Аппроксимация Лапласа (пример)
Материал из MachineLearning.
 (→Описание алгоритма)  | 
			|||
| Строка 12: | Строка 12: | ||
==Описание алгоритма==  | ==Описание алгоритма==  | ||
| + | |||
| + | |||
| + | метрика Кульбака - Лейблера: <tex>D_{kl}(p,q)=\sum\limits_{x\in \mathcal{X}} p(x) \ln \frac{p(x)}{q(x)}</tex>  | ||
==Вычислительный эксперимент==  | ==Вычислительный эксперимент==  | ||
Версия 06:24, 16 ноября 2010
Аппроксимация Лапласа - простой, но широко используемый способ нахождения нормального (Гауссово) распределения для апроксимации заданой плотности вероятности.
Содержание | 
Сэмплирование
Сэмплирование – процесс выбора подмножества наблюдаемых величин из данного множества, для дальнейшего его анализа.
Одно из основных приминений методов сэмплирования заключается в оценке мат. ожидания сложных вероятностных распределений: , для которых тяжело делать выборку непосредственно из распределения p(z). Однако, можно подсчитать значение p(z) в любой точке z. Один из наиболее простых методов подсчета мат. ожидаия – разбить ось z на равномерную сетку и подсчитать интеграл как сумму 
  ≅
. Существует несколько методов сэмплирования для создания подходящей выборки длинны L ???.
Постановка задачи
Задана выборка — множество  значений свободных переменных и множество 
 соответствующих им значений зависимой переменной.
Необходимо для выбранной регрессионной модели 
показать зависимость среднеквадратичной ошибки от значений параметров модели: 
; построить график и сделать апроксимацию Лапласа для него; используя метрику Кульбака - Лейблера, найти расстояния между получиными зависимостями.
Описание алгоритма
метрика Кульбака - Лейблера: 
Вычислительный эксперимент
Пример 1
Задуманная функция . Берем линейную регрессионную модель с 2-мя параметрами: 
.
Используя МНК находим оптимальное значение 
 и 
 (при которых SSE минимально). При фиксированном 
 задем произвольное значение 
 (500 значений на отрезке [-1;2]) истроим зависимость:
Повторим тоже самое, только теперь варируем сразу оба параметра  и 
и его апроксимация лапласса




