Тупиковые тесты
Материал из MachineLearning.
| м  (→Построение тупиковых тестов) | м  (→Построение тупиковых тестов) | ||
| Строка 83: | Строка 83: | ||
| #Пусть <tex>i<h</tex>.  | #Пусть <tex>i<h</tex>.  | ||
| ##Случайным образом выбираем  набор <tex>u=\{i_1,\ldots,\i_r\} \in U_i</tex>, определяющий подматрицу <tex>L^u_{nml}</tex>, образованную строками с номерами <tex>i_1,\ldots,i_r</tex>.<br /> | ##Случайным образом выбираем  набор <tex>u=\{i_1,\ldots,\i_r\} \in U_i</tex>, определяющий подматрицу <tex>L^u_{nml}</tex>, образованную строками с номерами <tex>i_1,\ldots,i_r</tex>.<br /> | ||
| - | ##Тест таблицы <tex>T_{nml}</tex>, состоящий из столбцов <tex>j_1,\ldots, | + | ##Тест таблицы <tex>T_{nml}</tex>, состоящий из столбцов <tex>j_1,\ldots,j_r</tex> называется ''u-тестом'', если набор столбцов матрицы <tex>L^u_{nml}</tex> с теми же номерами является неприводимым покрытием. <tex>\mathcal{T}(T_{nml},u)</tex> - множество всех u-тестов в таблице <tex>T_{nml}</tex>. | 
| ##Каждому неприводимому покрытию матрицы <tex>L_{nml}</tex> соответствует набор столбцов таблицы <tex>T_{nml}</tex>, который проверяется на тестовость. | ##Каждому неприводимому покрытию матрицы <tex>L_{nml}</tex> соответствует набор столбцов таблицы <tex>T_{nml}</tex>, который проверяется на тестовость. | ||
| ##Обработка последовательности <tex>u_1,\ldots,u_v</tex> приводит к построению случайной выборки <tex>\mathcal{T}'(T_{nml})=\bigcup^{v}_{t=1}{\mathcal{T}(T_{nml},u_t)}</tex>. В этом случае используется стохастический способ построения тупиковых тестов. | ##Обработка последовательности <tex>u_1,\ldots,u_v</tex> приводит к построению случайной выборки <tex>\mathcal{T}'(T_{nml})=\bigcup^{v}_{t=1}{\mathcal{T}(T_{nml},u_t)}</tex>. В этом случае используется стохастический способ построения тупиковых тестов. | ||
| - | '''Замечание:''' Требуемая точность алгоритмов зависит от выбора параметров i и v. При определенных условия выбора этих величин стохастический алгоритм почти всегда совпадает с детерминированным, <tex>i=\log^{\gamma}_2 n, \ \gamma >3</tex>. для решения практических задач достаточно выбрать <tex>i=\log_2 n, v=20</tex>. | + | '''Замечание:''' Требуемая точность алгоритмов зависит от выбора параметров <tex>i</tex> и <tex>v</tex>. При определенных условия выбора этих величин стохастический алгоритм почти всегда совпадает с детерминированным, <tex>i=\log^{\gamma}_2 n, \ \gamma >3</tex>. для решения практических задач достаточно выбрать <tex>i=\log_2 n,\ v=20</tex>. | 
| ==Литература== | ==Литература== | ||
Версия 14:36, 14 февраля 2010
|   | Данная статья является непроверенным учебным заданием. 
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. | 
Алгоритмы вычисления оценки, в которых опорные  множества являются тупиковыми тестами, называются тестовыми алгоритмами. Первый вариант таких АВО был предложен Ю.И. Журавлевым. АВО совмещают метрические и логические принципы классификации. От метрических алгоритмов АВО наследуют принцип оценивания сходства через введение множества метрик , а от логических принцип поиска конъюнктивных закономерностей, конъюнкции строятся не над бинарными признаками 
, а над бинарными функциями близости вида 
. В этом случае каждой закономерности соответствует не подмножество признаков, а подмножество метрик, называемое опорным множеством. Как правило одного опорного множества недостаточно, поэтому в АВО применяется взвешенное голосование по системе опорных множеств.
| Содержание | 
Описание АВО, основанных на тупиковых тестах
Формулировка задачи
Задача распознавания: Дано  - множество непересекающихся классов объектов.
Даны первоначальная информация  (обучающая) и описание некоторого объекта 
,  
.
Объект задается через набор числовых признаков .
Задача распознавания состоит в определении включения заданного объекта  в классы 
.
В случае АВО, основанных на тупиковых тестах, начальная информация  задается таблицей:
- - таблица признаков объектов в обучающей выборке; 
- - описание объекта из обучающей выборки; 
- - выражение, определяющее включение объектов в классы; 
Алгоритм распознавания, где 
.
Строение АВО
- - система опорных множеств; 
- Вводится функция близости для двух объектов по опорному множеству : 
 
