозитория UCI. В этом примере рассматриваются автомобили 1970-1973 года выпуска. Строится зависимость мощности автомобиля [л.с.] от веса [кг]

\UparrowПример иллюстрирует, что очень важно правильно выбирать порождающие функции. Хотя потери меньше, чем на следующем графике, такое решение не является достаточно точным.

\UparrowВектор порождающих функций: f = [x,\ e^{-x},\ sin(x),\ cos(x),\ x^{\frac{1}{2}},\ x^{\frac{3}{2}},\ x^0];

\UparrowВектор порождающих функций: f = [x,\ e^{-x},\ x^2,\ 0*cos(x),\ x^{\frac{1}{2}},\ x^{\frac{3}{2}},\ x^0];

Исходный код

  • Исходный код Matlab

Смотри также

Литература

  • Alex J. Smola, Bernhard Schölkopf. A tutorial on support vector regression. DOI Bookmark: 10.1023/B:STCO.0000035301.49549.88
  • Gunn, S., 1998. Support Vector Machines for Classification and Regression. ISIS Technical Report ISIS-1-98. Image Speech & Intelligent Systems Research Group, University of Southampton, U.K.


Данная статья была создана в рамках учебного задания.
Студент: Алексей Корниенко
Преподаватель: В.В.Стрижов
Срок: 28 мая 2010


В настоящее время задание завершено и проверено. Данная страница может свободно правиться другими участниками проекта MachineLearning.ru.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.

Личные инструменты