Участник:Ruzik/Песочница
Материал из MachineLearning.
| Строка 19: | Строка 19: | ||
Для минимизации применим метод градиентного спуска. Это пошаговый алгоритм, на каждой итерации которого вектор w изменяется в направлении наибольшего убывания функционала Q (то есть в направлении антиградиента):  | Для минимизации применим метод градиентного спуска. Это пошаговый алгоритм, на каждой итерации которого вектор w изменяется в направлении наибольшего убывания функционала Q (то есть в направлении антиградиента):  | ||
::<tex>w \, {:=} \, w \, - \, \eta \nabla Q(w)</tex>,  | ::<tex>w \, {:=} \, w \, - \, \eta \nabla Q(w)</tex>,  | ||
| - | где <tex>\eta</tex> - положительный параметр, называемый ''  | + | где <tex>\eta</tex> - положительный параметр, называемый ''темпом обучения (learning rate)''.  | 
| + | |||
| + | Возможно 2 основных подхода к реализации градиентного спуска:  | ||
| + | * ''Пакетный (batch)'', когда на каждой итерации обучающая выборка просматривается целиком, и только после этого изменяется w. Это требует больших вычислительных затрат.  | ||
| + | * ''Стохастический (stochastic/online)'', когда на каждой итерации алгоритма из обучающей выборки каким-то (случайным) образом выбирается только один объект. Таким образом вектор w настраивается на каждый вновь выбираемый объект.  | ||
Версия 11:08, 3 января 2010
 
 
 
 
 
 
 
Метод стохастического градиента (Stochastic Gradient)
Градиентные методы - это широкий класс оптимизационных алгоритмов, используемых не только в машинном обучении.
Здесь градиентный подход будет рассмотрен в качестве способа подбора вектора синаптических весов w в линейном классификаторе (ссылка).
Пусть  - целевая зависимость, известная только на объектах обучающей выборки:
.
Найдём алгоритм , аппроксимирующий зависимость 
.
Согласно принципу минимизации эмпирического риска для этого достаточно решить оптимизационную задачу:
,
где 
 - заданная функция потерь.
Для минимизации применим метод градиентного спуска. Это пошаговый алгоритм, на каждой итерации которого вектор w изменяется в направлении наибольшего убывания функционала Q (то есть в направлении антиградиента):
,
где  - положительный параметр, называемый темпом обучения (learning rate).
Возможно 2 основных подхода к реализации градиентного спуска:
- Пакетный (batch), когда на каждой итерации обучающая выборка просматривается целиком, и только после этого изменяется w. Это требует больших вычислительных затрат.
 - Стохастический (stochastic/online), когда на каждой итерации алгоритма из обучающей выборки каким-то (случайным) образом выбирается только один объект. Таким образом вектор w настраивается на каждый вновь выбираемый объект.
 