, 
где 
 неотрицательные числа, называемые порогами, 
- Вводится оценка близости объекта к классу 
- Вычисление алгоритма проводится по правилу:
 
 - пороги осторожности.
Строение АВО, основанного на тупиковых тестах
- Вводится система опорных множеств ; 
- Задается функция близости для двух объектов по опорному множеству : 
. Если 
, объекты не являются близкими по опорному множеству.
Тупиковые тесты
Тестом называется набор столбцов таблицы обучения  с номерами 
, если любые два объекта, принадлежащие разным классам 
, не являются близкими по опорному множеству 
.
Тупиковым тестом называется тест, у которого его собственное подмножество не является таковым. 
Задача распознавания на основе тупиковых тестов решается следующим образом.
Пусть  - множество тупиковых тестов таблицы 
. По тупиковому тесту
  выделяется подописание для распознаваемого объекта 
, а затем сравнивается со всеми подописаниями объектов таблицы. Число совпадений с описаниями объектов 
-го класса обозначается через 
.
Оценка объекта по -ому классу 
.
Далее объект относится к тому классу,по которому он получил максимальную оценку, в случае двух максимумов считается, что объект не классифицируется на заданном тесте.
Если считать, что не все признаки, описывающие объект, равнозначны, то они снабжаются числовыми весами , где 
 - число тупиковых тестов в таблице, 
 -число тупиковых тестов в таблице, содержащих 
-ый столбец. Чем больше вес, тем важнее признак в описании объектов множества.  
Весами объектов, составляющих таблицу обучения, называется поощрительная величина 
. В случае совпадения распознаваемого объекта 
 с объектом из таблицы 
, такое совпадение поощряется: 
,
Оценка объекта по 
-ому классу задается таким образом
.
Построение тупиковых тестов
Процесс построения всех тупиковых тестов очень трудоемкий, так как зачастую приходится использовать метод перебора. Для решения задач большой размерности применяются стохастические методы. Для обработки таблиц с относительно большим числом строк по сравнению с числом столбцов может применяться следующий метод. 
- Пусть . 
Паре объектов  и 
 ставится в соответствие строка 
, если :
- Составим булеву матрицу из всех таких строк для объектов из разных классов. 
-  - совокупность всех подмножеств множества мощности , где - выбранное число из этого множества. - число строк в матрице . Элементы множества называются наборами. 
- Алгоритм построения тупиковых тестов:
- Пусть , задача построения множества всех тупиковых тестов таблицы сводится к построению множества всех неприводимых покрытий матрицы . В этом случае используется детерминированный алгоритм. 
- Пусть . - Случайным образом выбираем  набор , определяющий подматрицу , образованную строками с номерами . 
 
- Тест таблицы , состоящий из столбцов называется u-тестом, если набор столбцов матрицы с теми же номерами является неприводимым покрытием. - множество всех u-тестов в таблице . 
- Каждому неприводимому покрытию матрицы соответствует набор столбцов таблицы , который проверяется на тестовость. 
- Обработка последовательности приводит к построению случайной выборки . В этом случае используется стохастический способ построения тупиковых тестов. 
 
- Случайным образом выбираем  набор 
Замечание: Требуемая точность алгоритмов зависит от выбора параметров  и 
. При определенных условия выбора этих величин стохастический алгоритм почти всегда совпадает с детерминированным, 
. для решения практических задач достаточно выбрать 
.
Литература
- К.В. Воронцов, Машинное обучение (курс лекций)
- Журавлев Ю. И. Об алгебраических методах в задачах распознавания и классификации // Распознавание, классификация, прогноз. — 1988 T. 1. — С. 9--16.
- Бушманов О. Н., Дюкова Е. В., Журавлев Ю. И., Кочетков Д. В., Рязанов В. В. Система анализа и распознавания образов // Распознавание, классификация, прогноз. — М.: Наука, 1989. — T. 2. — С. 250–273.

