Аппроксимация Лапласа (пример)
Материал из MachineLearning.
 (→Сэмплирование)  | 
				 (→Литература)  | 
			||
| Строка 58: | Строка 58: | ||
== Литература ==  | == Литература ==  | ||
* Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.  | * Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.  | ||
| + | <references/>  | ||
{{Задание|Евгений Зайцев|В.В.Стрижов|24 декабря 2010|Yevgen.zaytsev|Strijov}}  | {{Задание|Евгений Зайцев|В.В.Стрижов|24 декабря 2010|Yevgen.zaytsev|Strijov}}  | ||
[[Категория:Практика и вычислительные эксперименты]]  | [[Категория:Практика и вычислительные эксперименты]]  | ||
Версия 17:01, 22 ноября 2010
Аппроксимация Лапласа - способ оценки параметров нахождения нормального распределения при апроксимации заданой плотности вероятности.
Содержание | 
Сэмплирование
Сэмплирование – метод выбора подмножества наблюдаемых величин из данного множества, для дальнейшего его анализа. Одно из основных приминений методов сэмплирования заключается в оценке математического ожидания сложных вероятностных распределений:
для которых тяжело делать выборку непосредственно из распределения p(z). Однако, можно подсчитать значение p(z) в любой точке z. Один из наиболее простых методов подсчета математического ожидаия – разбить ось z на равномерную сетку и подсчитать интеграл как сумму
Существует несколько методов сэмплирования для создания выборки длинны L [1].
Постановка задачи
Задана выборка — множество  значений свободных переменных и множество 
 соответствующих им значений зависимой переменной.
Необходимо для выбранной регрессионной модели 
-  показать зависимость среднеквадратичной ошибки от значений параметров модели: 
;
 - построить график и сделать апроксимацию Лапласа для нее;
 - найти расстояния между получеными зависимостями, используя расстояние Кульбака - Лейблера.
 
Описание алгоритма
Расстояние Кульбака - Лейблера:
Вычислительный эксперимент
Обозначим плоность распределения SSE как , а его апроксимация лапласса 
Пример 1
Задуманная функция . Берем линейную регрессионную модель с двумя параметрами: 
.
Используя метод наименьших квадратов находим оптимальное значение 
 и 
 (при которых SSE минимально).
При фиксированном  задаем различные значение 
 (500 случайных значений на отрезке [-1;2]) и строим зависимость:
.
Повторим эксперимент, только теперь варируем сразу оба параметра  и 
:
апроксимация Лапласса:
На рис.2 наблюдается зависимость между коэффициентами  и 
. Следовательно, ковариационная матрица 
 не будет диагональной.
Смотри также
Литература
- Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.
 
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 





