Участник:Ruzik/Песочница
Материал из MachineLearning.
| Строка 27: | Строка 27: | ||
==Алгоритм Stochastic Gradient (SG)==  | ==Алгоритм Stochastic Gradient (SG)==  | ||
'''Вход:'''  | '''Вход:'''  | ||
| - | + | * <tex>X^l</tex> - обучающая выборка <br />  | |
| - | + | * <tex>\eta</tex> - темп обучения <br />  | |
| - | + | * <tex>\lambda</tex> - параметр сглаживания функционала <tex>Q</tex> <br />  | |
'''Выход:'''  | '''Выход:'''  | ||
| - | + | * Вектор <tex>w</tex>  | |
Версия 11:57, 3 января 2010
 
 
 
 
 
 
 
Метод стохастического градиента (Stochastic Gradient)
Градиентные методы - это широкий класс оптимизационных алгоритмов, используемых не только в машинном обучении.
Здесь градиентный подход будет рассмотрен в качестве способа подбора вектора синаптических весов  в линейном классификаторе (ссылка).
Пусть 
 - целевая зависимость, известная только на объектах обучающей выборки:
.
Найдём алгоритм , аппроксимирующий зависимость 
.
Согласно принципу минимизации эмпирического риска для этого достаточно решить оптимизационную задачу:
,
где 
 - заданная функция потерь.
Для минимизации применим метод градиентного спуска. Это пошаговый алгоритм, на каждой итерации которого вектор  изменяется в направлении наибольшего убывания функционала 
 (то есть в направлении антиградиента):
,
где  - положительный параметр, называемый темпом обучения (learning rate).
Возможно 2 основных подхода к реализации градиентного спуска:
-  Пакетный (batch), когда на каждой итерации обучающая выборка просматривается целиком, и только после этого изменяется 
. Это требует больших вычислительных затрат.
 - Стохастический (stochastic/online), когда на каждой итерации алгоритма из обучающей выборки каким-то (случайным) образом выбирается только один объект. Таким образом вектор w настраивается на каждый вновь выбираемый объект.
 
Алгоритм Stochastic Gradient (SG)
Вход:
-  
- обучающая выборка
 -  
- темп обучения
 -  
- параметр сглаживания функционала
 
Выход:
-  Вектор 
 

